CCGAN as a Tool for Satellite-Derived Chlorophyll a Concentration Gap Reconstruction
Abstract
:1. Introduction
2. Data and Methods
2.1. Data Sources
2.2. Dataset Integration
2.3. Context Conditional Generative Adversarial Network
2.4. Error Metrics
2.5. Growing Neural Gas
3. Results and Discussion
3.1. Verification of SSIM-Based Model
3.2. Testing the SSIM-Based Model
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ECV | Essential Climate Variables |
GAN | Generative Adversarial Network |
CCGAN | Context Conditional Generative Adversarial Network |
ISO | International Organization for Standardization |
OC-CCI | Ocean Colour Climate Change Initiative |
SST | Sea Surface Temperature |
Chlorophyll a Concentration | |
MSE | Mean Squared Error |
SSIM | Structural Similarity Index Measure |
RE | Relative Error |
WR | Window Resampling |
RA | Resample Allowed |
LA | Land Allowed |
BMU | Best Matching Unit |
Appendix A. Dataset Sampling
Appendix B. Sanity Tests
WR | RA | LA | μchla (mg m−3) | σchla (mg m−3) | Number of Training Matrices |
---|---|---|---|---|---|
8 | 2.5 | 0.50 | 0.4254 | 0.7603 | 2,561,580 |
16 | 1.5 | 0.50 | 0.4147 | 0.7404 | 418,260 |
16 | 2.5 | 0.25 | 0.4085 | 0.7168 | 579,360 |
16 | 2.5 | 0.50 | 0.4189 | 0.7485 | 669,560 |
16 | 2.5 | 0.75 | 0.4306 | 0.7706 | 789,760 |
16 | 3.5 | 0.50 | 0.4215 | 0.7538 | 920,480 |
32 | 2.5 | 0.50 | 0.4048 | 0.7214 | 252,100 |
.nc files | 0.4831 | 1.005 |
Appendix C. Training and Testing the Datasets
References
- Groom, S.; Sathyendranath, S.; Ban, Y.; Bernard, S.; Brewin, R.; Brotas, V.; Brockmann, C.; Chauhan, P.; Choi, J.K.; Chuprin, A.; et al. Satellite Ocean Colour: Current Status and Future Perspective. Front. Mar. Sci. 2019, 6, 485. [Google Scholar] [CrossRef] [PubMed]
- Gregg, W.; Esaias, W.; Feldman, G.; Frouin, R.; Hooker, S.; McClain, C.; Woodward, R. Coverage opportunities for global ocean color in a multimission era. IEEE Trans. Geosci. Remote Sens. 1998, 36, 1620–1627. [Google Scholar] [CrossRef]
- Pukhtyar, L.D.; Stanichny, S.V.; Timchenko, I.E. Optimal interpolation of the data of remote sensing of the sea surface. Phys. Oceanogr. 2009, 19, 225. [Google Scholar] [CrossRef]
- Park, S.; Chu, P. Interannual SST variability in the Japan/East Sea and relationship with environmental variables. J. Oceanogr. 2006, 62, 115–132. [Google Scholar] [CrossRef]
- Alvera-Azcárate, A.; Barth, A.; Rixen, M.; Beckers, J. Reconstruction of incomplete oceanographic data sets using empirical orthogonal functions: Application to the Adriatic Sea surface temperature. Ocean Model. 2005, 9, 325–346. [Google Scholar] [CrossRef]
- Sunder, S.; Ramsankaran, R.; Ramakrishnan, B. Machine learning techniques for regional scale estimation of high-resolution cloud-free daily sea surface temperatures from MODIS data. ISPRS J. Photogramm. Remote Sens. 2020, 166, 228–240. [Google Scholar] [CrossRef]
- Park, J.; Kim, J.H.; Kim, H.C.; Kim, B.K.; Bae, D.; Jo, Y.H.; Jo, N.; Lee, S.H. Reconstruction of Ocean Color Data Using Machine Learning Techniques in Polar Regions: Focusing on Off Cape Hallett, Ross Sea. Remote Sens. 2019, 11, 1366. [Google Scholar] [CrossRef]
- Wang, J.; Deng, Z. Development of MODIS data-based algorithm for retrieving sea surface temperature in coastal waters. Environ. Monit. Assess. 2017, 189, 286. [Google Scholar] [CrossRef]
- Ehrler, M.; Ernst, N. VConstruct: Filling Gaps in Chl-a Data Using a Variational Autoencoder. arXiv 2021, arXiv:2101.10260. [Google Scholar]
- Barth, A.; Alvera-Azcárate, A.; Licer, M.; Beckers, J.M. DINCAE 1.0: A convolutional neural network with error estimates to reconstruct sea surface temperature satellite observations. Geosci. Model Dev. 2020, 13, 1609–1622. [Google Scholar] [CrossRef]
- Ćatipović, L.; Matić, F.; Kalinić, H. Reconstruction Methods in Oceanographic Satellite Data Observation—A Survey. J. Mar. Sci. Eng. 2023, 11, 340. [Google Scholar] [CrossRef]
- Goodfellow, I.J.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y. Generative Adversarial Networks. arXiv 2014, arXiv:1406.2661. [Google Scholar] [CrossRef]
- Dong, J.; Yin, R.; Sun, X.; Li, Q.; Yang, Y.; Qin, X. Inpainting of Remote Sensing SST Images With Deep Convolutional Generative Adversarial Network. IEEE Geosci. Remote Sens. Lett. 2019, 16, 173–177. [Google Scholar] [CrossRef]
- Kang, S.H.; Choi, Y.; Choi, J.Y. Restoration of Missing Patterns on Satellite Infrared Sea Surface Temperature Images Due to Cloud Coverage Using Deep Generative Inpainting Network. J. Mar. Sci. Eng. 2021, 9, 310. [Google Scholar] [CrossRef]
- Shibata, S.; Iiyama, M.; Hashimoto, A.; Minoh, M. Restoration of Sea Surface Temperature Satellite Images Using a Partially Occluded Training Set. In Proceedings of the 2018 24th International Conference on Pattern Recognition (ICPR), Beijing, China, 20–24 August 2018; pp. 2771–2776. [Google Scholar] [CrossRef]
- Hirahara, N.; Sonogashira, M.; Iiyama, M. Cloud-Free Sea-Surface-Temperature Image Reconstruction From Anomaly Inpainting Network. IEEE Trans. Geosci. Remote Sens. 2022, 60, 4203811. [Google Scholar] [CrossRef]
- Zheng, Z.; Xin, Z.; Yu, Z.; Yeung, S.K. Real-time GAN-based image enhancement for robust underwater monocular SLAM. Front. Mar. Sci. 2023, 10, 1161399. [Google Scholar] [CrossRef]
- Lin, J.C.; Hsu, C.B.; Lee, J.C.; Chen, C.H.; Tu, T.M. Dilated Generative Adversarial Networks for Underwater Image Restoration. J. Mar. Sci. Eng. 2022, 10, 500. [Google Scholar] [CrossRef]
- Zhang, J.; Ning, P.; Zhang, X.; Wang, X.; Zhang, A. Deriving Sea Subsurface Temperature Fields From Satellite Remote Sensing Data Using a Generative Adversarial Network Model. Earth Space Sci. 2023, 10, e2022EA002804. [Google Scholar] [CrossRef]
- Wu, P.; Harris, C.A.; Salavasidis, G.; Lorenzo-Lopez, A.; Kamarudzaman, I.; Phillips, A.B.; Thomas, G.; Anderlini, E. Unsupervised anomaly detection for underwater gliders using generative adversarial networks. Eng. Appl. Artif. Intell. 2021, 104, 104379. [Google Scholar] [CrossRef]
- Denton, E.; Gross, S.; Fergus, R. Semi-Supervised Learning with Context-Conditional Generative Adversarial Networks. arXiv 2016, arXiv:1611.06430. [Google Scholar]
- Liu, D.; Wang, Y. Trends of satellite derived chlorophyll-a (1997–2011) in the Bohai and Yellow Seas, China: Effects of bathymetry on seasonal and inter-annual patterns. Prog. Oceanogr. 2013, 116, 154–166. [Google Scholar] [CrossRef]
- Hussein, K.A.; Al Abdouli, K.; Ghebreyesus, D.T.; Petchprayoon, P.; Al Hosani, N.; O. Sharif, H. Spatiotemporal Variability of Chlorophyll-a and Sea Surface Temperature, and Their Relationship with Bathymetry over the Coasts of UAE. Remote Sens. 2021, 13, 2447. [Google Scholar] [CrossRef]
- Cushman-Roisin, B.; Gacic, M.; Poulain, P.M.; Artegiani, A. Physical Oceanography of the Adriatic Sea: Past, Present, and Future; Springer: Dordrecht, The Netherlands, 2001. [Google Scholar]
- ISO. ISO10260-1992; Water Quality—Measurement of Biochemical Parameters—Spectrometric Determination of the Chlorophyll-a Concentration. International Organization for Standardization: Geneva, Switzerland, 1992.
- Belward, A.; Bourassa, M.; Dowell, M.; Briggs, S.; Dolman, H.A.; Holmlund, K.; Husband, R.; Quegan, S.; Simmons, A.; Sloyan, B.; et al. The Global Observing System for Climate: Implementation Needs; WHO: Geneva, Switzerland, 2016. [Google Scholar]
- Sathyendranath, S.; Jackson, T.; Brockmann, C.; Brotas, V.; Calton, B.; Chuprin, A.; Clements, O.; Cipollini, P.; Danne, O.; Dingle, J.; et al. ESA Ocean Colour Climate Change Initiative (Ocean Colour CCI): Version 5.0 Data. 2021. Available online: https://doi.org/10.5285/1dbe7a109c0244aaad713e078fd3059a (accessed on 1 January 2020).
- Hu, C.; Feng, L.; Lee, Z.; Franz, B.; Bailey, S.; Werdell, J.; Proctor, C. Improving Satellite Global Chlorophyll a Data Products Through Algorithm Refinement and Data Recovery. J. Geophys. Res. Ocean. 2019, 124, 1524–1543. [Google Scholar] [CrossRef]
- Jackson, T.; Sathyendranath, S.; Mélin, F. An improved optical classification scheme for the Ocean Colour Essential Climate Variable and its applications. Remote Sens. Environ. 2017, 203, 152–161. [Google Scholar] [CrossRef]
- NASA/JPL. GHRSST Level 4 MUR Global Foundation Sea Surface Temperature Analysis (v4.1). 2015. Available online: https://doi.org/10.5067/GHGMR-4FJ04 (accessed on 1 January 2020).
- GEBCO. Gridded Bathymetry Data (General Bathymetric Chart of the Oceans). 2022. Available online: https://doi.org/10.5285/e0f0bb80-ab44-2739-e053-6c86abc0289c (accessed on 1 January 2020).
- He, K.; Zhang, X.; Ren, S.; Sun, J. Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In Proceedings of the 2015 IEEE International Conference on Computer Vision (ICCV), Santiago, Chile, 7–13 December 2015; pp. 1026–1034. [Google Scholar] [CrossRef]
- Radford, A.; Metz, L.; Chintala, S. Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks. arXiv 2015, arXiv:1511.06434. [Google Scholar]
- Simonyan, K.; Zisserman, A. Very Deep Convolutional Networks for Large-Scale Image Recognition. arXiv 2014, arXiv:1409.1556. [Google Scholar]
- Kingma, D.P.; Ba, J. Adam: A Method for Stochastic Optimization. arXiv 2014, arXiv:1412.6980. [Google Scholar]
- Županović, T. Using Deep Learning Methods Based on CNNS and Gans for Data Completion and Reconstruction. 2021. Available online: https://github.com/TomislavZupanovic/Data-Reconstruction (accessed on 1 January 2020).
- Linder-Norén, E. PyTorch-GAN. 2018. Available online: https://github.com/eriklindernoren/PyTorch-GAN (accessed on 1 January 2020).
- Liu, Z.; Luo, P.; Wang, X.; Tang, X. Deep Learning Face Attributes in the Wild. In Proceedings of the International Conference on Computer Vision (ICCV), Santiago, Chile, 7–13 December 2015. [Google Scholar]
- Wang, Z.; Simoncelli, E.; Bovik, A. Multiscale structural similarity for image quality assessment. In Proceedings of the the Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, Pacific Grove, CA, USA, 9–12 November 2003; Volume 2, pp. 1398–1402. [Google Scholar] [CrossRef]
- Wang, Z.; Bovik, A.C. Mean squared error: Love it or leave it? A new look at Signal Fidelity Measures. IEEE Signal Process. Mag. 2009, 26, 98–117. [Google Scholar] [CrossRef]
- Francois-Rozet. Francois-Rozet/Piqa: Pytorch Image Quality Assessement Package. 2020. Available online: https://github.com/francois-rozet/piqa (accessed on 1 January 2020).
- Fritzke, B. A Growing Neural Gas Network Learns Topologies. In Proceedings of the 7th International Conference on Neural Information Processing Systems, Denver, CO, USA, 28 November–1 December 1994; MIT Press: Cambridge, MA, USA, 1994; pp. 625–632. [Google Scholar]
- Civitarese, G.; Gačić, M.; Lipizer, M.; Eusebi Borzelli, G.L. On the impact of the Bimodal Oscillating System (BiOS) on the biogeochemistry and biology of the Adriatic and Ionian Seas (Eastern Mediterranean). Biogeosciences 2010, 7, 3987–3997. [Google Scholar] [CrossRef]
- Kourafalou, V. Process studies on the Po River plume, North Adriatic Sea. J. Geophys. Res. 1999, 1042, 29963–29986. [Google Scholar] [CrossRef]
- Kodali, N.; Abernethy, J.D.; Hays, J.; Kira, Z. How to Train Your DRAGAN. arXiv 2017, arXiv:1705.07215. [Google Scholar]
- Gower, J.; King, S.; Borstad, G.; Brown, L. Detection of intense plankton blooms using the 709nm band of the MERIS imaging spectrometer. Int. J. Remote Sens. 2005, 26, 2005–2012. [Google Scholar] [CrossRef]
- Smith, M.; Robertson Lain, L.; Bernard, S. An optimized Chlorophyll a switching algorithm for MERIS and OLCI in phytoplankton-dominated waters. Remote Sens. Environ. 2018, 215, 217–227. [Google Scholar] [CrossRef]
- Lee, Z.P.; Hu, C. Global distribution of Case-1 waters: An analysis from SeaWiFS measurements. Remote Sens. Environ. 2006, 101, 270–276. [Google Scholar] [CrossRef]
- Sathyendranath, S.; Prieur, L.; Morel, A. A three-component model of ocean colour and its application to remote sensing of phytoplankton pigments in coastal waters. Int. J. Remote Sens. 1989, 10, 1373–1394. [Google Scholar] [CrossRef]
- Odena, A.; Dumoulin, V.; Olah, C. Deconvolution and Checkerboard Artifacts. Distill 2016. Available online: https://distill.pub/2016/deconv-checkerboard/ (accessed on 1 January 2020). [CrossRef]
- Innamorati, C.; Ritschel, T.; Weyrich, T.; Mitra, N.J. Learning on the Edge: Investigating Boundary Filters in CNNs. Int. J. Comput. Vis. 2020, 128, 773–782. [Google Scholar] [CrossRef]
- Marini, M.; Jones, B.H.; Campanelli, A.; Grilli, F.; Lee, C.M. Seasonal variability and Po River plume influence on biochemical properties along western Adriatic coast. J. Geophys. Res. Ocean. 2008, 113. [Google Scholar] [CrossRef]
- Vrigazova, B. The Proportion for Splitting Data into Training and Test Set for the Bootstrap in Classification Problems. Bus. Syst. Res. J. 2021, 12, 228–242. [Google Scholar] [CrossRef]
(%) | (%) | |||||
---|---|---|---|---|---|---|
-based model | 0.09 | 0.14 | 29.61 | 8.26 | 2570 | 1445 |
-based model | 0.12 | 0.15 | 29.56 | 7.66 | 2553 | 1408 |
SSIM-based model | 0.95 | 0.04 | 0.01 | 0.02 | 3 | 2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ćatipović, L.; Matić, F.; Kalinić, H.; Sathyendranath, S.; Županović, T.; Dingle, J.; Jackson, T. CCGAN as a Tool for Satellite-Derived Chlorophyll a Concentration Gap Reconstruction. J. Mar. Sci. Eng. 2023, 11, 1814. https://doi.org/10.3390/jmse11091814
Ćatipović L, Matić F, Kalinić H, Sathyendranath S, Županović T, Dingle J, Jackson T. CCGAN as a Tool for Satellite-Derived Chlorophyll a Concentration Gap Reconstruction. Journal of Marine Science and Engineering. 2023; 11(9):1814. https://doi.org/10.3390/jmse11091814
Chicago/Turabian StyleĆatipović, Leon, Frano Matić, Hrvoje Kalinić, Shubha Sathyendranath, Tomislav Županović, James Dingle, and Thomas Jackson. 2023. "CCGAN as a Tool for Satellite-Derived Chlorophyll a Concentration Gap Reconstruction" Journal of Marine Science and Engineering 11, no. 9: 1814. https://doi.org/10.3390/jmse11091814
APA StyleĆatipović, L., Matić, F., Kalinić, H., Sathyendranath, S., Županović, T., Dingle, J., & Jackson, T. (2023). CCGAN as a Tool for Satellite-Derived Chlorophyll a Concentration Gap Reconstruction. Journal of Marine Science and Engineering, 11(9), 1814. https://doi.org/10.3390/jmse11091814