Distribution Characteristics and Factors Controlling Different Phosphorus Fractions in the Soils and Sediments of an Inland Lagoon
Abstract
:1. Introduction
2. Study Area and Methods
2.1. Study Area
2.2. Sample Collection
2.3. Experimental Methods
2.3.1. Total Phosphorus (TP) and Phosphorus Fractions
2.3.2. Organic Matter (OM)
2.3.3. pH
2.3.4. Cation Exchange Capacity (CEC)
2.3.5. Iron and Aluminum Oxides
2.3.6. Statistical Analysis
3. Results and Discussion
3.1. Phosphorus Distribution
3.2. Correlation between Different Phosphorus Fractions
3.3. Relationship between Iron/Aluminum Oxides and Phosphorus
3.4. Relationship between OM and Phosphorus
pH | OM | CEC | Fe/Al-P | Ca-P | IP | OP | TP | X2O3 (1) | |
---|---|---|---|---|---|---|---|---|---|
pH | 1 | ||||||||
OM | −0.233 | 1 | |||||||
CEC | −0.231 | 0.828 ** | 1 | ||||||
Fe/Al-P | −0.166 | 0.403 ** | 0.553 ** | 1 | |||||
Ca-P | 0.241 * | 0.404 ** | 0.317 ** | 0.543 ** | 1 | ||||
IP | 0.155 | 0.533 ** | 0.536 ** | 0.697 ** | 0.792 ** | 1 | |||
OP | −0.390 ** | 0.319 ** | 0.439 ** | 0.465 ** | 0.080 | 0.136 | 1 | ||
TP | −0.130 | 0.507 ** | 0.517 ** | 0.773 ** | 0.744 ** | 0.746 ** | 0.560 ** | 1 | |
X2O3 (1) | −0.238 * | 0.504 ** | 0.766 ** | 0.535 ** | 0.239 * | 0.363 ** | 0.588 ** | 0.592 ** | 1 |
3.5. Relationship between Acidity and Phosphorus
3.6. Relationship between CEC and Phosphorus
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cederwall, H. Biological effects of eutrophication in the Baltic Sea, particularly the coastal zone. Ambio 1990, 19, 109–112. [Google Scholar]
- Mahapatro, D.; Panigrahy, R.C.; Panda, S. Coastal lagoon: Present status and future challenges. Int. J. Mar. Sci. 2013, 3, 178–186. [Google Scholar] [CrossRef]
- Pérez-Ruzafa, Á.; Marcos, C.; Pérez-Ruzafa, I.M. Recent advances in coastal lagoons ecology: Evolving old ideas and assumptions. Transitional Waters Bull. 2012, 5, 50–74. [Google Scholar]
- Christia, C.; Giordani, G.; Papastergiadou, E. Assessment of ecological quality of coastal lagoons with a combination of phytobenthic and water quality indices. Mar. Pollut. Bull. 2014, 86, 411–423. [Google Scholar] [CrossRef] [PubMed]
- Gao, L.; Zhang, L.; Shao, H. Phosphorus bioavailability and release potential risk of the sediments in the coastal wetland: A case study of Rongcheng Swan Lake, Shandong, China. CLEAN–Soil Air Water 2014, 42, 963–972. [Google Scholar] [CrossRef]
- Zhu, J.; Li, M.; Whelan, M. Phosphorus activators contribute to legacy phosphorus availability in agricultural soils: A review. Sci. Total Environ. 2018, 612, 522–537. [Google Scholar] [CrossRef]
- Derolez, V.; Bec, B.; Munaron, D.; Fiandrino, A.; Pete, R.; Simier, M.; Souchu, P.; Laugier, T.; Aliaume, C.; Malet, N. Recovery trajectories following the reduction of urban nutrient inputs along the eutrophication gradient in French Mediterranean lagoons. Ocean Coast. Manag. 2019, 171, 1–10. [Google Scholar] [CrossRef]
- Friedland, R.; Schernewski, G.; Gräwe, U.; Greipsland, I.; Palazzo, D.; Pastuszak, M. Managing eutrophication in the Szczecin (Oder) lagoon-development, present state and future perspectives. Front. Mar. Sci. 2019, 5, 521. [Google Scholar] [CrossRef]
- Kroon, F.J.; Kuhnert, P.M.; Henderson, B.L.; Wilkinson, S.N.; Henderson, A.K.; Abbott, B.; Brodie, J.E.; Turner, R.D.R. River loads of suspended solids, nitrogen, phosphorus and herbicides delivered to the Great Barrier Reef lagoon. Mar. Pollut. Bull. 2012, 65, 167–181. [Google Scholar] [CrossRef]
- Mosley, L.M.; Priestley, S.; Brookes, J.; Dittmann, S.; Farkaš, J.; Farrell, M.; Ferguson, A.J.; Gibbs, M.; Hipsey, M.; Huang, J.; et al. Extreme eutrophication and salinisation in the Coorong estuarine-lagoon ecosystem of Australia’s largest river basin (Murray-Darling). Mar. Pollut. Bull. 2023, 188, 114648. [Google Scholar] [CrossRef]
- Hayn, M.; Howarth, R.; Marino, R. Exchange of Nitrogen and Phosphorus Between a Shallow Lagoon and Coastal Waters. Estuaries Coasts 2014, 37, 63–73. [Google Scholar] [CrossRef]
- Nazneen, S.; Raju, N.J. Distribution and sources of carbon, nitrogen, phosphorus and biogenic silica in the sediments of Chilika lagoon. J. Earth Syst. Sci. 2017, 126, 13. [Google Scholar] [CrossRef]
- Li, J.H.; Yang, Y.J.; Li, B.W.; Li, W.J.; Wang, G.; Knops, J.M. Effects of nitrogen and phosphorus fertilization on soil carbon fractions in alpine meadows on the Qinghai-Tibetan Plateau. PLoS ONE 2014, 9, 103266. [Google Scholar] [CrossRef] [PubMed]
- Medeiros, J.; Cid, B.P.; Gómez, E.F. Analytical phosphorus fractionation in sewage sludge and sediment samples. Anal. Bioanal. Chem. 2005, 381, 873. [Google Scholar]
- Ding, X.; Xue, Y.; Lin, M.; Liu, Y. Effects of precipitation and topography on total phosphorus loss from purple soil. Water 2017, 9, 315. [Google Scholar] [CrossRef]
- Li, H.; Liu, Y.; Cao, X.; Song, C.; Zhou, Y. Functions of calcium-bound phosphorus in relation to characteristics of phosphorus releasing bacteria in sediment of a Chinese shallow lake (Lake Wabu). Geomicrobiol. J. 2016, 33, 751–757. [Google Scholar] [CrossRef]
- Hu, Z.; Zhang, K.F.; Liu, L. Research on the Improvement and Application of Chemical Sequential Extraction of Phosphorus in Sediments. Adv. Mat. Res. 2014, 1010, 452–455. [Google Scholar] [CrossRef]
- NY/T 1121.6-2006; Method for Determination of Soil Organic Matter. National Agricultural Technology Extension and Service Center: Beijing, China, 2006.
- NY/T 1377-2007; Determination of Soil pH. Jiangxi Lyujuren Ecological Environment Co.: Nanchang, China, 2009.
- GB 7863-87; Determination of Cation Exchange Capacity in Forest Soil. Ministry of Forestry of the China: Beijing, China, 1988.
- GB/T 14506.28-2010; Methods for Chemical Analysis of Silicate Rocks—Part 28: Determination of 16 Major and Minor Elements Content. National Research Center for Geoanalysis: Beijing, China, 1988.
- Spooner, D.R.; Maher, W. Benthic sediment composition and nutrient cycling in an Intermittently Closed and Open Lake Lagoon. J. Mar. Syst. 2009, 75, 33–45. [Google Scholar] [CrossRef]
- Gao, L.; Song, P.P.; Hou, J.Z. Phosphorus Distribution in the Sediments of Rongcheng Swan Lake, China. Adv. Mater. Res. 2012, 347–353, 2033–2038. [Google Scholar] [CrossRef]
- Okbah, M.A.; Zokm, G.M.E.; El-Said, G.F. Phosphorus geochemical forms and potential bioavailability in surface sediments from Edku Lagoon, Egypt, regarding diagnostic ratios (Fe:P, S:Fe, and OC:OP). J. Soils Sediments 2021, 21, 3917–3932. [Google Scholar] [CrossRef]
- Soliman, N.F.; Zokm, G.M.E.; Okbah, M.A. Evaluation of phosphorus bioavailability in El Mex Bay and Lake Mariut sediments. Int. J. Sediment Res. 2017, 32, 432–441. [Google Scholar] [CrossRef]
- Oburger, E.; Jones, D.L.; Wenzel, W.W. Phosphorus saturation and pH differentially regulate the efficiency of organic acid anion-mediated P solubilization mechanisms in soil. Plant Soil 2011, 341, 363–382. [Google Scholar] [CrossRef]
- Richardson, A.E.; Simpson, R.J. Soil microorganisms mediating phosphorus availability update on microbial phosphorus. Plant Physiol. 2011, 156, 989–996. [Google Scholar] [CrossRef] [PubMed]
- Darch, T.; Blackwell, M.S.; Hawkins, J.M.B.; Haygarth, P.M.; Chadwick, D. A meta-analysis of organic and inorganic phosphorus in organic fertilizers, soils, and water: Implications for water quality. Crit. Rev. Environ. Sci. Technol. 2014, 44, 2172–2202. [Google Scholar] [CrossRef]
- Lin, Q.; Peng, X.; Liu, B.; Min, F.; Zhang, Y.; Zhou, Q.; Ma, J.; Wu, Z. Aluminum distribution heterogeneity and relationship with nitrogen, phosphorus and humic acid content in the eutrophic lake sediment. Environ. Pollut. 2019, 253, 516–524. [Google Scholar] [CrossRef]
- Yang, B.; Liu, S.M.; Zhang, G.L. Geochemical characteristics of phosphorus in surface sediments from the continental shelf region of the northern South China Sea. Mar. Chem. 2018, 198, 44–55. [Google Scholar] [CrossRef]
- Ni, Z.; Wang, S.; Wu, Y.; Pu, J. Response of phosphorus fractionation in lake sediments to anthropogenic activities in China. Sci. Total Environ. 2020, 699, 134242. [Google Scholar] [CrossRef]
- Wu, M.; Huang, S.; Wen, W.; Sun, X.; Tang, X.; Scholz, M. Nutrient distribution within and release from the contaminated sediment of Haihe River. J. Environ. Sci. 2011, 23, 1086–1094. [Google Scholar] [CrossRef]
- Wang, Q.; Zhang, N.; Chen, Y.; Qin, Z.; Jin, Y.; Zhu, P.; Peng, C.; Colinet, G.; Zhang, S.; Liu, J. The Phosphorus Availability in Mollisol Is Determined by Inorganic Phosphorus Fraction under Long-Term Different Phosphorus Fertilization Regimes. Agronomy 2022, 12, 2364. [Google Scholar] [CrossRef]
- Ai, H.; Xu, L.; Zhang, Z.; Hu, X.; Chen, C.; Sun, W.; Fu, M.L.; Yuan, B. Al2O3 encapsulated by calcium alginate as composite for efficient removal of phosphate from aqueous solutions: Batch and column studies. Water Sci. Technol. 2022, 85, 3315–3330. [Google Scholar] [CrossRef]
- Zhai, Y.; Xiang, B.; Chen, H.; Xu, B.; Zhu, L.; Li, C.; Zeng, G. Recovery of phosphorus from sewage sludge in combination with the supercritical water process. Water Sci. Technol. 2014, 70, 1108–1114. [Google Scholar] [CrossRef] [PubMed]
- Semenov, V.M.; Tulina, A.S.; Semenova, N.A.; Ivannikova, L.A. Humification and nonhumification pathways of the organic matter stabilization in soil: A review. Eurasian Soil Sci. 2013, 46, 355–368. [Google Scholar] [CrossRef]
- Fink, J.R.; Inda, A.V.; Tiecher, T.; Barrón, V. Iron oxides and organic matter on soil phosphorus availability. Cienc. E Agrotecnologia 2016, 40, 369–379. [Google Scholar] [CrossRef]
- Corbett, D.; Wall, D.P.; Lynch, M.B.; Tuohy, P. The influence of lime application on the chemical and physical characteristics of acidic grassland soils with impeded drainage. J. Agric. Sci. 2021, 159, 206–215. [Google Scholar] [CrossRef]
- Yang, M.; Lin, J.; Zhan, Y.; Zhang, H. Adsorption of phosphate from water on lake sediments amended with zirconium-modified zeolites in batch mode. Ecol. Eng. 2014, 71, 223–233. [Google Scholar] [CrossRef]
Type | Samples Quantity | Index | Fe/Al-P mg/kg | Ca-P mg/kg | IP mg/kg | OP mg/kg | TP mg/kg |
---|---|---|---|---|---|---|---|
Lagoon sediment | 19 | Maximum | 503.0 | 171.9 | 679.0 | 196.7 | 1090.45 |
Minimum | 2.4 | 16.0 | 64.1 | 33.4 | 327.83 | ||
Average value | 192.6 | 101.6 | 323.0 | 99.9 | 776.56 | ||
Standard deviation | 154.9 | 50.5 | 207.1 | 51.2 | 227.90 | ||
Coefficient of variation | 0.8 | 0.5 | 0.6 | 0.5 | 0.29 | ||
Offshore sediment | 9 | Maximum | 379.0 | 246.5 | 627.2 | 191.4 | 1103.44 |
Minimum | 12.5 | 16.9 | 56.0 | 26.7 | 261.87 | ||
Average value | 79.3 | 111.7 | 204.5 | 56.8 | 515.96 | ||
Standard deviation | 116.7 | 77.1 | 180.6 | 54.3 | 311.27 | ||
Coefficient of variation | 1.5 | 0.7 | 0.9 | 1.0 | 0.60 | ||
Bar soil | 16 | Maximum | 258.8 | 70.0 | 272.5 | 309.5 | 967.51 |
Minimum | 12.1 | 0.0 | 14.2 | 20.0 | 133.93 | ||
Average value | 77.3 | 22.5 | 81.2 | 93.9 | 362.70 | ||
Standard deviation | 64.4 | 16.1 | 65.4 | 83.6 | 208.96 | ||
Coefficient of variation | 0.8 | 0.7 | 0.8 | 0.9 | 0.58 | ||
Land soil | 25 | Maximum | 540.3 | 560.6 | 787.1 | 744.3 | 2589.70 |
Minimum | 45.9 | 0.0 | 19.0 | 60.0 | 278.86 | ||
Average value | 152.4 | 49.0 | 119.5 | 198.3 | 652.92 | ||
Standard deviation | 139.8 | 136.9 | 189.1 | 169.5 | 615.17 | ||
Coefficient of variation | 0.9 | 2.8 | 1.6 | 0.9 | 0.94 | ||
Total | 69 | Maximum | 540.3 | 560.6 | 787.1 | 744.3 | 2589.70 |
Minimum | 2.4 | 0.0 | 14.2 | 20.0 | 133.93 | ||
Average value | 126.7 | 62.0 | 172.8 | 114.9 | 563.95 | ||
Standard deviation | 127.6 | 83.5 | 186.5 | 110.2 | 392.08 | ||
Coefficient of variation | 1.0 | 1.3 | 1.1 | 1.0 | 0.70 |
Type | Phosphorus Fractions | Fe/Al-P | Ca-P | IP | OP | TP |
---|---|---|---|---|---|---|
Lagoon sediment | Fe/Al-P | 1 | ||||
Ca-P | 0.456 | 1 | ||||
IP | 0.575 * | 0.723 ** | 1 | |||
OP | 0.287 | 0.619 ** | 0.767 ** | 1 | ||
TP | 0.464 | 0.639 ** | 0.798 ** | 0.754 ** | 1 | |
Offshore sediment | Fe/Al-P | 1 | ||||
Ca-P | 0.675 | 1 | ||||
IP | 0.923 ** | 0.884 ** | 1 | |||
OP | 0.994 ** | 0.721 ** | 0.954 ** | 1 | ||
TP | 0.865 ** | 0.767 ** | 0.924 ** | 0.943 ** | 1 | |
Bar soil | Fe/Al-P | 1 | ||||
Ca-P | −0.125 | 1 | ||||
IP | 0.655 ** | 0.243 | 1 | |||
OP | 0.478 * | −0.057 | 0.089 | 1 | ||
TP | 0.923 ** | 0.005 | 0.612 ** | 0.599 ** | 1 | |
Land soil | Fe/Al-P | 1 | ||||
Ca-P | 0.769 ** | 1 | ||||
IP | 0.812 ** | 0.977 ** | 1 | |||
OP | 0.664 ** | 0.089 | 0.078 | 1 | ||
TP | 0.978 ** | 0.865 ** | 0.845 ** | 0.621 * | 1 |
pH | OM | CEC | Fe/Al-P | Ca-P | IP | OP | TP | X2O3 (1) | |
---|---|---|---|---|---|---|---|---|---|
pH | 1 | ||||||||
OM | −0.485 * | 1 | |||||||
CEC | −0.313 | 0.878 ** | 1 | ||||||
Fe/Al-P | −0.029 | 0.147 | 0.419 | 1 | |||||
Ca-P | −0.145 | 0.624 ** | 0.714 ** | 0.440 | 1 | ||||
IP | −0.171 | 0.586 ** | 0.663 ** | 0.565 * | 0.705 ** | 1 | |||
OP | −0.359 | 0.893 ** | 0.887 ** | 0.294 | 0.590 ** | 0.750 ** | 1 | ||
TP | −0.578 ** | 0.662 ** | 0.582 ** | 0.440 | 0.633 ** | 0.790 ** | 0.735 ** | 1 | |
X2O3 (1) | −0.350 | 0.710 ** | 0.791 ** | 0.411 | 0.826 ** | 0.626 ** | 0.722 ** | 0.715 ** | 1 |
pH | OM | CEC | Fe/Al-P | Ca-P | IP | OP | TP | X2O3 (1) | |
---|---|---|---|---|---|---|---|---|---|
pH | 1 | ||||||||
OM | −0.550 | 1 | |||||||
CEC | −0.519 | 0.996 ** | 1 | ||||||
Fe/Al-P | −0.577 | 0.997 ** | 0.994 ** | 1 | |||||
Ca-P | 0.007 | 0.687 * | 0.690 * | 0.665 | 1 | ||||
IP | −0.384 | 0.942 ** | 0.935 ** | 0.930 ** | 0.879 ** | 1 | |||
OP | −0.563 | 0.992 ** | 0.983 ** | 0.990 ** | 0.701 * | 0.952 ** | 1 | ||
TP | −0.523 | 0.868 ** | 0.832 ** | 0.852 ** | 0.755 * | 0.930 ** | 0.904 ** | 1 | |
X2O3 (1) | −0.566 | 0.862 ** | 0.828 ** | 0.844 ** | 0.721 * | 0.913 ** | 0.899 ** | 0.993 ** | 1 |
pH | OM | CEC | Fe/Al-P | Ca-P | IP | OP | TP | X2O3 (1) | |
---|---|---|---|---|---|---|---|---|---|
pH | 1 | ||||||||
OM | −0.490 * | 1 | |||||||
CEC | −0.354 | 0.609 ** | 1 | ||||||
Fe/Al-P | −0.486 * | 0.290 | 0.591 ** | 1 | |||||
Ca-P | 0.360 | −0.242 | −0.291 | −0.159 | 1 | ||||
IP | −0.233 | 0.012 | −0.030 | 0.647 ** | 0.282 | 1 | |||
OP | −0.295 | 0.527** | 0.675 ** | 0.448 * | −0.086 | 0.085 | 1 | ||
TP | −0.448 * | 0.467* | 0.724 ** | 0.906 ** | 0.006 | 0.590 ** | 0.587 ** | 1 | |
X2O3 (1) | −0.277 | 0.544** | 0.971 ** | 0.586 ** | −0.236 | −0.058 | 0.652 ** | 0.726 ** | 1 |
pH | OM | CEC | Fe/Al-P | Ca-P | IP | OP | TP | X2O3 (1) | |
---|---|---|---|---|---|---|---|---|---|
pH | 1 | ||||||||
OM | −0.417 | 1 | |||||||
CEC | −0.368 | 0.693 ** | 1 | ||||||
Fe/Al-P | −0.230 | 0.155 | 0.117 | 1 | |||||
Ca-P | −0.070 | 0.261 | 0.010 | 0.754 ** | 1 | ||||
IP | −0.075 | 0.203 | 0.071 | 0.790 ** | 0.960 ** | 1 | |||
OP | −0.061 | 0.018 | 0.124 | 0.644 ** | 0.102 | 0.090 | 1 | ||
TP | −0.122 | 0.188 | 0.094 | 0.960 ** | 0.840 ** | 0.829 ** | 0.597 * | 1 | |
X2O3 (1) | −0.062 | −0.114 | 0.223 | 0.412 | −0.011 | 0.066 | 0.590 * | 0.327 | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yuan, K.; Wang, R.; He, B.; Fu, G.; Song, Y.; Pei, L.; Fan, S.; Gao, F. Distribution Characteristics and Factors Controlling Different Phosphorus Fractions in the Soils and Sediments of an Inland Lagoon. J. Mar. Sci. Eng. 2024, 12, 127. https://doi.org/10.3390/jmse12010127
Yuan K, Wang R, He B, Fu G, Song Y, Pei L, Fan S, Gao F. Distribution Characteristics and Factors Controlling Different Phosphorus Fractions in the Soils and Sediments of an Inland Lagoon. Journal of Marine Science and Engineering. 2024; 12(1):127. https://doi.org/10.3390/jmse12010127
Chicago/Turabian StyleYuan, Kun, Rui Wang, Bo He, Guowei Fu, Yanwei Song, Lixin Pei, Shichao Fan, and Fangyi Gao. 2024. "Distribution Characteristics and Factors Controlling Different Phosphorus Fractions in the Soils and Sediments of an Inland Lagoon" Journal of Marine Science and Engineering 12, no. 1: 127. https://doi.org/10.3390/jmse12010127
APA StyleYuan, K., Wang, R., He, B., Fu, G., Song, Y., Pei, L., Fan, S., & Gao, F. (2024). Distribution Characteristics and Factors Controlling Different Phosphorus Fractions in the Soils and Sediments of an Inland Lagoon. Journal of Marine Science and Engineering, 12(1), 127. https://doi.org/10.3390/jmse12010127