Mesoscale Shoreline Evolution on a Carbonate Sand Island: Anegada, British Virgin Islands
Abstract
:1. Introduction
2. Study Site
3. Methods
4. Results
4.1. Coastal Geomorphology
4.2. Climate and Wave Environment
4.3. Wave Modelling
4.4. Historical Shoreline Change
5. Discussion
- The north coast shows general shoreline progradation in the embayments and recession on the headlands;
- The section from West End to Pomato Point shows strong temporal and spatial variability in shoreline behaviour, with spatially alternating recession and progradation;
- East of Pomato Point, the shoreline shows little-to-no change.
6. General Discussion
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kench, P.S.; Cowell, P.J. Variations in sediment production and implications for atoll island stability under rising sea level, 2002. In Proceedings of the Ninth International Coral Reef Symposium, Bali, Indonesia, 23–27 October 2000; Volume 2, pp. 1181–1186. [Google Scholar]
- Reguero, B.G.; Beck, M.W.; Agostini, V.N.; Kramer, P.; Hancock, B. Coral reefs for coastal protection: A new methodological approach and engineering case study in Grenada. J. Environ. Manag. 2018, 210, 146–161. [Google Scholar] [CrossRef] [PubMed]
- Biribo, N.; Woodroffe, C.D. Historical area and shoreline change of reef islands around Tarawa Atoll, Kiribati. Sustain. Sci. 2013, 8, 345–362. [Google Scholar] [CrossRef]
- Perry, C.T.; Kench, P.S.; Smithers, S.G.; Riegl, B.; Yamano, H.; O’Leary, M.J. Implications of reef ecosystem change for the stability and maintenance of coral reef islands. Glob. Chang. Biol. 2011, 17, 3679–3696. [Google Scholar] [CrossRef]
- Scheffers, S.R.; Haviser, J.; Browne, T.; Scheffers, A. Tsunamis, hurricanes, the demise of coral reefs and shifts in pre-historic human populations in the Caribbean. Quat. Int. 2009, 195, 69–87. [Google Scholar] [CrossRef]
- Eakin, C.M.; Morgan, J.A.; Heron, S.F.; Smith, T.B.; Liu, G.; Alvarez-Filip, L.; Baca, B.; Bartels, E.; Bastidas, C.; Bouchon, C.; et al. Caribbean corals in crisis: Record thermal stress, bleaching, and mortality in 2005. PLoS ONE 2010, 5, e13969. [Google Scholar] [CrossRef] [PubMed]
- Cowell, P.J.; Thom, B.G. Morphodynamics of coastal evolution. In Coastal Evolution: Late Quaternary Shoreline Morphodynamics; Carter, R.W.G., Woodroffe, C.D., Eds.; Cambridge University Press: Cambridge, UK, 1994; pp. 33–86. [Google Scholar]
- Hubbard, D.K. Hurricane-Induced Sediment Transport in Open-Shelf Tropical Systems—An Example from St. Croix, U.S. Virgin Islands. J. Sediment. Res. 1992, 62, 946–959. [Google Scholar]
- Ferrario, F.; Beck, M.W.; Storlazzi, C.D.; Micheli, F.; Shepard, C.C.; Airoldi, L. The effectiveness of coral reefs for coastal hazard risk reduction and adaptation. Nat. Commun. 2014, 5, 3794. [Google Scholar] [CrossRef]
- Roeber, V.; Bricker, J.D. Destructive tsunami-like wave generated by surf beat over a coral reef during Typhoon Haiyan. Nat. Commun. 2015, 6, 7854. [Google Scholar] [CrossRef]
- Ford, M.R.; Kench, P.S. Multi-decadal shoreline changes in response to sea level rise in the Marshall Islands. Anthropocene 2015, 11, 14–24. [Google Scholar] [CrossRef]
- Nunn, P.D.; Kohler, A.; Kumar, R. Identifying and assessing evidence for recent shoreline change attributable to uncommonly rapid sea-level rise in Pohnpei, Federated States of Micronesia, Northwest Pacific Ocean. J. Coast. Conserv. 2017, 21, 719–730. [Google Scholar] [CrossRef]
- Testut, L.; Duvat, V.; Ballu, V.; Fernandes, R.M.; Pouget, F.; Salmon, C.; Dyment, J. Shoreline changes in a rising sea level context: The example of Grande Glorieuse, Scattered Islands, Western Indian Ocean. Acta Oecologica 2016, 72, 110–119. [Google Scholar] [CrossRef]
- Duvat, V.K.; Salvat, B.; Salmon, C. Drivers of shoreline change in atoll reef islands of the Tuamotu Archipelago, French Polynesia. Glob. Planet. Chang. 2017, 158, 134–154. [Google Scholar] [CrossRef]
- Tuck, M.E.; Ford, M.R.; Kench, P.S.; Masselink, G. Sediment supply dampens the erosive effects of sea-level rise on reef islands. Sci. Rep. 2021, 11, 5523. [Google Scholar] [CrossRef]
- Romine, B.M.; Fletcher, C.H.; Barbee, M.M.; Anderson, T.R.; Frazer, L.N. Are beach erosion rates and sea-level rise related in Hawaii? Glob. Planet. Chang. 2013, 108, 149–157. [Google Scholar] [CrossRef]
- Gore, S. Anegada: An Emergent Pleistocene Reef Island. In Coral Reefs of the United Kingdom Overseas Territories; Sheppard, C.R., Ed.; Springer: The Netherlands, 2013; pp. 47–60. [Google Scholar]
- Dunne, R.P.; Brown, B.E. Some aspects of the ecology of reefs surrounding Anegada, British Virgin Islands. Atoll Res. Bull. 1979, 236, 1–80. [Google Scholar] [CrossRef]
- Gore, S. Introduction to Reefs and Shorelines of the British Virgin Islands. In Coral Reefs of the United Kingdom Overseas Territories; Springer: Dordrecht, The Netherlands, 2013; pp. 23–35. [Google Scholar]
- Peel, M.C.; Finlayson, B.L.; McMahon, T.A. Updated world map of the Köppen-Geiger climate classification. Hydrol. Earth Syst. Sci. 2007, 11, 1633–1644. [Google Scholar] [CrossRef]
- Atwater, B.F.; Brink, U.S.T.; Buckley, M.; Halley, R.S.; Jaffe, B.E.; López-Venegas, A.M.; Reinhardt, E.G.; Tuttle, M.P.; Watt, S.; Wei, Y. Geomorphic and stratigraphic evidence for an unusual tsunami or storm a few centuries ago at Anegada, British Virgin Islands. Nat. Hazards 2010, 63, 51–84. [Google Scholar] [CrossRef]
- Gore, S. Beach Geomorphology and Management in the British Virgin Islands. Ph.D. Thesis, University of Ulster, Coleraine, UK, 2012. [Google Scholar]
- Gore, S.; Cooper, J.A.G.; Jackson, D.W.T.; Jarecki, L. Spatial variability in beach biogeomorphology in a tropical archipelago. Earth Surf. Process. Landf. 2019, 44, 1860–1875. [Google Scholar] [CrossRef]
- Clubbe, C.; Gillman, M.; Acevedo-Rodríguez, P.; Walker, R. Abundance, distribution and conservation significance of regionally endemic plant species on Anegada, British Virgin Islands. Oryx 2004, 38, 342–346. [Google Scholar] [CrossRef]
- Atwater, B.F.; Fuentes, Z.; Halley, R.B.; Brink, U.S.T.; Tuttle, M.P. Effects of 2010 Hurricane Earl amidst geologic evidence for greater overwash at Anegada, British Virgin Islands. Adv. Geosci. 2014, 38, 21–30. [Google Scholar] [CrossRef]
- Watt, S.; Buckley, M.; Jaffe, B. Inland fields of dispersed cobbles and boulders as evidence for a tsunami on Anegada, British Virgin Islands. Nat. Hazards 2011, 63, 119–131. [Google Scholar] [CrossRef]
- ReefBase. ReefBase: A Global Information System for Coral Reefs. Available online: http://www.reefbase.org (accessed on 20 January 2022).
- Cooper, J.A.G.; Jackson, D.W.T.; Gore, S. A groundswell event on the coast of the British Virgin Islands: Spatial variability in morphological impact. J. Coast. Res. 2013, 65, 696–701. [Google Scholar] [CrossRef]
- Dorville, J.-F.; Zahibo, N. Storm surge induced by hurricane Omar on the Caribbean coasts, example of the port of Deshaies in Guadeloupe. Geophys. Res. Abstr. 2009, 11, 1103. [Google Scholar]
- Zahibo, N.; Pelinovsky, E.; Yalciner, A.C.; Kurkin, A.; Koselkov, A.; Zaitsev, A. The 1867 Virgin Islands Tsunami. Nat. Hazards Earth Syst. Sci. 2003, 3, 367–376. [Google Scholar] [CrossRef]
- Atwater, B.F.; Brink, U.S.T.; Cescon, A.L.; Feuillet, N.; Fuentes, Z.; Halley, R.B.; Nuñez, C.; Reinhardt, E.G.; Roger, J.H.; Sawai, Y.; et al. Extreme waves in the British Virgin Islands during the last centuries before 1500 CE. Geosphere 2017, 13, 301–368. [Google Scholar] [CrossRef]
- Reinhardt, E.G.; Pilarczyk, J.; Brown, A. Probable tsunami origin for a Shell and Sand Sheet from marine ponds on Anegada, British Virgin Islands. Nat. Hazards 2011, 63, 101–117. [Google Scholar] [CrossRef]
- Cordrie, L.; Feuillet, N.; Gailler, A.; Biguenet, M.; Chaumillon, E.; Sabatier, P. A Megathrust earthquake as source of a Pre-Colombian tsunami in Lesser Antilles: Insight from sediment deposits and tsunami modeling. Earth—Sci. Rev. 2022, 228, 104018. [Google Scholar] [CrossRef]
- Gardner, T.A.; Côté, I.M.; Gill, J.A.; Grant, A.; Watkinson, A.R. Hurricanes and Caribbean Coral Reefs: Impacts, Recovery Patterns, and Role in Long-Term Decline. Ecology 2005, 86, 174–184. [Google Scholar] [CrossRef]
- US National Oceanographic and Atmospheric Administration. Buoys Data Centre. Available online: http://www.ndbc.noaa.gov (accessed on 1 September 2014).
- Grothe, P.R.; Taylor, L.A.; Eakins, B.W.; Carignan, K.S.; Caldwell, R.J.; Lim, E.; Friday, D.Z. Digital Elevation Models of the U.S. Virgin Islands: Procedures, Data Sources and Analysis. In NOAA Technical Memorandum NESDIS NGDC-55; U.S. Department of Commerce: Boulder, CO, USA, 2012; p. 50. [Google Scholar]
- National Oceanic and Atmospheric Administration. Historical Hurricane Tracks. Available online: http://coast.noaa.gov/hurricanes/ (accessed on 1 March 2015).
- BVI Government. Unpublished Nautical Charts Data; BVI Government: British Virgin Islands, UK, 2013. [Google Scholar]
- Collin, A.; Hench, J.L. Towards deeper measurements of tropical reefscape structure using the WorldView-2 spaceborne sensor. Remote Sens. 2012, 4, 1425–1447. [Google Scholar] [CrossRef]
- Loureiro, C.; Ferreira, Ó.; Cooper, J.A.G. Extreme erosion on high-energy embayed beaches: Influence of megarips and storm grouping. Geomorphology 2012, 139, 155–171. [Google Scholar] [CrossRef]
- Booij, N.; Holthuijsen, L.H.; Ris, R.C. The SWAN wave model for shallow water. In Proceedings of the 25th International Conference on Coastal Engineering, Orlando, FL, USA, 2–6 September 1996; pp. 668–676. [Google Scholar]
- Nelson, R. Hydraulic roughness of coral reef platforms. Appl. Ocean Res. 1996, 18, 265–274. [Google Scholar] [CrossRef]
- Monismith, S.G.; Rogers, J.S.; Koweek, D.; Dunbar, R.B. Frictional wave dissipation on a remarkably rough reef. Geophys. Res. Lett. 2015, 42, 4063–4071. [Google Scholar] [CrossRef]
- Sheppard, C.; Dixon, D.J.; Gourlay, M.; Sheppard, A.; Payet, R. Coral mortality increases wave energy reaching shores protected by reef flats: Examples from the Seychelles. Estuar. Coast. Shelf Sci. 2005, 64, 223–234. [Google Scholar] [CrossRef]
- Fonseca, M.A.; Fisher, J.S. A comparison of canopy friction and sediment movement between four species of seagrass with reference to their ecology and restoration. Mar. Ecol. Prog. Ser. 1986, 29, 15–22. [Google Scholar] [CrossRef]
- Pajak, M.J.; Leatherman, S. The high water line as shoreline indicator. J. Coast. Res. 2002, 18, 329–337. [Google Scholar]
- Fisher, J.S.; Overton, M.F. Interpretation of Shoreline Position from Aerial Photographs. In Proceedings of the 24th Conference on Coastal Engineering, Kobe, Japan, 29 January 1994; Volume 24, pp. 1998–2003. [Google Scholar]
- Boak, E.H.; Turner, I.L. Shoreline Definition and Detection: A Review. J. Coast. Res. 2005, 214, 688–703. [Google Scholar] [CrossRef]
- Rogers, S.S.; Sandweiss, D.H.; Maasch, K.A.; Belknap, D.F.; Agouris, P. Coastal Change and Beachridges along the Northwest Coast of Peru: Image and GIS Analysis of the Chira, Piura, and Colan Beach-Ridge Plains. J. Coast. Res. 2004, 20, 1102–1125. [Google Scholar] [CrossRef]
- Thieler, E.R.; Himmelstoss, E.A.; Zichichi, J.L.; Ergul, A. Digital Shoreline Analysis System (DSAS)—An ArcGIS Extension for Calculating Shoreline Change, version 4.0; Open-File Report; U.S. Geological Survey: Reston, VA, USA, 2008; p. 1278. [Google Scholar]
- Spiske, M.; Pilarczyk, J.E.; Mitchell, S.; Halley, R.B.; Otai, T. Coastal erosion and sediment reworking caused by hurricane Irma–implications for storm impact on low-lying tropical islands. Earth Surf. Process. Landf. 2022, 47, 891–907. [Google Scholar] [CrossRef]
- Spiske, M.; Halley, R.B. A coral-rubble ridge as evidence for hurricane overwash, Anegada (British Virgin Islands). Adv. Geosci. 2014, 38, 9–20. [Google Scholar] [CrossRef]
- Hamon-Kerivel, K.; Cooper, A.; Jackson, D.; Sedrati, M.; Pintado, E.G. Shoreface mesoscale morphodynamics: A review. Earth-Sci. Rev. 2020, 209, 103330. [Google Scholar] [CrossRef]
- Cooper, J.; Green, A.; Loureiro, C. Geological constraints on mesoscale coastal barrier behaviour. Glob. Planet. Chang. 2018, 168, 15–34. [Google Scholar] [CrossRef]
- Morton, R.A.; Gibeaut, J.C.; Paine, J.G. Meso-scale transfer of sand during and after storms: Implications for prediction of shoreline movement. Mar. Geol. 1995, 126, 161–179. [Google Scholar] [CrossRef]
- Plant, N.G.; Flocks, J.; Stockdon, H.F.; Long, J.W.; Guy, K.; Thompson, D.M.; Cormier, J.M.; Smith, C.G.; Miselis, J.L.; Dalyander, P.S. Predictions of barrier island bermevolution in a time] varying storm climatology. J. Geophys.—Cal Res. Earth Surf. 2014, 119, 300–316. [Google Scholar] [CrossRef]
- Otvos, E.G. Hurricane signatures and landforms-toward improved interpretations and global storm climate chronology. Sediment. Geol. 2011, 239, 10–22. [Google Scholar] [CrossRef]
- Guisado-Pintado, E.; Jackson, D.W.T. Multi-scale variability of storm Ophelia 2017: The importance of Synchronized environmental variables in coastal impact. Sci. Total Environ. 2018, 630, 287–301. [Google Scholar] [CrossRef]
- Van Vliet-Lanoë, B.; Penaud, A.; Hénaff, A.; Delacourt, C.; Fernane, A.; Goslin, J.; Hallégouët, B.; Le Cornec, E. Middle-to late-Holocene storminess in Brittany (NW France): Part II—The chronology of events and climate forcing. Holocene 2014, 24, 434–453. [Google Scholar] [CrossRef]
- Maloney, E.D.; Hartmann, D.L. Modulation of hurricane activity in the Gulf of Mexico by the Madden-Julian oscillation. Science 2000, 287, 2002–2004. [Google Scholar] [CrossRef]
- Donnelly, J.P.; Woodruff, J.D. Intense hurricane activity over the past 5000 years controlled by El Niño and the West African monsoon. Nature 2007, 447, 465. [Google Scholar] [CrossRef] [PubMed]
- Kench, P.; Parnell, K.; Brander, R. Monsoonally influenced circulation around coral reef islands and seasonal dynamics of reef island shorelines. Mar. Geol. 2009, 266, 91–108. [Google Scholar] [CrossRef]
- Mazda, Y.; Magi, M.; Kogo, M.; Hong, P.N. Mangroves as a coastal protection from waves in the Tong King delta, Vietnam. Mangrove sSalt Marshes 1997, 1, 127–135. [Google Scholar] [CrossRef]
- Quataert, E.; Storlazzi, C.; van Rooijen, A.; Cheriton, O.; van Dongeren, A. The influence of coral reefs and climate change on wave-driven flooding of tropical coastlines. Geophys. Res. Lett. 2015, 42, 6407–6415. [Google Scholar] [CrossRef]
- Brander, R.W.; Kench, P.S.; Hart, D. Spatial and temporal variations in wave characteristics across a reef platform, Warraber Island, Torres Strait, Australia. Mar. Geol. 2004, 207, 169–184. [Google Scholar] [CrossRef]
- Restrepo, J.C.; Otero, L.; Casas, A.C.; Henao, A.; Gutiérrez, J. Shoreline changes between 1954 and 2007 in the marine protected area of the Rosario Island Archipelago (Caribbean of Colombia). Ocean Coast. Manag. 2012, 69, 133–142. [Google Scholar] [CrossRef]
- Ford, M. Shoreline changes interpreted from multi-temporal aerial photographs and high resolution satellite im-ages: Wotje Atoll, Marshall Islands. Remote Sens. Environ. 2013, 135, 130–140. [Google Scholar] [CrossRef]
- Webb, A.P.; Kench, P.S. The dynamic response of reef islands to sea-level rise: Evidence from multi-decadal analysis of island change in the Central Pacific. Glob. Planet. Chang. 2010, 72, 234–246. [Google Scholar] [CrossRef]
- Johnston, W.; Cooper, J.; Olynik, J. Shoreline change on a tropical island beach, Seven Mile Beach, Grand Cayman: The influence of beachrock and shore protection structures. Mar. Geol. 2023, 457, 107006. [Google Scholar] [CrossRef]
- Duvat, V.K.E. A global assessment of atoll island planform changes over the past decades. WIREs Clim. Chang. 2018, 10, e557. [Google Scholar] [CrossRef]
- Kennedy, D.; Woodroffe, C. Fringing reef growth and morphology: A review. Earth-Sci. Rev. 2002, 57, 255–277. [Google Scholar] [CrossRef]
- Blanchon, P.; Richards, S.; Bernal, J.P.; Cerdeira-Estrada, S.; Ibarra, M.S.; Corona-Martínez, L.; Martell-Dubois, R. Retrograde Accretion of a Caribbean Fringing Reef Controlled by Hurricanes and Sea-level Rise. Front. Earth Sci. 2017, 5, 91–108. [Google Scholar] [CrossRef]
- Perry, C.T.; Spencer, T.; Kench, P.S. Carbonate budgets and reef production states: A geomorphic perspective on the ecological phase-shift concept. Coral Reefs 2008, 27, 853–866. [Google Scholar] [CrossRef]
- Rogers, C.S. Hurricanes and coral reefs: The intermediate disturbance hypothesis revisited. Coral Reefs 1993, 12, 127–137. [Google Scholar] [CrossRef]
- Aronson, R.; Precht, W. Conservation, precaution, and Caribbean reefs. Coral Reefs 2006, 25, 441–450. [Google Scholar] [CrossRef]
Data | Date | Description | Source | ||||
---|---|---|---|---|---|---|---|
Fieldwork | 2012 and 2015 | Fieldwork observations. | This work | ||||
Aerial photos | The sets have a range of preservation quality; 1953 to 1992 are scanned and rectified | DDM (BVI) | |||||
Agency | Mission name | Altitude (feet) | Number of tiles | Number of tiles used | |||
1953 | RAF | Leeward Islands N. 9 | 2500 | 26 | 23 | ||
1959 | USAF | VM 88 1372MCS | 5000 | 6 | 5 | ||
1966 | RAF | // | 5000 | 18 | 16 | ||
1969 | // | 103-VI-2 ANEGADA | 6250 | 20 | 17 | ||
1992 | Geomatics | LWI92-011 | 2000 | 22 | 20 | ||
2002 | // | // | // | 90 | 90 | ||
Satellite image | 2009 | GeoEye-1 image in panchromatic (0.5 m resolution) and 4 colour bands (blue to infrared, 2.5 m resolution) | GeoEye | ||||
Standard meteorological data | Accessed 2014 | Wind and wave data collected from 3 different buoys over different periods from 2007 and 2013 | NOAA | ||||
Hurricane tracks | Accessed 2015 | Storms and hurricanes are listed per season for the North Atlantic; wind speed gives the classification on the Saffir–Simpson scale | NOAA | ||||
Bathymetry data | 2012 | NOAA US Virgin Islands DEM from 2012 (Grothe et al., 2012 [36]) | NOAA | ||||
Various | BVI nautical charts | BVI Govt. | |||||
2013 | Bathymetric survey of Anegada (unpublished) | BVI Govt. | |||||
LiDAR | Terrestrial 21 January 2014 | Bare-earth terrain model by Quantum Spatial for the Puget Sound Lidar Consortium; Optech Orion M300 sensor system; Cessna 210 Caravan aircraft Fredericks, X., ten Brink, U.S., Atwater, B.F., Kranenburg, C.J., Nagle, D.B., 2016, Coastal Topography—Anegada, British Virgin Islands, 2014: U.S. Geological Survey data release, http://dx.doi.org/10.5066/F7GM85F3 | USGS | ||||
Marine 19–20 March 2014 | LiDAR survey led by C. Wayne Wright, USGS; Experimental Advanced Airborne Research Lidar, version B, | ||||||
emitting three simultaneous 532 intervals; Cessna 310 aircraft; nanometre laser pulses at 700 picoseconds | |||||||
Benthic habitats | 1992 | Shapefile of the benthic habitats of the BVI | BVI Govt. |
Storm Event | Physical Inputs | Parameters | - | ||
---|---|---|---|---|---|
Wave Height (m) | Wave Period (s) | Wave Direction (Nautical Degrees) | Wind Speed (m.s−1) | Wind Direction (Nautical Degrees) | |
Fair weather | 1.8 | 6 | 90 | 6 | 100 |
Swell | 4 | 8 | 130 | 8 | 110 |
TD Eloise | 3 | 7 | 90 | 15 | 90 |
H1 Debby | 5 | 7 | 90 | 33.5 | 135 |
H1 Omar | 5 | 7 | 200 | 24 | 200 |
H3/H4 Earl/Hugo | 10 | 10 | 90 | 56 | 90 |
H4 Donna | 12 | 12 | 110 | 66 | 110 |
Storm Event | Water Level (m) | Physics—Run | ||||
---|---|---|---|---|---|---|
GEN 3 | WCAPpi ng | QUADrupl ets | WINDGro wth | FRICti on | ||
Fair weather | 0.5 | JANSS EN | OFF | OFF | OFF | MADse n |
Swell | 0.5 | JANSS EN | OFF | OFF | OFF | MADse n |
TD Eloise | 1 | JANSS EN | OFF | OFF | OFF | MADse n |
H1 Debby | 1 | JANSS EN | OFF | OFF | OFF | MADse n |
H1 Omar | 1 | JANSS EN | OFF | OFF | OFF | MADse n |
H3/H4 Earl/Hugo | 1 | JANSS EN | OFF | OFF | OFF | MADse n |
H4 Donna | 1 | JANSS EN | OFF | OFF | OFF | MADse n |
Storm Event | DIFFRACtion | |||
---|---|---|---|---|
50 m | 20 m | 15 m | 10 m | |
Fair weather | Yes | Yes | Yes | Yes |
Swell | Yes | Yes | Yes | Yes |
TD Eloise | Yes | Yes | Yes | Yes |
H1 Debby | Yes | Yes | Yes | Yes |
H1 Omar | Yes | Yes | Yes | Yes |
H3/H4 Earl/Hugo | Yes | Yes | No | No |
H4 Donna | Yes | No | No | No |
Average All Data | Hsig (m) | Dir (deg) | T (s) | Wind (m/s) | Wind Dir (degT) |
---|---|---|---|---|---|
Northeast Puerto Rico (41043) | 1.82 | 91.80 | 5.91 | 6.28 | 101.68 |
Northeast Saint Martin (41044) | 1.93 | 81.41 | 6.16 | 6.17 | 106.17 |
South Saint John (41052) | 1.04 | 103.14 | 6.08 | 88.07 | |
Hurricane season | Hsig (m) | Dir (deg) | T (s) | Wind (m/s) | Wind Dir (degT) |
Northeast Puerto Rico | 1.68 | 92.74 | 5.72 | 6.17 | 103.95 |
Northeast Saint Martin | 1.79 | 91.46 | 5.90 | 6.21 | 103.10 |
South Saint John | 1.01 | 104.65 | 5.98 | 93.35 | |
Out of hurricane season | Hsig (m) | Dir (deg) | T (s) | Wind (m/s) | Wind Dir (degT) |
Northeast Puerto Rico | 1.97 | 90.54 | 6.12 | 6.41 | 99.36 |
Northeast Saint Martin | 2.08 | 61.32 | 6.42 | 6.13 | 109.24 |
South Saint John | 1.08 | 101.33 | 6.20 | 81.74 |
North Coast Section | Min | Max | Average | Median |
---|---|---|---|---|
WB (n = 243) | −0.69 | 1.47 | 0.24 | 0.18 |
BB (n = 179) | −1.36 | 0.41 | −0.03 | 0.1 |
KP (n = 190) | −0.91 | 0.88 | −0.35 | −0.47 |
CWB (n = 110) | 0.05 | 1.37 | 0.95 | 0.98 |
CWP (n = 27) | −0.04 | 0.53 | 0.15 | 0.04 |
WSB (n = 75) | 0.16 | 1.12 | 0.56 | 0.48 |
WSP (n = 33) | 0.14 | 1.31 | 0.8 | 0.89 |
WE (n = 63) | −0.82 | 0.47 | −0.2 | −0.19 |
South Coast Section | Min | Max | Average | Median |
---|---|---|---|---|
RP (n = 31) | −1.07 | −0.49 | −0.72 | −0.7 |
RPR1 (n = 92) | −1.38 | 0.04 | −0.55 | −0.51 |
R1 (n = 42) | −0.86 | 1.74 | 0.31 | 0.48 |
R1R2 (n = 35) | 0.98 | 1.63 | 1.35 | 1.35 |
PP1 (n = 37) | 0.4 | 1.24 | 0.7 | 0.61 |
PP2 (n = 38) | −0.29 | 0.01 | −0.13 | −0.14 |
PP3 (n = 22) | −0.12 | 1.31 | 0.35 | 0.01 |
PPSP (n = 106) | −0.52 | 0.31 | −0.22 | −0.18 |
SP1 (n = 28) | −0.05 | 0.34 | 0.11 | 0.1 |
SP2 (n = 30) | −0.17 | 0.18 | −0.03 | −0.04 |
SP3 (n = 88) | −0.43 | 0.25 | −0.11 | −0.13 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cescon, A.L.; Cooper, J.A.G.; Jackson, D.W.T.; Collin, A.; Gore, S. Mesoscale Shoreline Evolution on a Carbonate Sand Island: Anegada, British Virgin Islands. J. Mar. Sci. Eng. 2023, 11, 1725. https://doi.org/10.3390/jmse11091725
Cescon AL, Cooper JAG, Jackson DWT, Collin A, Gore S. Mesoscale Shoreline Evolution on a Carbonate Sand Island: Anegada, British Virgin Islands. Journal of Marine Science and Engineering. 2023; 11(9):1725. https://doi.org/10.3390/jmse11091725
Chicago/Turabian StyleCescon, Anna Lisa, J. Andrew G. Cooper, Derek W. T. Jackson, Antoine Collin, and Shannon Gore. 2023. "Mesoscale Shoreline Evolution on a Carbonate Sand Island: Anegada, British Virgin Islands" Journal of Marine Science and Engineering 11, no. 9: 1725. https://doi.org/10.3390/jmse11091725
APA StyleCescon, A. L., Cooper, J. A. G., Jackson, D. W. T., Collin, A., & Gore, S. (2023). Mesoscale Shoreline Evolution on a Carbonate Sand Island: Anegada, British Virgin Islands. Journal of Marine Science and Engineering, 11(9), 1725. https://doi.org/10.3390/jmse11091725