1. Introduction
Subsea pipelines are an important means of continuous oil and gas transport over long distances, with great economic and geopolitical significance. The safety of the hydrocarbon supply has paramount importance nowadays. Consequently, the vulnerability and resilience of subsea pipelines to the various factors affecting their integrity and operability are receiving increased attention and attracting significant research focus [
1,
2]. Subsea pipeline resilience can be defined as the pipeline’s capacity to withstand manmade and natural hazards, and this resilience plays a significant role in the design process [
3]. These hazards could include accidental pulling with fishing gear, damages caused by terrorist activity, earthquakes, extreme climate and environmental conditions and unforeseen installation or operational loads [
4,
5,
6]. The increasing demand and growth of energy consumption affect the design and installation of ever-longer subsea pipelines at increasing depths. In such conditions, the requirements of the safety, reliability and integrity of subsea pipelines become more complex.
Subsea pipeline installation is a rather complex, demanding and expensive offshore operation. Related engineering projects are driven by contradictory requirements whose optimal combination should be found. The most important are the minimization of pipeline installation loads and fatigue; minimization of residual loads in the installed pipeline; and demand for as-low-as-possible installation operation costs. Residual tension in the installed subsea pipeline is directly proportional to the applied tensioner force during installation. Minimization of residual tension is an important factor from the standpoint of increasing pipeline resilience to hazards like accidental pulling with fishing gear or the operational hazard of damage due to vortex-induced vibrations (VIVs) in the free-span areas. That demand is, at the same time, in contradiction with the aim of minimizing installation loads, because a higher applied tensioner force decreases installation loads and vice versa. These complex requirements raise a need for an efficient optimization method of finding subsea pipeline installation configuration parameters.
A pipelay installation engineering analysis plays a pivotal role during installation project preparation. The process of laying subsea pipelines on the seabed is a very demanding operation dependent on environmental conditions. It involves careful planning and a detailed analysis in the design phase. The most commonly used subsea pipeline installation method is the S-Lay method. It is performed with S-Lay pipelay vessels; during the procedure, the pipe is controlled to bend on the seabed in the shape of the letter S (
Figure 1). During the S-Lay installation, the pipeline is connected by welding on the deck of the laying ship (tubular) and is continuously lowered from the deck all the way to the seabed. The pipeline consists of a series of individual pipe elements (pipe joints) with a standard length of 12.2 m or 24.4 m, the ends of which are connected on the production line. The pipeline production line (firing line) usually contains a pipe beveling station, a pipe centering station, a few welding stations, a nondestructive testing station and at minimum one tensioning device (tensioner). The average pipeline laying capacity for most pipelay vessels is 4.5 km/day, although some vessels can set up to 7 km/day.
On the pipelay vessel’s deck, the pipeline rests on a series of discontinuous supports, which can be rollers or track guides. Except in extremely shallow waters, as a rule, a long fixed ramp or an immersed floating strut is used (stinger), which serves to support the pipeline behind the stern of the ship as it descends into the water. A stinger is a lattice structure mounted on the ship’s stern that can be attached to the vessel via a fixed or articulated link. The floating stinger is connected by a hinge and can freely float in the water. In floating freely, the stinger supports the pipe with its buoyancy force and opposes its weight. The stinger’s buoyancy force, and hence its angle, can be controlled by regulating the amount of water in the stinger ballast tanks. Similar to the deck, cylindrical supports on the stinger provide a platform for the pipeline to rest upon.
After the point of separation from the stinger, the pipe extends in a long free span all the way to the point of contact with the seabed, called the touch-down point (TDP). The free span length in the S-Lay procedure typically ranges between two and three times the water depth.
To reduce stresses in the pipeline to acceptable levels, one or more tensioners are employed, transmitting a substantial tensile force to the pipeline during assembly. This tensioning action straightens the pipeline, reducing its curvature and extending the free span length. When laying in deep waters, tensile force is crucial to minimize the angle at which the pipe detaches from the stinger (
Figure 1) and ensure the pipe’s separation from the end of the stinger, i.e., the last support. The maximum capacity of the tensioners ranges from 50 to 750 ton-force (tf).
During pipeline installation, pipelay vessels maintain their position using a radial anchor system, typically comprising four to twelve anchor lines with winches and anchors arranged radially around the vessel. As new pipe segments are added to the assembly line, the ship advances forward by the length of the added segment. The forward movement is achieved by shortening (hauling in) anchor lines on the bow and releasing (paying out) anchor lines at the stern of the vessel. After advancing several hundred meters, it becomes necessary to reposition the anchors, which is accomplished by specially equipped boats known as anchor tugs. The anchor lines counteract the tensile force in the pipeline, keeping the ship in the desired position and mitigating environmental forces such as waves, currents and wind. Fourth-generation pipeline ships employ dynamic propulsors and a dynamic positioning system, which effectively replaces the role of anchor lines. Dynamic positioning enables pipeline installation at deeper depths where traditional anchor lines cannot be used.
Pipeline loads are highly sensitive to minor alterations in the configuration of the pipeline supports during installation. Based on the analysis results, the engineer often needs to position more than ten supports. Additionally, other critical parameters such as tensioner force, the angles of one or more stingers, pipelay vessel trim and draft must be varied. Consequently, the process of an engineering installation analysis is quite demanding, necessitating the development of an automated optimization process.
The optimization of subsea pipeline installation analysis parameters has been addressed in a limited number of research papers. The first work on this topic was Daley’s paper [
7], describing the graphical method for determining the optimal tensioner force based on the requirement of minimizing stinger length or on the requirement to achieve the maximum radius of curvature of the stinger supports. Maier et al. [
8] optimized the articulated stinger geometry (a stinger composed of multiple floating parts jointly connected to each other) using the nonlinear programming method. Bhavikatti et al. [
9] developed a method for optimizing tensioner force and free span length with the goal of minimizing the maximum bending moment in the pipeline’s “S” curve. An enhanced sequential linear programming moving boundary method was utilized for optimization. Zhu and Cheung [
10] presented an analytical method for analyzing a simplified S-Lay installation model with an articulated stinger, employing a singular perturbation technique. The derived analytical solution was employed to determine the optimal buoyancy combination for articulated stinger elements, albeit using an unspecified nonlinear programming deterministic method. More recent work by Ivić et al. [
11] applied particle swarm multi-objective optimization to the S-Lay method installation configuration, including buoyancy tank distribution, for the installation of heavier pipelines.
In the context of applying genetic algorithms (GAs) to structural optimization problems of a similar nature, Wang and Chen [
12] employed GAs to identify optimal locations for elastic vibrating rod supports, aiming to minimize vibration. Chiba et al. [
13] optimized the arrangement of supports for a pipe system subjected to dynamic loads. Tabakov in [
14] presents an overview of multi-criteria optimization of layered structures using GA. Vieira et al. [
15] applied GA to optimize the configuration of vertical submarine pipes (risers) and in [
16] they compared this application of GA to other optimization algorithms inspired by biological processes. Gantovnik [
17] provides an overview of GAs adapted for the optimization of composite structures.
A significant number of studies have explored the application of GA optimization in offshore engineering. Shafieefar and Rezvani [
18] demonstrate the optimization of anchor lines for floating oil platforms utilizing GA, while Boulougouris and Papanikolaou [
19] apply GA to multi-criteria optimization of floating LNG terminals. Clauss and Birk investigated the optimization of the hydrodynamic form of general large marine structures using the tangent search method in [
20,
21], and then compared the efficiency of optimization with the sequential quadratic programming deterministic method on a similar problem. In [
22], Lee and Clauss present a method of automated design of the shape of a floating marine structure with the objective of minimizing motion induced by sea waves. They performed shape optimization using the adaptive simulated annealing method.
Subsea pipeline design is inextricably linked to and dependent upon subsea pipeline installation engineering. A series of studies have been conducted on the topic of subsea pipeline route optimization utilizing GA and the development of associated software tools—de Lima Jr. et al. [
23], Baioco et al. [
24], de Lucena et al. [
25] and Baioco et al. [
26].
Among recent studies addressing offshore engineering problem optimization with GA are Kim et al. [
27], who explored the design of an underwater chain trencher based on GA optimization. Liu et al. [
28] employed hybrid algorithms to optimize the offshore wind turbine jacket substructure. Ghigo et al. [
29] conducted platform optimization and a cost analysis in a floating offshore wind farm. Yin et al. [
30] optimized static and discrete berth allocation for large-scale marine-loading problems using an iterative variable grouping GA. Zhang et al. [
31] employed GA optimization to optimize configuration parameters of a new energy hybrid system. Sun Q. et al. [
32] performed optimization of the anchor chain design of a catenary anchor leg mooring system. Sun H. et al. [
33] optimized the number, hub height and layout of offshore wind turbines using GA.
The first research objective of this study was to systematically analyze and standardize the process of a subsea pipeline installation analysis. To achieve this goal, installation engineering methodology criteria and requirements were formalized into a nonlinear optimization problem involving both continuous and discrete variables.
The second research objective was to develop a complete optimization procedure based on a genetic algorithm (GA) that would enable the automated discovery of the optimal combination of all crucial parameters of subsea pipeline installation configuration, characteristic for the S-Lay method. Optimization using a genetic algorithm specifically designed for this problem should meet all the requirements that are set when analyzing and determining the configuration of the pipelaying procedure in practical project implementation.
A specifically designed multi-objective genetic algorithm is created that can be customized to suit any prescribed combination of criteria and offshore standards’ requirements for subsea pipeline installation with the S-Lay method. The optimization algorithm is applied to the representative test cases. The effectiveness of the optimization procedure and quality of the obtained solution demonstrate that the developed genetic algorithm operators and whole optimization approach are suitable for the given optimization problem and application.
2. Materials and Methods
The development of multi-objective GA for S-Lay installation configuration optimization (
Section 3) was founded on the following four methodological components, which are detailed in this section:
An S-lay installation method analysis;
Subsea pipeline installation analysis methodology;
Optimization problem formulation;
Genetic algorithm optimization.
2.1. S-Lay Installation Method Analysis
On the production line, where pipeline segments are connected, the pipeline layout can be considered nearly horizontal and parallel to the water surface (
Figure 1). At the stern, where the pipe transitions into the water, the deck and pipe supports descend at a slope to ensure that the pipe enters the water at a defined angle. Pipe supports are typically configured to allow the pipe to bend downwards with a specific curvature radius. This applies to supports on both floating stinger and fixed ramps. Due to this curvature, the pipe adopts a specific separation angle from the stinger. Consequently, the stinger angle should be at least equal to the separation angle to prevent excessive pipe bending over the last support on the stinger, leading to excessive stresses at that point.
The “S” curve features an inflection point dividing it into two curvature regions:
Overbend—the initial section of the “S” curve, spanning the supports on board and the stinger. The pipeline curve y = f(x) is concave (y″ < 0);
Sagbend—the terminal section of the “S” curve extending to the seabed. The pipeline curve is convex (y″ > 0).
The inflection point is usually found immediately after the stinger’s end, specifically after the last stinger support. At this point, the bending moment is zero and undergoes a sign change, as does the curvature, which, according to the Euler–Bernoulli beam theory, is linearly proportional to the bending moment.
In relatively shallower water depths and with larger-diameter pipes, the shape of the “S” curve of the pipeline is relatively gentle and is principally determined by the pipe’s bending stiffness. The behavior of the pipe in the free span, that is, in the sagbend, resembles that of an elastically supported linear rod. Conversely, in deeper water depths and with smaller-diameter pipes that exhibit relatively low bending stiffness, the pipeline’s behavior approximates that of a catenary model. The pipe’s curvature is more pronounced and is predominantly determined by the tensioner’s force.
Upon reaching the end of the sagbend region, the pipe comes into contact with the seabed at the TDP. If the seabed is relatively flat, the pipe can be regarded as lying on the seabed in an undeformed state, provided that residual tensile stress caused by the tensioner’s force and bending near the contact point is disregarded. At a specific distance of approximately 100 m from the TDP, there is a point of apparent fixation of the pipeline, beyond which the pipeline’s condition can be considered to be consistent and unaffected by the installation process.
Static stresses in the pipe within the overbend region are primarily influenced by four key parameters:
Common radius of curvature corresponding to the supports’ configuration;
Pipe free span weight between the supports;
Bending torque local increase over supports;
Axial pipe tensile force generated by the tensioner force.
These stresses are highly sensitive to changes in the height of the roller supports. The relatively short distance between the supports amplifies the impact of even small changes in support height.
The primary factors affecting static stresses in the pipe in the sagbend region are
Since the primary influencing factors that determine static stresses in the pipeline’s overbend and sagbend regions operate in the vertical plane, the static analysis of laying pipelines can be simplified to a two-dimensional (2D) problem. A three-dimensional (3D) analysis is typically required only when laying pipelines along a winding route, where a detailed analysis of the ship’s curved laying path is necessary. In practice, the pipe bends more significantly over the supports than between them, leading to a typical increase in strain over the supports and decreases in strain between them.
Research and development of mathematical models and corresponding solutions for subsea pipelines’ S-Lay installation method began with the rise of the subsea pipeline construction industry in the 1960s. First, published models were limited to simulating pipe stresses in the unsupported sagbend area [
34,
35,
36,
37,
38]. Subsequent advancements led to the development of more sophisticated models that incorporated geometric and material nonlinearities, fully modelled the overbend region with supports and accounted for dynamic environmental loads [
39,
40,
41,
42,
43,
44,
45,
46,
47,
48,
49,
50,
51].
The most suitable model for analyzing static pipe stresses during S-Lay pipelay operation is a simplified one-dimensional homogeneous tensed rod subjected to its own weight and large deflections (geometrical nonlinearity), described using Euler–Bernoulli beam Equation (1) [
52,
53,
54,
55,
56,
57]:
where
T(s—Tensile (axial) force component in an arbitrary pipe section;
s—Curvilinear coordinate;
θ—Slope of the pipe curve;
E—Young modulus of elasticity;
I—Moment of inertia of the pipe cross section;
W(s)—weight of the pipe in an arbitrary pipe section.
Upon introducing Equation (2) for the horizontal force component
H(
s) in an arbitrary pipe section,
where
Nonlinear beam bending Equation (3) can be derived in a form commonly found in relevant literature [
49,
51,
52]:
Equation (3) is applicable to both shallow and deep waters and for small and large displacements. It is a third-order nonlinear differential equation with an unknown pipe length in the free span and an unknown sea bottom reaction force at the free end. This distinctive characteristic makes pipelaying problems more challenging to solve than classical nonlinear beam models and allows the formulation of the problem as either an initial value problem (IVP) or a boundary value problem (BVP). Equation (3) can also be expressed in terms of the function y(s) instead of θ(s).
Some earlier research works introduced the solution of Model (3) as an IVP [
34,
36], where initial values of
θ(
s) or
y(
s) and their derivatives are specified at one fixed pipe end, typically the tensioner end or TDP. An advantage of the IVP approach is that it eliminates the need for an additional boundary equation to determine the unknown pipe span length. However, a major drawback of the IVP approach is its inability to converge for nonlinear problems in general. This has led to the adoption of the more robust BVP approach in recent models. The BVP solution necessitates three boundary conditions (BCs) to be defined. Assuming a fixed pipelay vessel, typically at the tensioner end (
s = 0), two BCs are established, zero rotation
θ(0)
= 0 or vertical displacement
y(0)
= 0, along with tensioner force
T(0) =
T0. The third BC is specified at the free pipe end, where a vertical displacement of
y(
L)
= −
D is defined, corresponding to the depth of the seabed
D. In addition to the three BC, an additional boundary equation is required to determine the unknown elastic line free span length
L. Furthermore, the arbitrarily supported pipe in the overbend and at the TDP end can be generally described using a supporting vertical displacement constraint function,
ysvdc(s). The specific form of this function depends on the model, vessel and stinger geometry. The conventional approach is to assume perpendicular contact reactions between the pipe and the supports. Various combinations of BCs can be employed to close the BVP.
Nonlinear beam bending Equation (3) can only be solved analytically with certain simplifying assumptions [
42,
47]. Numerical methods are necessary to solve the full Equation (3) in conjunction with the general supporting vertical displacement constraint function
ysvdc(s). The most accurate results are obtained using the finite element method (FEM) with beam elements specifically designed to handle large displacements (geometrical nonlinearity) [
36].
Dedicated finite element software packages are employed for a subsea pipeline installation engineering analysis in the offshore construction industry. These packages can effectively model and analyze problems involving various components, including rigid, slender and flexible elements such as pipes, tubular members, flexible risers and cables, under static and dynamic loads. Offpipe software [
58] stands as a prominent industry standard for static and dynamic pipelay analyses, having been extensively used in numerous worldwide projects over the years. It is based on the finite element method described in [
40]. Offpipe employs specialized finite element models of the entire pipeline system, encompassing the pipelay vessel, pipe supports, stinger and seabed. The software can handle both 2D and 3D analyses and perform a dynamic analysis for single or multiple simultaneous sea states, including regular and random waves. Other widely used general offshore construction analysis software packages for a pipelay installation analysis include Orcaflex by Orcina Ltd. [
59] and Flexcom by Wood Group Kenny [
60].
The same model can be analyzed and solved using general-purpose nonlinear finite element analysis (FEA) computer-aided design (CAD) software packages such as SIMULIA Abaqus by Dassault Systèmes [
61], Ansys Mechanical by Ansys Inc. [
62] and Autodesk Inventor Nastran [
63]. However, specialized software solutions specifically designed for a pipeline installation analysis are more efficient in handling the large number of parameters involved in a pipelay installation analysis and provide faster solver speeds due to their reduced model complexity. Ivić et al. [
64] implemented and solved an S-Lay pipelaying model using SIMULIA Abaqus 6.11 [
61] and validated the results with standard pipelay analysis software Offpipe v2.05. The static subsea pipeline installation methodology and optimization method described in the following sections are independent of the specific pipelay installation analysis software used. In this research, Offpipe software v2.07 [
58] was employed as the S-Lay method static analysis solver for the implemented genetic algorithm optimization method.
2.2. Subsea Pipeline Installation Analysis Methodology
During the static installation analysis of the S-Lay pipelay method, a large number of parameters need to be optimized to determine their optimal combination that enables safe laying operation with minimal execution time, ultimately minimizing the entire operation costs. The engineering analysis of S-Lay pipeline installation typically involves evaluating static pipeline loads along the “S” curve, including tensile force, bending, pressure, contact forces on supports and contact forces on the seabed. This analysis aims to determine the optimal S-Lay static laying configuration.
The overbend curvature of the “S” curve is influenced by the stinger angle and the configuration (heights) of the supports on the pipelay vessel and stinger. The tensioner force affects the sagbend curvature of the “S” curve and the bending moment at the stinger tip. The required tensioner force is dependent on the water depth, immersed pipe weight, permissible overbend radius of curvature, pipe–stinger separation angle and permissible sagbend radius of curvature.
Key parameters of the S-lay pipelay method configuration that are adjusted during an installation analysis are depicted in
Figure 2. Detailed parameter descriptions are provided in
Section 2.3. The water depth and pipe weight are determined by pipeline design and therefore are not considered as optimizable parameters during an installation analysis.
A primary objective of pipelay configuration parameter optimization is to fulfill the project criteria. These criteria are established to safeguard the pipeline’s integrity during the laying process and ensure that the installation equipment adheres to its operational limitations as defined for the specific project.
Design criteria for ensuring pipeline integrity are established by industry regulations. The DNV-ST-F101 standard “Submarine pipeline systems” [
65] is the most widely used and relevant design criterion for pipeline installation projects, making it the basis for defining, testing and calibrating the genetic algorithm optimization. Other criteria essentially involve similar combinations of the permissible bending moment or equivalent strain and permissible deformation in the overbend and sagbend. Therefore, the flexible ability to define the project criteria enables optimization based on any of these criteria as described in the following sections. To accommodate the variations in overbend and sagbend criteria, a flexible approach has been adopted that allows setting both the permissible static bending moment and the permissible deformation in both the overbend and sagbend.
Operational limitations of installation equipment include permissible loads (reactions) on pipe supports (vessel and stinger), maximum applicable tensioner force and stinger ramp angle restrictions.
The DNV-ST-F101 standard [
65] design criterion establishes distinct criteria for permissible combined loads based on the division into two regions:
Displacement controlled condition (DCC) region—pipeline deformation and the position of the “S” curve are primarily determined by the placement of supports and stingers, making them geometrically conditioned. The criterion prescribes a maximum allowable total strain,
ε ≤
εallow, at all evaluated points (nodes) within the overbend. This calculated allowable installation strain represents unique input data for each pipeline section. The standard value is
εallow = 0.002 (0.2%). While this region is often incorrectly referred to as the overbend in engineering practice, this terminology will be retained for consistency. However, the boundary between the overbend and sagbend is defined by the inflection point of the “S” curve (see
Figure 1);
Load controlled condition (LCC) region—pipeline deformation and position of the “S” curve are primarily determined by the tensioner force; therefore, they are conditioned by the loads on the pipeline. The criterion prescribes a maximum allowable bending moment, Mb ≤ Mallow, at all evaluated points (nodes). This region is also often imprecisely labeled as the sagbend, although it encompasses the area above the inflection point. Therefore, this work will further distinguish between the sagbend(+) region above the inflection point of the “S” curve with a positive bending moment and the sagbend(−) area below the inflection point with a negative bending moment.
The boundary between the DCC and LCC regions is typically situated before the last support on the pipelay vessel or the fixed ramp preceding the articulated connection with the floating stinger. Consequently, the exact position of this boundary varies depending on the type of the stinger ramp attached, rigid or floating. For the pipelay vessel depicted in
Figure 2, if the stinger is rigid, the last support within the DCC region would be SR4. In the case of a floating stinger, the last support within the DCC region would be VR3. The bending moment allowance criterion for the LCC region is generally more conservative and is sometimes applied in the sagbend region.
2.3. Optimization Problem Formulation
The objective of static laying analysis optimization is to determine the optimal combination of parameters that define the S-Lay installation method configuration, ensuring that all project criteria are satisfied. The entire configuration can be characterized by a set of invariant (fixed) parameters and a set of variable parameters.
Invariant parameters are unique to each section along the pipeline route and establish the optimization environment as a set of variable states during the laying process. This group comprises parameters that serve as input variables for static pipelay analysis software and are derived from pipeline properties along the route:
Variable parameters are those whose values need to be determined during the optimization (optimized parameters) and can be categorized as follows (
Figure 2):
Optimization conditions are classified into two categories based on the requirement to fulfill them at the end of the optimization process: mandatory and additional optimization conditions.
Mandatory optimization conditions—compliance with these conditions is mandatory and serves as the foundation for establishing optimization constraint functions and defining the overall optimization process. These mandatory optimization conditions are derived from the previously described static laying analysis criteria:
Additional optimization conditions—the optimization process should aim to fulfill these conditions to the greatest extent possible, but they are not mandatory. Most of these conditions serve as the foundation for defining an optimization goal function. When multiple goals are defined, the optimization problem becomes multi-objective and each goal (criterion) should have a corresponding goal weighting factor that reflects its relative importance compared to others. Optimization based on these conditions can be customized based on the specified weight inputs. Additional optimization conditions include
Minimization of maximum values for defined pipeline integrity criteria, e.g., the maximum value of bending, stress or deformation moment at any finite element node within overbend or sagbend regions;
Minimization of maximum values for defined operational limiting criteria of installation equipment, e.g., the maximum reaction force value at any support;
Uniform distribution of support reaction forces: minimizing the deviation of supports’ reaction forces from their mean value while avoiding situations where supports are not in contact with the pipe;
Uniform distribution of load on supports—minimizing of load deviation at individual supports from their mean value;
Minimum required tensioner force application.
The optimization of a subsea pipeline S-Lay installation configuration falls under the category of general nonlinear optimization problems (Rao [
30]). This problem is characterized by a combination of continuous and discrete variables, a nonlinear objective function and nonlinear constraint functions. Both the objective function and constraint functions are not expressible in an analytical form but rather represent the outcomes of a numerical simulation of the laying process.
The constrained nonlinear optimization problem can be formulated as follows:
Find the vectors
X* = (
x1*,
x2*, …,
xm*)
T and
Y* = (
y1*,
y2*, …,
yn*)
T that minimize the objective function
subject to the constraints
and the given upper and lower bounds for the optimization variables
where
f (X, Y, P, R)—objective function;
X = (x1, x2, …, xm)T, X ∈ ℝm—the vector of real (continuous) optimization variables;
Y = (y1, y2, …, yn)T, Y ∈ ℤn—the vector of integer (discontinuous) optimization variables;
P = (p1, p2, …, pp)T, P ∈ ℝp—the vector of invariant real parameters;
R = (r1, r2, …, rq)T, R ∈ ℤq—the vector of invariant integer parameters;
gk (X, Y, P, R) ≥ 0—inequality constraint functions;
hl (X, Y, P, R) = 0—equality constraint functions;
m—the number of real optimization variables;
n—the number of integer optimization variables;
r—the number of constraint functions in the form of inequality;
s—the number of constraint functions in the form of equality;
p—the number of invariant real parameters;
q—the number of invariant integer parameters.
Each equality constraint function can be replaced by two inequality constraint functions, thereby eliminating the need for Equations (5) and (6) and replacing them with Equation (9):
2.4. Genetic Algorithm Optimization
The optimization of a subsea pipeline S-Lay installation configuration falls into the category of challenging nonlinear optimization problems. The nonlinear objective function and constraint functions are derived from numerical simulation of the S-Lay installation method, making them unavailable in analytical form. Consequently, first- and second-order derivatives, which are crucial for gradient-based optimization methods, must be estimated using approximate techniques, such as the finite difference method. This necessitates at least two pipelay simulations for each partial derivative of the objective function and each optimization parameter.
Standard nonlinear programming methods (gradient and others) would be inefficient for this problem, demanding excessive computational resources and often finding local optima near the starting point. Heuristic optimization methods are better suited for such nonlinear problems, as they employ a directed random search to find the global optimum. Genetic algorithms have demonstrated efficacy in solving such problems, often identifying globally optimal solutions with high probability.
A genetic algorithm (GA) is an algorithm that utilizes a directed heuristic, stochastic search method inspired by natural evolution (refs. [
66,
67,
68,
69,
70,
71,
72]). Natural evolution relies on a selection process that prioritizes the survival of the most exceptional (best) individuals within a particular species. The operators of a genetic algorithm operate on individuals within a population over multiple generations, striving to progressively enhance their quality (fitness). Individuals that represent potential solutions are frequently compared to chromosomes and are represented using strings or binary numbers. Similarly to other heuristic methods (e.g., simulated annealing), a genetic algorithm should find a global minimum even when the objective function has multiple extremes, including local maxima and minima. A general genetic algorithm flowchart is depicted in
Figure 3.
The stop condition for GA optimization can be based on the maximum number of generations, the fitness function limit, the change in the best fitness function tolerance or other criteria. The stop condition is typically defined as a combination of these criteria.
A chromosome represents an individual within a genetic algorithm, encapsulating the values of optimization variables. To simplify representation, variables are not encoded in their decimal form but rather as integer values that represent discretized real values between the minimum and maximum for a specified discretization step. An optimization variable is often referred to as a gene.
A population is a set of solutions representing the current iteration step (generation) of a genetic algorithm. Population size is a crucial parameter in GAs and its accurate determination is essential. If the population size is too small, the genetic algorithm may converge prematurely; if it is too large, the genetic algorithm unnecessarily consumes computing resources, and the time required to improve the solution may be unnecessarily prolonged. Two critical concepts emerge in the evolutionary process and genetic search: population diversity and selective pressure. Both factors are significantly influenced by population size. Population size flexibility can be relatively easily implemented within a GA.
At each successive generation, a portion of the existing population is selected to create a new generation. Individual solutions are chosen through a fitness function process, favoring those with higher fitness values. Some selection methods evaluate the quality of each solution and select the best solutions based on direct comparison. Others perform assessments on a random sample of the entire population to expedite the process.
Many selection mechanisms are stochastic and are designed to select a small percentage of inferior solutions. This practice helps maintain population diversity, preventing premature convergence toward inferior solutions. Among the most renowned selection algorithms are simple selection (roulette wheel), proportional selection and tournament selection.
The most crucial role of crossover is to combine distinct chromosomes (individuals) and transmit their genes to a new population [
66]. For each new solution to be generated, a pair of (parental) solutions are chosen from a pre-selected set for reproduction. The creation of a “child” (or “offspring”) employing the crossbreeding and mutation yields a novel solution that typically incorporates novel characteristics of its “parents”. New parents are selected for each child and the cycle continues until a new population of appropriately sized solutions is created.
Mutation is essential because the population cannot encompass all possible genes and there must be a mechanism for introducing new genes that could potentially represent optimal solutions or serve as valuable stepping stones toward the optimum. In a genetic algorithm, mutation serves as a mechanism for maintaining population diversity.
Similar to crossover, mutations are not applied with every iteration. The probability of mutation is typically set to a low value, often below 0.05 for binary-encoded chromosomes. However, for integer coding and floating-point encoding, the mutation probability can be significantly higher, ranging up to 0.8.
5. Conclusions
The crucial and intricate task of a subsea pipeline S-Lay method installation engineering analysis involves identifying the optimal pipelay vessel installation configuration for each distinct pipeline route section. Installation loads in the pipeline are highly sensitive to subtle alterations in the configuration of pipeline supports during pipelay, along with other influential factors like the tensioner force, stinger angle, trim and draft of the pipelay vessel. Consequently, the process of an engineering installation analysis poses a significant challenge, necessitating an automated optimization procedure.
The initial research objective focused on analyzing and systematizing the subsea pipeline installation analysis procedure. By establishing clear procedures, goals and methodology, the conditions that must be met by the optimization process were determined, leading to the formulation of the optimization problem. This optimization problem falls under the category of constrained nonlinear optimization problems involving a combination of continuous and discrete variables. Both the objective and constraint functions cannot be represented analytically but rather derive from the results of static pipelay analysis simulations. Based on these simulation outcomes, the values of individual components of the objective function are calculated and the violations of constraint functions are evaluated.
The second research objective was to develop a comprehensive optimization procedure employing a genetic algorithm that could automatically identify the optimal combination of all critical parameters governing subsea pipeline installation configuration specific to the S-Lay method. A specialized tailored multi-objective GA is designed to be adaptable to various sets of optimization criteria and offshore standards’ requirements. This genetic algorithm was specifically tailored to the intricate problem of pipeline installation using the S-Lay method, ensuring compliance with all requirements established during the analysis and formulation of the S-Lay installation analysis methodology. Multi-objective constrained optimization was achieved through the implementation of a penalty function and flexible objective and constraint prioritization via weighting factors. Tailored genetic algorithm operators specially designed for this purpose enable the efficient identification of the optimal combination of all the influential parameters governing the S-Lay installation method. This study represents the first known application of genetic algorithm optimization to the task of finding optimal subsea pipeline S-Lay method configurations. Previous research papers, as mentioned in the introduction, focused on optimizing a limited number of influential laying parameters, whereas the developed GA optimization facilitates simultaneous optimization of all influencing parameters, regardless of their number or type (continuous or discontinuous).
The developed multi-objective genetic algorithm was applied to two representative test cases. These optimized test cases were characterized by adhering to prescribed mixed pipe integrity criteria as per the DNV-ST-F101 standard [
65], utilizing a pipelay vessel equipped with a single rigid stinger and a concrete-coated pipe. For the overbend region, a displacement-controlled condition with a defined limiting total strain was implemented, while for the sagbend region, a load-controlled condition with a defined limiting bending moment was employed.
Multiple GA optimization runs yielded optimal solutions that met all the optimization targets. The same minimum optimal tensioner force value was consistently obtained across all optimization runs, despite the stochastic nature of GA optimization. The efficiency of the optimization procedure and the quality of the achieved solutions demonstrate the suitability of the developed genetic algorithm operators and the overall optimization approach for the presented optimization problem and application.
Further research can proceed in several promising directions. One promising direction lies in refining the employed genetic algorithm through a more in-depth examination of the influence of specific parameters and potentially incorporating adaptative parameters (adaptive genetic algorithm) and the development of novel operators. Optimization efficiency could be enhanced by employing a hybrid genetic algorithm that utilizes a deterministic local search method toward the end of the optimization process. Another avenue involves extending the overall optimization process from single-section GA to simultaneous optimization of multiple pipeline route sections, a significantly more complex challenge.