Energy Management Strategy of Hybrid Ships Using Nonlinear Model Predictive Control via a Chaotic Grey Wolf Optimization Algorithm
Abstract
:1. Introduction
2. Hybrid Power System Description and Modeling
2.1. Ship Propulsion Plant Model
2.1.1. Propeller Model
2.1.2. Irregular Wave Model
2.1.3. Ship Hydrodynamics
2.2. Modeling of Rotational Dynamics and Internal Combustion Engine
2.3. Motor Output Torque Model
2.4. Battery Model
2.5. Propeller Load Torque Estimation
3. Proposed NMPC Strategy via Chaotic Grey Wolf Optimization
3.1. Chaotic Grey Wolf Optimization (CGWO)
3.2. Control Architecture and Implementation of NMPC
4. Results and Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zincir, B. Slow steaming application for short-sea shipping to comply with the CII regulation. Brodogr. Teor. I Praksa Brodogr. I Pomor. Teh. 2023, 74, 21–38. [Google Scholar] [CrossRef]
- Wang, Q.; Yang, X. Imbalance of carbon embodied in South-South trade: Evidence from China-India trade. Sci. Total. Environ. 2020, 707, 134473. [Google Scholar] [CrossRef]
- Serrao, L.; Onori, S.; Rizzoni, G. A Comparative Analysis of Energy Management Strategies for Hybrid Electric Vehicles. J. Dyn. Syst. Meas. Control. 2011, 133, 031012. [Google Scholar] [CrossRef]
- Klyuev, R.V.; Morgoev, I.D.; Morgoeva, A.D.; Gavrina, O.A.; Martyushev, N.V.; Efremenkov, E.A.; Mengxu, Q. Methods of Forecasting Electric Energy Consumption: A Literature Review. Energies 2022, 15, 8919. [Google Scholar] [CrossRef]
- Mittendorf, M.; Nielsen, U.D.; Bingham, H.B. Data-driven prediction of added-wave resistance on ships in oblique waves—A comparison between tree-based ensemble methods and artificial neural networks. Appl. Ocean Res. 2022, 118, 102964. [Google Scholar] [CrossRef]
- Yuan, Y.; Chen, M.; Wang, J.; Yu, W.; Shen, B. A novel hybrid energy management strategy of a diesel-electric hybrid ship based on dynamic programing and model predictive control. Proc. Inst. Mech. Eng. Part M J. Eng. Marit. Environ. 2022, 236, 644–657. [Google Scholar] [CrossRef]
- Haseltalab, A.; Wani, F.; Negenborn, R.R. Multi-level model predictive control for all-electric ships with hybrid power generation. Int. J. Electr. Power Energy Syst. 2022, 135, 107484. [Google Scholar] [CrossRef]
- Xie, P.; Tan, S.; Guerrero, J.M.; Vasquez, J.C. MPC-informed ECMS based real-time power management strategy for hybrid electric ship. In Proceedings of the International Conference on Power Engineering (ICPE 2020), Guangzhou, China, 19–21 December 2020. [Google Scholar] [CrossRef]
- Hou, J.; Song, Z.; Hofmann, H.; Sun, J. Adaptive model predictive control for hybrid energy storage energy management in all-electric ship microgrids. Energy Convers. Manag. 2019, 198, 111929. [Google Scholar] [CrossRef]
- Xiao, N.; Zhou, R.; Xu, X. Vibration of diesel-electric hybrid propulsion system with nonlinear component. J. Vib. Control 2018, 24, 5353–5365. [Google Scholar] [CrossRef]
- Chen, L.; Gao, D.; Xue, Q. Energy management strategy for hybrid power ships based on nonlinear model predictive control. Int. J. Electr. Power Energy Syst. 2023, 153, 109319. [Google Scholar] [CrossRef]
- Powell, M.J.D. Variable Metric Methods for Constrained Optimization. In Mathematical Programming the State of the Art; Springer: Berlin/Heidelberg, Germany, 1983; pp. 288–311. [Google Scholar]
- Li, C.; Xu, B.; Zhou, W.; Peng, Q. Geostationary Station-Keeping of Electric-Propulsion Satellite Equipped with Robotic Arms. Aerospace 2022, 9, 182. [Google Scholar] [CrossRef]
- Hamednia, A.; Sharma, N.K.; Murgovski, N.; Fredriksson, J. Computationally Efficient Algorithm for Eco-Driving Over Long Look-Ahead Horizons. IEEE Trans. Intell. Transp. Syst. 2021, 23, 6556–6570. [Google Scholar] [CrossRef]
- Li, D.; De Schutter, B. Distributed Model-Free Adaptive Predictive Control for Urban Traffic Networks. IEEE Trans. Control Syst. Technol. 2022, 30, 180–192. [Google Scholar] [CrossRef]
- Li, L.; Negenborn, R.R.; De Schutter, B. Distributed model predictive control for cooperative synchromodal freight transport. Transp. Res. Part E Logist. Transp. Rev. 2017, 105, 240–260. [Google Scholar] [CrossRef]
- Zhang, H. A cooperative bat searching algorithm with application to model predictive control. Soft Comput. 2021, 25, 8325–8335. [Google Scholar] [CrossRef]
- Bao, H.; Zhu, H. Modeling and Trajectory Tracking Model Predictive Control Novel Method of AUV Based on CFD Data. Sensors 2022, 22, 4234. [Google Scholar] [CrossRef]
- Bo, T.I.; Johansen, T.A. Battery Power Smoothing Control in a Marine Electric Power Plant Using Nonlinear Model Predictive Control. IEEE Trans. Control Syst. Technol. 2016, 25, 1449–1456. [Google Scholar] [CrossRef]
- Guo, L.; Liu, H.; Han, L.; Yang, N.; Liu, R.; Xiang, C. Predictive energy management strategy of dual-mode hybrid electric vehicles combining dynamic coordination control and simultaneous power distribution. Energy 2023, 263, 125598. [Google Scholar] [CrossRef]
- Mansoornejad, B.; Mostoufi, N.; Jalali-Farahani, F. A hybrid GA–SQP optimization technique for determination of kinetic parameters of hydrogenation reactions. Comput. Chem. Eng. 2008, 32, 1447–1455. [Google Scholar] [CrossRef]
- Raja, M.A.Z.; Mehmood, J.; Sabir, Z.; Nasab, A.K.; Manzar, M.A. Numerical solution of doubly singular nonlinear systems using neural networks-based integrated intelligent computing. Neural Comput. Appl. 2017, 31, 793–812. [Google Scholar] [CrossRef]
- Dong, R.Y. Research and Application of Meta-Heuristic Optimization Algorithms. Ph.D. Thesis, Jilin University, Changchun, China, 2019. [Google Scholar]
- Mirjalili, S.; Mirjalili, S.M.; Lewis, A. Grey Wolf Optimizer. Adv. Eng. Softw. 2014, 69, 46–61. [Google Scholar] [CrossRef]
- Djerioui, A.; Houari, A.; Zeghlache, S.; Saim, A.; Benkhoris, M.F.; Mesbahi, T.; Machmoum, M. Energy management strategy of Supercapacitor/Fuel Cell energy storage devices for vehicle applications. Int. J. Hydrogen Energy 2019, 44, 23416–23428. [Google Scholar] [CrossRef]
- Zhu, A.; Xu, C.; Li, Z.; Wu, J.; Liu, Z. Hybridizing grey wolf optimization with differential evolution for global optimization and test scheduling for 3D stacked SoC. J. Syst. Eng. Electron. 2015, 26, 317–328. [Google Scholar] [CrossRef]
- Luo, Y.; Yu, J.; Lai, W.; Liu, L. A novel chaotic image encryption algorithm based on improved baker map and logistic map. Multimedia Tools Appl. 2019, 78, 22023–22043. [Google Scholar] [CrossRef]
- DAMEN STAN TUG 1205 T7 and T8, Marine Dredging Company in Abu Dhabi in August 2010. Available online: https://products.damen.com/en/ranges/stan-tug/stan-tug-1205/deliveries/stu-1205-t7-and-t8 (accessed on 22 August 2023).
- Kuiper, G. The Wageningen Propeller Series; MARIN: Wageningen, The Netherlands, 1992. [Google Scholar]
- Planakis, N.; Papalambrou, G.; Kyrtatos, N. Ship energy management system development and experimental evaluation utilizing marine loading cycles based on machine learning techniques. Appl. Energy 2022, 307, 118085. [Google Scholar] [CrossRef]
- Kulikov, I.; Kozlov, A.; Terenchenko, A.; Karpukhin, K. Comparative Study of Powertrain Hybridization for Heavy-Duty Vehicles Equipped with Diesel and Gas Engines. Energies 2020, 13, 2072. [Google Scholar] [CrossRef]
- Leite, M.T. The Gudermannian Growth Model: Theory, Application and Statistical Analysis. Braz. Arch. Biol. Technol. 2022, 65, e22210620. [Google Scholar] [CrossRef]
- Thurnheer, T.; Soltic, P.; Eggenschwiler, P.D. SI engine fuelled with gasoline, methane and methane/hydrogen blends: Heat release and loss analysis. Int. J. Hydrogen Energy 2009, 34, 2494–2503. [Google Scholar] [CrossRef]
Description | Symbol | Value |
---|---|---|
Ship length | 13.08 m | |
Ship breadth | 5.28 m | |
Draught aft | 1.85 m | |
Mass | 55 t | |
Added-mass | 2.75 t | |
Thrust deduction coefficient | 0.145 | |
Effective wake coefficient | 0.157 | |
Wetted area | 341.5 m2 | |
Gearbox reduction ratio | 3.82:1 | |
Diameter of propeller | 1.05 m | |
Air resistance coefficient | 0.83 | |
Water resistance coefficients | 0.0045 | |
Water density | 1025 kg · m−3 |
Description | Symbol | Value |
---|---|---|
Sample time | 0.5 s | |
Prediction Horizon | 5 steps | |
Control Horizon | 5 steps | |
Penalty coefficient | ||
Battery Maximum SOC | 80% | |
Battery Minimum SOC | 20% | |
Maximum | 1700 rpm | |
Minimum | 500 rpm | |
Maximum Motor Command | 90% | |
Minimum Motor Command | −90% | |
Maximum Motor Command Rate | 50% | |
Minimum Motor Command Rate | −50% | |
Maximum ICE Command Rate | 20% | |
Minimum ICE Command Rate | −10% | |
Water density | 1025 kg · m−3 |
Solving Algorithm | RMSE |
---|---|
NMPC + SQP | 13.1597 |
NMPC + GA | 21.9220 |
NMPC + GA_SQP | 11.9940 |
NMPC + CGWO | 4.5480 |
Algorithm | Total Fuel Consumption (kg) | Total Carbon Emissions (g) | Total Computation Time (s) |
---|---|---|---|
NMPC + GA | 9.8779 | 39.1280 | 344.7736 |
NMPC + SQP | 12.5982 | 75.6191 | 26.7451 |
NMPC + GA_SQP | 11.9610 | 67.7434 | 104.3345 |
NMPC + CGWO | 9.3184 | 33.0421 | 38.25141 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, L.; Gao, D.; Xue, Q. Energy Management Strategy of Hybrid Ships Using Nonlinear Model Predictive Control via a Chaotic Grey Wolf Optimization Algorithm. J. Mar. Sci. Eng. 2023, 11, 1834. https://doi.org/10.3390/jmse11091834
Chen L, Gao D, Xue Q. Energy Management Strategy of Hybrid Ships Using Nonlinear Model Predictive Control via a Chaotic Grey Wolf Optimization Algorithm. Journal of Marine Science and Engineering. 2023; 11(9):1834. https://doi.org/10.3390/jmse11091834
Chicago/Turabian StyleChen, Long, Diju Gao, and Qimeng Xue. 2023. "Energy Management Strategy of Hybrid Ships Using Nonlinear Model Predictive Control via a Chaotic Grey Wolf Optimization Algorithm" Journal of Marine Science and Engineering 11, no. 9: 1834. https://doi.org/10.3390/jmse11091834
APA StyleChen, L., Gao, D., & Xue, Q. (2023). Energy Management Strategy of Hybrid Ships Using Nonlinear Model Predictive Control via a Chaotic Grey Wolf Optimization Algorithm. Journal of Marine Science and Engineering, 11(9), 1834. https://doi.org/10.3390/jmse11091834