The Impact of Coastline and Bathymetry Changes on the Storm Tides in Zhejiang Coasts
Abstract
:1. Introduction
2. Typhoon Events
3. Numerical Models
3.1. Model Description
3.2. Model Setup
3.3. Numerical Experiments
3.4. Model Verification
4. Results
4.1. Storm Surge Process under Typical Typhoon Events
4.2. Effects of Coastline and Bathymetry Changes on the Flood Risk
4.3. Comparison of the Changes in Astronomical Tides and Storm Surges
4.4. Response of Tide-Surge Interaction to Coastline and Bathymetry Changes
5. Discussion
5.1. Contributions of Dynamic Factors to Momentum Balance
5.2. Implications for Coastline Restoration
5.3. Comparison with Previous Studies
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Feng, S.Z. The Advance of Researches on Storm Surges. World Sci. RD 1998, 04, 44–47. [Google Scholar] [CrossRef]
- Zhang, H.X.; Shen, Y.M.; Tang, J. Wave and storm surge evolutions in the Pearl River Estuary with large-scale land reclamation impacts. Ocean Eng. 2023, 273, 113977. [Google Scholar] [CrossRef]
- Bulletin of Oceanic Disaster of China. Available online: https://www.mnr.gov.cn/sj/sjfw/hy/gbgg/zghyzhgb/ (accessed on 27 August 2022).
- Irish, J.L.; Resio, D.T.; Ratcliff, J.J. The influence of storm size on hurricane surge. J. Phys. Oceanogr. 2008, 38, 2003–2013. [Google Scholar] [CrossRef]
- Mo, D.; Hou, Y.; Li, J.; Liu, Y. Study on the storm surges induced by cold waves in the Northern East China Sea. J. Mar. Syst. 2016, 160, 26–39. [Google Scholar] [CrossRef]
- Sahoo, B.; Bhaskaran, P.K. Multi-hazard risk assessment of coastal vulnerability from tropical cyclones—A GIS based approach for the Odisha coast. J. Environ. Manag. 2018, 206, 1166–1178. [Google Scholar] [CrossRef]
- Chen, W.; Liu, W.L.; Liang, H.D.; Jiang, M.T.; Dai, Z.L. Response of storm surge and M2 tide to typhoon speeds along coastal Zhejiang Province. Ocean Eng. 2023, 270, 113646. [Google Scholar] [CrossRef]
- Kuang, C.P.; Liang, H.D.; Gu, J.; Song, H.L.; Dong, Z.C. Morphological responses of unsheltered channel-shoal system to a major storm: The combined effects of surges, wind-driven currents and waves. Mar. Geol. 2020, 427, 106245. [Google Scholar] [CrossRef]
- Song, H.L.; Kuang, C.P.; Gu, J.; Zou, Q.P.; Liang, H.D.; Sun, X.M.; Ma, Z. Nonlinear tide-surge-wave interaction at a shallow coast with large scale sequential harbor constructions. Estuar. Coast. Shelf Sci. 2020, 233, 96543. [Google Scholar] [CrossRef]
- Prandle, D.; Wolf, J. The interaction of surge and tide in the North Sea and River Thames. Geophys. J. Int. 1978, 55, 203–216. [Google Scholar] [CrossRef]
- Horsburgh, K.J.; Wilson, C. Tide-surge interaction and its role in the distribution of surge residuals in the North Sea. J. Geophys. Res. Oceans. 2007, 112. [Google Scholar] [CrossRef]
- Feng, X.; Olabarrieta, M.; Valle-Levinson, A. Storm-induced semidiurnal perturbations to surges on the US Eastern Seaboard. Cont. Shelf Res. 2016, 114, 54–71. [Google Scholar] [CrossRef]
- Wang, J.; Yi, S.; Li, M.Y.; Wang, L.; Song, C.C. Effects of sea level rise, land subsidence, bathymetric change and typhoon tracks on storm flooding in the coastal areas of Shanghai. Sci. Total Environ. 2018, 621, 228–234. [Google Scholar] [CrossRef] [PubMed]
- Hoeksema, R.J. Three stages in the history of land reclamation in The Netherlands. Irrig. Drain. 2007, 56, S113–S126. [Google Scholar] [CrossRef]
- Kennish, M.J. Coastal salt marsh systems in the U.S.: A review of anthropogenic impacts. J. Coast Res. 2001, 17, 731–748. [Google Scholar]
- Jiang, S.; Xu, N.; Li, Z.C.; Huang, C.H. Satellite derived coastal reclamation expansion in China since the 21st century. Glob. Ecol. Conserv. 2021, 30, e01797. [Google Scholar] [CrossRef]
- Pan, Z.H.; Liu, H. Impact of human projects on storm surge in the Yangtze Estuary. Ocean Eng. 2020, 196, 96792. [Google Scholar] [CrossRef]
- Li, L.; Ye, T.Y.; Wang, X.H.; He, Z.G.; Shao, M. Changes in the Hydrodynamics of Hangzhou Bay Due to Land Reclamation in the Past 60 Years. In Sediment Dynamics of Chinese Muddy Coasts and Estuaries; Academic Press: Cambridge, MA, USA, 2019; pp. 77–93. [Google Scholar] [CrossRef]
- Pelling, H.E.; Uehara, K.; Green, J.A.M. The impact of rapid coastline changes and sea level rise on the tides in the Bohai Sea, China. J. Geophys. Res. 2013, 118, 3462–3472. [Google Scholar] [CrossRef]
- Ding, Y.M.; Wei, H. Modeling the impact of land reclamation on storm surges in Bohai Sea, China. Nat. Hazards 2017, 85, 559–573. [Google Scholar] [CrossRef]
- Van Maren, D.S.; Beemster, J.G.W.; Wang, Z.B.; Khan, Z.H.; Schrijvershof, R.A.; Hoitink, A.J.F. Tidal amplification and river capture in response to land reclamation in the Ganges-Brahmaputra delta. Catena 2023, 220, 96651. [Google Scholar] [CrossRef]
- Kang, B.; Ding, J.W.; Wang, Z.W. Temporal and Spatial Changes of Continental Coastline in Zhejiang in Recent 50 years. Ocean. Dev. Manag. 2022, 39, 57–64. [Google Scholar] [CrossRef]
- Sun, Z.L.; Zhong, S.H.; Wang, C.; Tu, W.R.; Ji, H.Q. Simulation and Analysis of Storm Surge at Zhoushan Fishing Port. Haiyang Xuebao 2020, 42, 136–143. [Google Scholar] [CrossRef]
- Yang, W.K.; Feng, X.R.; Yin, B.S. The impact of coastal reclamation on tidal and storm surge level in Sanmen Bay, China. J. Ocean. Limnol. 2019, 37, 1971–1982. [Google Scholar] [CrossRef]
- Sun, Z.L.; Huang, S.J.; Jiao, J.G.; Nie, H.; Lu, M. Effects of cluster land reclamation projects on storm surge in Jiaojiang Estuary, China. Water Sci. Eng. 2017, 10, 59–69. [Google Scholar] [CrossRef]
- Song, D.H.; Wang, X.H.; Zhou, X.M.; Bao, X.W. Modeling studies of the far-field effects of tidal flat reclamation on tidal dynamics in the East China Seas. Estuar. Coast. Shelf Sci. 2013, 133, 147–160. [Google Scholar] [CrossRef]
- Yang, W.K.; Yin, B.S.; Feng, X.R.; Yang, D.Z.; Gao, G.D.; Chen, H.Y. The effect of nonlinear factors on tide-surge interaction: A case study of Typhoon Rammasun in Tieshan Bay, China. Estuar. Coast. Shelf Sci. 2019, 219, 420–428. [Google Scholar]
- Rego, J.L.; Li, C.Y. Nonlinear terms in storm surge predictions: Effect of tide and shelf geometry with case study from Hurricane Rita. J. Geophys. Res. 2010, 115. [Google Scholar] [CrossRef]
- Bulletin of Oceanic Disaster of China in 1997. 1998. Available online: http://gc.mnr.gov.cn/201806/t20180619_1798000.html (accessed on 27 August 2022).
- Bulletin of Oceanic Disaster of China in 2012. 2013. Available online: http://gc.mnr.gov.cn/201806/t20180619_1798016.html (accessed on 27 August 2022).
- Bulletin of Oceanic Disaster of China in 2015. 2016. Available online: http://gc.mnr.gov.cn/201806/t20180619_1798019.html (accessed on 27 August 2022).
- Deltares. Delft3D FLOW User Manual; Deltares: Delft, The Netherlands, 2016. [Google Scholar]
- Deltares. Delft3D WAVE User Manual; Deltares: Delft, The Netherlands, 2016. [Google Scholar]
- Cavaleri, L.; Rizzoli, P.M. Wind wave prediction in shallow water: Theory and applications. J. Geophys. Res. Oceans. 1981, 86, 9961–9973. [Google Scholar] [CrossRef]
- Tolman, H.L. Effects of Numerics on the Physics in a Third-Generation Wind-Wave Model. J. Phys. Oceanogr. 1992, 22, 995–1111. [Google Scholar] [CrossRef]
- WAMDI group. The WAM model a third generation ocean wave prediction model. J. Phys. Oceanogr. 1988, 18, 1775–1810. [Google Scholar] [CrossRef]
- Snyder, R.L.; Dobson, F.W.; Elliott, J.A.; Long, R.B. Array measurements of atmospheric pressure fluctuations above surface gravity waves. J. Fluid Mech. 1981, 92, 1–59. [Google Scholar] [CrossRef]
- Janssen, P. Quasi-linear theory of wind-wave generation applied to wave forecasting. J. Phys. Oceanogr. 1991, 21, 1631–1642. [Google Scholar] [CrossRef]
- Komen, G.J.; Cavaleri, L.; Donelan, M.; Hasselmann, K.; Janssen, P. Dynamics and Modelling of Ocean Waves; Cambridge University Press: Cambridge, UK, 1994. [Google Scholar]
- Gary, D.E.; Svetlana, Y.E. Efficient inverse modeling of barotropic ocean tides. J. Atmos. Ocean. Technol. 2002, 19, 183–204. [Google Scholar] [CrossRef]
- Collins, J.I. Prediction of shallow-water spectra. J. Geophys. Res. 1972, 77, 2693–2707. [Google Scholar] [CrossRef]
- Banks, J.E. A mathematical model of a river—Shallow sea system used to investigate tide, surge and their interaction in the Thames—Southern North Sea region. Philos. Trans. R. Soc. London. Ser. A Math. Phys. Sci. 1974, 275, 567–609. [Google Scholar] [CrossRef]
- Sinha, P.C.; Jain, I.; Bhardwaj, N.; Rao, A.D.; Dube, S.K. Numerical modeling of tide-surge interaction along Orissa coast of India. Nat. Hazards 2008, 45, 413–427. [Google Scholar] [CrossRef]
- Zhang, X.L.; Chu, D.D.; Zhang, J.C. Effects of Nonlinear Terms and Topography on Storm Surges in the Southeast Seas of China: A Case Study of Typhoon Chan-hom. Oceanol. Limnol. Sinica. 2020, 51, 1320–1331. (In Chinese) [Google Scholar] [CrossRef]
- Ying, W.M.; Zheng, Q.; Zhu, C.C.; Zhu, Y.; Che, Z.M.; Chu, D.D.; Zhang, J.C. Numerical simulation of “CHAN-HOM” typhoon waves using SWAN model. Mar. Sci. 2017, 41, 98–117. (In Chinese) [Google Scholar] [CrossRef]
- Willmott, C.J. On the validation of models. Phys. Geogr. 1981, 2, 184–194. [Google Scholar] [CrossRef]
- Yan, F.Q.; Wang, X.G.; Huang, C.; Zhang, J.J.; Su, F.Z.; Zhao, Y.F.; Lyne, V. Sea Reclamation in Mainland China: Process, Pattern, and Management. Land Use Policy 2023, 127, 106555. [Google Scholar] [CrossRef]
- Wang, N.; Zhu, G.R.; Li, X.Y.; Cheng, J.X.; Yi, W.B.; Liu, S.Q.; Xie, Z.L. Transitions and suggestions for China’s coastal port reclamation policies. Ocean. Coast Manag. 2023, 236, 106532. [Google Scholar] [CrossRef]
- Wang, Z.B.; Van Maren, D.S.; Ding, P.X.; Yang, S.L.; VanProoijen, B.C.; DeVet, P.L.M.; Winterwerp, J.C.; DeVriend, H.J. Human impacts on morphodynamic thresholds in estuarine systems. Cont. Shelf Res. 2015, 111, 174–183. [Google Scholar] [CrossRef]
- Feng, J.L.; Li, D.Q.; Li, D.L.; Zhang, J.; Zhao, T. Comparison between the skew surge and residual water level along the coastline of China. J. Hydrol. 2021, 598, 126299. [Google Scholar] [CrossRef]
- Yu, L.L.; Lu, S.S.; Zhang, J.B.; Yang, B.; Xu, M. Effects of tide-surge interactions on the temporal distribution of the peak residual in Hangzhou Bay, China. Ocean Eng. 2022, 266, 112705. [Google Scholar] [CrossRef]
No. | Coastline | Bathymetry | Tide | Wind | Air Pressure | Wave |
---|---|---|---|---|---|---|
Case 1 | 1980 | 1980 | √ | √ | √ | √ |
Case 2 | 2016 | 1980 | √ | √ | √ | √ |
Case 3 | 1980 | 2016 | √ | √ | √ | √ |
Case 4 | 2016 | 2016 | √ | √ | √ | √ |
Case 5 | 1980 | 1980 | √ | × | × | × |
Case 6 | 2016 | 1980 | √ | × | × | × |
Case 7 | 1980 | 2016 | √ | × | × | × |
Case 8 | 2016 | 2016 | √ | × | × | × |
Case 9 | 1980 | 1980 | × | √ | √ | √ |
Case 10 | 2016 | 1980 | × | √ | √ | √ |
Case 11 | 1980 | 2016 | × | √ | √ | √ |
Case 12 | 2016 | 2016 | × | √ | √ | √ |
Indicator | Typhoon Event | ||
---|---|---|---|
Winnie | Haikui | Chan-Hom | |
Maximum wind speed (m/s) | 21.29 | 22.23 | 23.06 |
Maximum surge (m) | 1.32 | 0.93 | 1.19 |
17.2 m/s wind speed duration (h) | 21 | 15 | 18 |
0.5 m surge duration (h) | 28 | 18 | 24 |
Area | Scenario | Average Change of Storm Tide (m) | Average Change of Tide Level (m) | Average Change of Storm Surge (m) | Average Change of Interaction Level (m) | Average Change of Pure Surge (m) |
---|---|---|---|---|---|---|
N | Case 2 – Case 1 | 0.235 | 0.219 | 0.104 | 0.106 | 0.021 |
Case 3 − Case 1 | 0.156 | 0.164 | 0.088 | 0.086 | 0.025 | |
S | Case 2 − Case 1 | 0.065 | 0.064 | 0.024 | 0.026 | 0.009 |
Case 3 – Case 1 | 0.142 | 0.147 | 0.056 | 0.063 | 0.024 | |
Whole area | Case 4 – Case 1 | 0.157 | 0.163 | 0.083 | 0.089 | 0.024 |
Station | TS2 – TS1 (m) | TS3 – TS1 (m) | TS4 – TS1 (m) | T2 – T1 (m) | T3 – T1 (m) | T4 – T1 (m) | R2 – R1 (m) | R3 – R1 (m) | R4 – R1 (m) |
---|---|---|---|---|---|---|---|---|---|
Ganpu | 0.443 | 0.429 | 0.385 | 0.434 | 0.666 | 0.674 | 0.109 | 0.409 | 0.473 |
Zhapu | 0.343 | 0.106 | 0.326 | 0.315 | 0.093 | 0.275 | 0.083 | 0.074 | 0.025 |
Shengshan | 0.027 | 0.034 | 0.039 | 0.021 | 0.031 | 0.040 | 0.015 | 0.016 | 0.016 |
Station | Scenario | Local Acceleration (In x/y Direction) | Advection (In x/y Direction) | Coriolis (In x/y Direction) | Barotropic (In x/y Direction) | Wind Stress (In x/y Direction) | Friction (In x/y Direction) | Wave Forcing (In x/y Direction) |
---|---|---|---|---|---|---|---|---|
Ganpu | Case1 | 10.17/12.48 | 14.98/10.66 | 5.50/3.97 | 13.03/18.87 | 0.51/1.42 | 2.20/2.87 | 0.13/0.03 |
Case4 | 12.40/13.15 | 38.79/18.19 | 5.51/6.89 | 60.05/38.62 | 10.30/29.48 | 41.56/24.88 | 0.02/0.01 | |
Zhapu | Case1 | 10.53/3.12 | 2.54/1.59 | 1.86/5.82 | 11.15/6.73 | 0.50/1.17 | 1.47/0.45 | 0.01/0.03 |
Case4 | 9.60/3.19 | 7.78/2.53 | 1.53/5.01 | 14.73/7.9 | 2.62/4.95 | 1.93/0.51 | 0.04/0.20 | |
Shengshan | Case1 | 5.85/5.29 | 0.93/0.72 | 2.49/2.50 | 4.37/3.44 | 2.68/1.17 | 0.71/0.53 | 0.10/0.44 |
Case4 | 6.45/6.60 | 1.80/2.77 | 3.44/3.62 | 6.38/6.36 | 3.37/1.61 | 1.64/1.70 | 0.21/0.52 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gou, X.; Liang, H.; Cai, T.; Wang, X.; Chen, Y.; Xia, X. The Impact of Coastline and Bathymetry Changes on the Storm Tides in Zhejiang Coasts. J. Mar. Sci. Eng. 2023, 11, 1832. https://doi.org/10.3390/jmse11091832
Gou X, Liang H, Cai T, Wang X, Chen Y, Xia X. The Impact of Coastline and Bathymetry Changes on the Storm Tides in Zhejiang Coasts. Journal of Marine Science and Engineering. 2023; 11(9):1832. https://doi.org/10.3390/jmse11091832
Chicago/Turabian StyleGou, Xiaoxiao, Huidi Liang, Tinglu Cai, Xinkai Wang, Yining Chen, and Xiaoming Xia. 2023. "The Impact of Coastline and Bathymetry Changes on the Storm Tides in Zhejiang Coasts" Journal of Marine Science and Engineering 11, no. 9: 1832. https://doi.org/10.3390/jmse11091832
APA StyleGou, X., Liang, H., Cai, T., Wang, X., Chen, Y., & Xia, X. (2023). The Impact of Coastline and Bathymetry Changes on the Storm Tides in Zhejiang Coasts. Journal of Marine Science and Engineering, 11(9), 1832. https://doi.org/10.3390/jmse11091832