A Comprehensive Review of Machine Learning for Water Quality Prediction over the Past Five Years
Abstract
:1. Introduction
2. Acquiring Water Quality Data
3. Utilization of Machine Learning in Water Quality Prediction
3.1. Single Water Quality Prediction Using Machine Learning
3.1.1. Prediction of Chlorophyll-a
3.1.2. Prediction of Salinity
3.1.3. Prediction of Dissolved Oxygen
3.1.4. Prediction of Multiple Water Quality Parameters
3.2. Prediction of Coastal Water Quality Index Using Machine Learning
3.3. Prediction of Water Quality through Coupling Hydrodynamics and Water Quality
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Ye, J. Stayers in China’s “hollowed-out” villages: A counter narrative on massive rural–urban migration. Popul. Space Place 2018, 24, e2128. [Google Scholar] [CrossRef]
- Thinh, H.B. Migration and Education in Vietnam: Opportunities and Challenges. Adv. Sci. Lett. 2017, 23, 2166–2168. [Google Scholar] [CrossRef]
- Wang, Y.; Bai, J. Experience, Lessons of India’s Urbanization and Its Warnings to China. In Proceedings of the 20th International Symposium on Advancement of Construction Management and Real Estate; Wu, Y., Zheng, S., Luo, J., Wang, W., Mo, Z., Shan, L., Eds.; Springer: Singapore, 2017; pp. 489–496. [Google Scholar]
- Meng, G.; Guo, Z.; Li, J. The dynamic linkage among urbanisation, industrialisation and carbon emissions in China: Insights from spatiotemporal effect. Sci. Total Environ. 2021, 760, 144042. [Google Scholar] [CrossRef]
- Misbari, S.; Hashim, M. Water quality changes using GIS-based approach at seagrass meadows along the Straits of Johor. In Proceedings of the 3rd Symposium on Industrial Science and Technology (SISTEC2021), Pahang, Malaysia, 25–26 August 2021; p. 050002. [Google Scholar]
- Johnson, D.C.; Enriquez, C.E.; Pepper, I.L.; Davis, T.L.; Gerba, C.P.; Rose, J.B. Survival of Giardia, Cryptosporidium, poliovirus and Salmonella in marine waters. Water Sci. Technol. 1997, 35, 261–268. [Google Scholar] [CrossRef]
- Wang, C.; Guo, Z.; Li, Q.; Fang, J. Study on layout optimization of sewage outfalls: A case study of wastewater treatment plants in Xiamen. Sci. Rep. 2021, 11, 18326. [Google Scholar] [CrossRef]
- Rohmana, Q.A.; Fischer, A.M.; Cumming, J.; Blackwell, B.D.; Gemmill, J. Increased Transparency and Resource Prioritization for the Management of Pollutants from Wastewater Treatment Plants: A National Perspective from Australia. Front. Mar. Sci. 2020, 7, 564598. [Google Scholar] [CrossRef]
- Yang, M.; Zhang, X. Comparative Developmental Toxicity of New Aromatic Halogenated DBPs in a Chlorinated Saline Sewage Effluent to the Marine Polychaete Platynereis dumerilii. Environ. Sci. Technol. 2013, 47, 10868–10876. [Google Scholar] [CrossRef]
- Li, T.; Long, H.; Liu, Y.; Tu, S. Multi-scale analysis of rural housing land transition under China’s rapid urbanization: The case of Bohai Rim. Habitat Int. 2015, 48, 227–238. [Google Scholar] [CrossRef]
- Esbah, H. Land Use Trends During Rapid Urbanization of the City of Aydin, Turkey. Environ. Manag. 2007, 39, 443–459. [Google Scholar] [CrossRef]
- Wu, Y.; Luo, J.; Zhang, X.; Skitmore, M. Urban growth dilemmas and solutions in China: Looking forward to 2030. Habitat Int. 2016, 56, 42–51. [Google Scholar] [CrossRef]
- Tian, B.; Wu, W.; Yang, Z.; Zhou, Y. Drivers, trends, and potential impacts of long-term coastal reclamation in China from 1985 to 2010. Estuar. Coast. Shelf Sci. 2016, 170, 83–90. [Google Scholar] [CrossRef]
- McKinstry, M.C.; Anderson, S.H. Evaluation of wetland creation and waterfowl use in conjunction with abandoned mine lands in northeast Wyoming. Wetlands 1994, 14, 284–292. [Google Scholar] [CrossRef]
- Chen, S.; Chen, L.; Liu, Q.; Li, X.; Tan, Q. Remote sensing and GIS-based integrated analysis of coastal changes and their environmental impacts in Lingding Bay, Pearl River Estuary, South China. Ocean Coast. Manag. 2005, 48, 65–83. [Google Scholar] [CrossRef]
- Chen, L.; Ren, C.; Zhang, B.; Li, L.; Wang, Z.; Song, K. Spatiotemporal Dynamics of Coastal Wetlands and Reclamation in the Yangtze Estuary during Past 50 Years (1960s–2015). Chin. Geogr. Sci. 2018, 28, 386–399. [Google Scholar] [CrossRef]
- Talke, S.A.; Jay, D.A. Changing Tides: The Role of Natural and Anthropogenic Factors. Annu. Rev. Mar. Sci. 2020, 12, 121–151. [Google Scholar] [CrossRef]
- Shen, Y.; Jia, H.; Li, C.; Tang, J. Numerical simulation of saltwater intrusion and storm surge effects of reclamation in Pearl River Estuary, China. Appl. Ocean Res. 2018, 79, 101–112. [Google Scholar] [CrossRef]
- Pan, Z.; Liu, H. Impact of human projects on storm surge in the Yangtze Estuary. Ocean Eng. 2020, 196, 106792. [Google Scholar] [CrossRef]
- Lee, C.; Hwang, S.; Do, K.; Son, S. Increasing flood risk due to river runoff in the estuarine area during a storm landfall. Estuar. Coast. Shelf Sci. 2019, 221, 104–118. [Google Scholar] [CrossRef]
- Van Wesenbeeck, B.K.; Balke, T.; Van Eijk, P.; Tonneijck, F.; Siry, H.Y.; Rudianto, M.E.; Winterwerp, J.C. Aquaculture induced erosion of tropical coastlines throws coastal communities back into poverty. Ocean Coast. Manag. 2015, 116, 466–469. [Google Scholar] [CrossRef]
- Parvin, S.; Sakib, M.H.; Islam, M.L.; Brown, C.L.; Islam, M.S.; Mahmud, Y. Coastal aquaculture in Bangladesh: Sundarbans’s role against climate change. Mar. Pollut. Bull. 2023, 194, 115431. [Google Scholar] [CrossRef]
- Isla, F.I. From touristic villages to coastal cities: The costs of the big step in Buenos Aires. Ocean Coast. Manag. 2013, 77, 59–65. [Google Scholar] [CrossRef]
- Greco, M.; Martino, G.; Guariglia, A.; Trivigno, L.; Sansanelli, V.; Losurdo, A.; Mussuto, G. Integrated SDSS for Environmental Risk Analysis in Sustainable Coastal Area Planning. In Computational Science and Its Applications—ICCSA 2018; Gervasi, O., Murgante, B., Misra, S., Stankova, E., Torre, C.M., Rocha, A.M.A.C., Taniar, D., Apduhan, B.O., Tarantino, E., Ryu, Y., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 671–684. [Google Scholar]
- Kim, T.; Lee, W.-D. Review on Applications of Machine Learning in Coastal and Ocean Engineering. J. Ocean Eng. Technol. 2022, 36, 194–210. [Google Scholar] [CrossRef]
- Kang, M.; Tian, Y.; Zhang, H.; Wan, C. Effect of hydrodynamic conditions on the water quality in urban landscape water. Water Supply 2022, 22, 309–320. [Google Scholar] [CrossRef]
- Lee, M.E.; Seo, I.W. Analysis of pollutant transport in the Han River with tidal current using a 2D finite element model. J. Hydro-Environ. Res. 2007, 1, 30–42. [Google Scholar] [CrossRef]
- Li, D.; Wang, J.; Dong, Z.; Lai, X. Research and Application of 1-D and 2-D Coupling Water Environment Numerical Model for Taihu Basin. In Proceedings of the 2009 3rd International Conference on Bioinformatics and Biomedical Engineering (iCBBE), Beijing, China, 11–13 June 2009; pp. 1–4. [Google Scholar]
- Krapesch, G.; Tritthart, M.; Habersack, H. A model-based analysis of meander restoration. River Res. Appl. 2009, 25, 593–606. [Google Scholar] [CrossRef]
- Chen, K.; Chen, H.; Zhou, C.; Huang, Y.; Qi, X.; Shen, R.; Liu, F.; Zuo, M.; Zou, X.; Wang, J.; et al. Comparative analysis of surface water quality prediction performance and identification of key water parameters using different machine learning models based on big data. Water Res. 2020, 171, 115454. [Google Scholar] [CrossRef]
- Maier, H.R.; Dandy, G.C. Modelling cyanobacteria (blue-green algae) in the River Murray using artificial neural networks. Math. Comput. Simul. 1997, 43, 377–386. [Google Scholar] [CrossRef]
- Loewenthal, R.E.; Morrison, I.; Wentzel, M.C. Control of corrosion and aggression in drinking water systems. Water Sci. Technol. 2004, 49, 9–18. [Google Scholar] [CrossRef]
- McKay, P.; Blain, C.A. An automated approach to extracting river bank locations from aerial imagery using image texture: Automated river bank extraction from imagery. River Res. Appl. 2014, 30, 1048–1055. [Google Scholar] [CrossRef]
- Tang, X.; Huang, M. Simulation of chlorophyll-a concentration in Donghu Lake based on GA-ELM and multiple water quality indexes. In Proceedings of the International Conference on Algorithms, High Performance Computing, and Artificial Intelligence (AHPCAI 2021), Sanya, China, 21 December 2021; p. 26. [Google Scholar]
- Su, H.; Zou, R.; Zhang, X.; Liang, Z.; Ye, R.; Liu, Y. Exploring the type and strength of nonlinearity in water quality responses to nutrient loading reduction in shallow eutrophic water bodies: Insights from a large number of numerical simulations. J. Environ. Manag. 2022, 313, 115000. [Google Scholar] [CrossRef]
- Chen, J.; Chen, S.; Fu, R.; Li, D.; Jiang, H.; Wang, C.; Peng, Y.; Jia, K.; Hicks, B.J. Remote Sensing Big Data for Water Environment Monitoring: Current Status, Challenges, and Future Prospects. Earth’s Future 2022, 10, e2021EF002289. [Google Scholar] [CrossRef]
- Latif, S.D.; Alyaa Binti Hazrin, N.; Hoon Koo, C.; Lin Ng, J.; Chaplot, B.; Feng Huang, Y.; El-Shafie, A.; Ahmed, A.N. Assessing rainfall prediction models: Exploring the advantages of machine learning and remote sensing approaches. Alex. Eng. J. 2023, 82, 16–25. [Google Scholar] [CrossRef]
- Holloway, J.; Mengersen, K. Statistical Machine Learning Methods and Remote Sensing for Sustainable Development Goals: A Review. Remote Sens. 2018, 10, 1365. [Google Scholar] [CrossRef]
- Cherukuru, N.; Martin, P.; Sanwlani, N.; Mujahid, A.; Müller, M. A Semi-Analytical Optical Remote Sensing Model to Estimate Suspended Sediment and Dissolved Organic Carbon in Tropical Coastal Waters Influenced by Peatland-Draining River Discharges off Sarawak, Borneo. Remote Sens. 2020, 13, 99. [Google Scholar] [CrossRef]
- Qiu, J.; Sun, Y. A Research on Machine Learning Methods for Big Data Processing. In Proceedings of the 4th International Conference on Information Technology and Management Innovation, Shenzhen, China, 15 October 2015. [Google Scholar]
- Mogha, G.; Ahlawat, K.; Singh, A.P. Performance Analysis of Machine Learning Techniques on Big Data Using Apache Spark. In Data Science and Analytics; Panda, B., Sharma, S., Roy, N.R., Eds.; Springer: Singapore, 2018; pp. 17–26. [Google Scholar]
- Koelmans, A.A.; Mohamed Nor, N.H.; Hermsen, E.; Kooi, M.; Mintenig, S.M.; De France, J. Microplastics in freshwaters and drinking water: Critical review and assessment of data quality. Water Res. 2019, 155, 410–422. [Google Scholar] [CrossRef]
- Moroni, D.; Pieri, G.; Salvetti, O.; Tampucci, M.; Domenici, C.; Tonacci, A. Sensorized buoy for oil spill early detection. Methods Oceanogr. 2016, 17, 221–231. [Google Scholar] [CrossRef]
- Siyang, S.; Kerdcharoen, T. Development of unmanned surface vehicle for smart water quality inspector. In Proceedings of the 2016 13th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON), Chiang Mai, Thailand, 28 June–1 July 2016; pp. 1–5. [Google Scholar]
- Adhipramana, M.; Mardiati, R.; Mulyana, E. Remotely Operated Vehicle (ROV) Robot for Monitoring Quality of Water Based on IoT. In Proceedings of the 2020 6th International Conference on Wireless and Telematics (ICWT), Yogyakarta, Indonesia, 3–4 September 2020; pp. 1–7. [Google Scholar]
- Balbuena, J.; Quiroz, D.; Song, R.; Bucknall, R.; Cuellar, F. Design and Implementation of an USV for Large Bodies of Fresh Waters at the Highlands of Peru. In Proceedings of the OCEANS 2017—Anchorage Conference, Anchorage, AK, USA, 18–21 September 2017. [Google Scholar]
- Grbčić, L.; Družeta, S.; Mauša, G.; Lipić, T.; Lušić, D.V.; Alvir, M.; Lučin, I.; Sikirica, A.; Davidović, D.; Travaš, V.; et al. Coastal water quality prediction based on machine learning with feature interpretation and spatio-temporal analysis. Environ. Model. Softw. 2022, 155, 105458. [Google Scholar] [CrossRef]
- Lin, H.; Li, S.; Xing, J.; Yang, J.; Wang, Q.; Dong, L.; Zeng, X. Fusing Retrievals of High Resolution Aerosol Optical Depth from Landsat-8 and Sentinel-2 Observations over Urban Areas. Remote Sens. 2021, 13, 4140. [Google Scholar] [CrossRef]
- Cui, T.; Li, F.; Wei, Y.; Yang, X.; Xiao, Y.; Chen, X.; Liu, R.; Ma, Y.; Zhang, J. Super-resolution optical mapping of floating macroalgae from geostationary orbit. Appl. Opt. 2020, 59, C70–C77. [Google Scholar] [CrossRef]
- Lamote, M.; Darko, E.; Schoefs, B.; Lemoine, Y. Assembly of the photosynthetic apparatus in embryos from Fucus serratus L. Photosynth. Res. 2003, 77, 45–52. [Google Scholar] [CrossRef] [PubMed]
- Osińska-Skotak, K. Influence of atmospheric correction on determination of lake water quality parameters based on CHRIS/PROBA images. In Proceedings of the 25th EARSeL Symposium, Porto, Portugal, 6 June–11 June 2005. [Google Scholar]
- Hsu, P.-H. Using SPOT Images for Monitoring Water Quality of Reservoir. Sens. Mater. 2016, 1, 455–462. [Google Scholar] [CrossRef]
- LiQin, Q.; Lei, G.; MingXia, H. The Global Availabilities of SeaWiFS, MODIS and Merged Chlorophyll-a Data. J. Ocean. Univ. China 2006, 36, 321–326. [Google Scholar]
- Pahlevan, N.; Sarkar, S.; Franz, B.A.; Balasubramanian, S.V.; He, J. Sentinel-2 MultiSpectral Instrument (MSI) data processing for aquatic science applications: Demonstrations and validations. Remote Sens. Environ. 2017, 201, 47–56. [Google Scholar] [CrossRef]
- Sathyendranath, S.; Brewin, R.J.W.; Brockmann, C.; Brotas, V.; Calton, B.; Chuprin, A.; Cipollini, P.; Couto, A.B.; Dingle, J.; Doerffer, R.; et al. An Ocean-Colour Time Series for Use in Climate Studies: The Experience of the Ocean-Colour Climate Change Initiative (OC-CCI). Sensors 2019, 19, 4285. [Google Scholar] [CrossRef]
- Seegers, B.N.; Stumpf, R.P.; Schaeffer, B.A.; Loftin, K.A.; Werdell, P.J. Performance metrics for the assessment of satellite data products: An ocean color case study. Opt. Express 2018, 26, 7404–7422. [Google Scholar] [CrossRef]
- O’Reilly, J.E.; Werdell, P.J. Chlorophyll algorithms for ocean color sensors—OC4, OC5 & OC6. Remote Sens. Environ. 2019, 229, 32–47. [Google Scholar] [CrossRef]
- Groom, S.; Sathyendranath, S.; Ban, Y.; Bernard, S.; Brewin, R.; Brotas, V.; Brockmann, C.; Chauhan, P.; Choi, J.K.; Chuprin, A.; et al. Satellite Ocean Colour: Current Status and Future Perspective. Front. Mar. Sci. 2019, 6, 485. [Google Scholar] [CrossRef]
- Blondeau-Patissier, D.; Gower, J.F.R.; Dekker, A.G.; Phinn, S.R.; Brando, V.E. A review of ocean color remote sensing methods and statistical techniques for the detection, mapping and analysis of phytoplankton blooms in coastal and open oceans. Prog. Oceanogr. 2014, 123, 123–144. [Google Scholar] [CrossRef]
- Cao, Z.; Ma, R.; Duan, H.; Pahlevan, N.; Melack, J.; Shen, M.; Xue, K. A machine learning approach to estimate chlorophyll-a from Landsat-8 measurements in inland lakes. Remote Sens. Environ. 2020, 248, 111974. [Google Scholar] [CrossRef]
- Pardeshi, S.; Gandre, P.; Poojari, N.; Pansare, S.; Alte, B. Water Quality Analysis from Satellite Images. In Proceedings of the 2023 International Conference on Data Science and Network Security (ICDSNS), Tiptur, India, 28–29 July 2023; pp. 1–6. [Google Scholar]
- Matthews, M.W. A current review of empirical procedures of remote sensing in inland and near-coastal transitional waters. Int. J. Remote Sens. 2011, 32, 6855–6899. [Google Scholar] [CrossRef]
- Odermatt, D.; Gitelson, A.; Brando, V.E.; Schaepman, M. Review of constituent retrieval in optically deep and complex waters from satellite imagery. Remote Sens. Environ. 2012, 118, 116–126. [Google Scholar] [CrossRef]
- Werdell, P.J.; McKinna, L.I.W.; Boss, E.; Ackleson, S.G.; Craig, S.E.; Gregg, W.W.; Lee, Z.; Maritorena, S.; Roesler, C.S.; Rousseaux, C.S.; et al. An overview of approaches and challenges for retrieving marine inherent optical properties from ocean color remote sensing. Prog. Oceanogr. 2018, 160, 186–212. [Google Scholar] [CrossRef]
- Garver, S.A.; Siegel, D.A. Inherent optical property inversion of ocean color spectra and its biogeochemical interpretation: 1. Time series from the Sargasso Sea. J. Geophys. Res. Ocean. 1997, 102, 18607–18625. [Google Scholar] [CrossRef]
- Werdell, P.J.; Franz, B.A.; Bailey, S.W.; Feldman, G.C.; Boss, E.; Brando, V.E.; Dowell, M.; Hirata, T.; Lavender, S.J.; Lee, Z.; et al. Generalized ocean color inversion model for retrieving marine inherent optical properties. Appl. Opt. 2013, 52, 2019–2037. [Google Scholar] [CrossRef]
- Garg, V.; Aggarwal, S.P.; Chauhan, P. Changes in turbidity along Ganga River using Sentinel-2 satellite data during lockdown associated with COVID-19. Geomat. Nat. Hazards Risk 2020, 11, 1175–1195. [Google Scholar] [CrossRef]
- Zhao, Y.; Yu, T.; Hu, B.; Zhang, Z.; Liu, Y.; Liu, X.; Liu, H.; Liu, J.; Wang, X.; Song, S. Retrieval of Water Quality Parameters Based on Near-Surface Remote Sensing and Machine Learning Algorithm. Remote Sens. 2022, 14, 5305. [Google Scholar] [CrossRef]
- Su, Y.-F.; Liou, J.-J.; Hou, J.-C.; Hung, W.-C.; Hsu, S.-M.; Lien, Y.-T.; Su, M.D.; Cheng, K.S.; Wang, Y.-F. A Multivariate Model for Coastal Water Quality Mapping Using Satellite Remote Sensing Images. Sensors 2008, 8, 6321–6339. [Google Scholar] [CrossRef]
- Medina-López, E.; Navarro, G.; Santos-Echeandía, J.; Bernárdez, P.; Caballero, I. Machine Learning for Detection of Macroalgal Blooms in the Mar Menor Coastal Lagoon Using Sentinel-2. Remote Sens. 2023, 15, 1208. [Google Scholar] [CrossRef]
- Li, H.; Zhang, G.; Zhu, Y.; Kaufmann, H.; Xu, G. Inversion and Driving Force Analysis of Nutrient Concentrations in the Ecosystem of the Shenzhen-Hong Kong Bay Area. Remote Sens. 2022, 14, 3694. [Google Scholar] [CrossRef]
- Deng, X. Influence of water body area on water quality in the southern Jiangsu Plain, eastern China. J. Clean. Prod. 2020, 254, 120136. [Google Scholar] [CrossRef]
- Yin, Z.; Duan, R.; Li, P.; Li, W. Water quality characteristics and health risk assessment of main water supply reservoirs in Taizhou City, East China. Hum. Ecol. Risk Assess. Int. J. 2021, 27, 2142–2160. [Google Scholar] [CrossRef]
- Liu, C.; Zhang, F.; Wang, X.; Chan, N.W.; Rahman, H.A.; Yang, S.; Tan, M.L. Assessing the factors influencing water quality using environment water quality index and partial least squares structural equation model in the Ebinur Lake Watershed, Xinjiang, China. Environ. Sci. Pollut. Res. 2022, 29, 29033–29048. [Google Scholar] [CrossRef]
- Zhao, Y.; Yang, Q.; Yuan, P. Study on the Influence of Land Use on Water Environment Quality in Riverside Zone Based on GIS. Appl. Sci. 2020, 10, 1262. [Google Scholar] [CrossRef]
- Bian, J.M.; Ma, H.Y.; Sun, X.Q. Analysis on Water Quality Change and Influence Factors in the Yitong River Basin. Appl. Mech. Mater. 2011, 71–78, 2970–2973. [Google Scholar] [CrossRef]
- Shen, W.; Jin, Y.; Cong, P.; Li, G. Dynamic Coupling Model of Water Environment of Urban Water Network in Pearl River Delta Driven by Typhoon Rain Events. Water 2023, 15, 1084. [Google Scholar] [CrossRef]
- Losno, R.; Colin, J.L.; Spokes, L.; Jickells, T.; Schulz, M.; Rebers, A.; Leermakers, M.; Meuleman, C.; Baeyens, W. Non-rain deposition significantly modifies rain samples at a coastal site. Atmos. Environ. 1998, 32, 3445–3455. [Google Scholar] [CrossRef]
- Li, J.; Ma, M.; Li, Y.; Zhang, Z. Influence analysis of different design conditions on urban runoff and nonpoint source pollution. Water Environ. Res. 2019, 91, 1546–1557. [Google Scholar] [CrossRef]
- Li, L.; Rong, S.; Wang, R.; Yu, S. Recent advances in artificial intelligence and machine learning for nonlinear relationship analysis and process control in drinking water treatment: A review. Chem. Eng. J. 2021, 405, 126673. [Google Scholar] [CrossRef]
- Ahmed, A.N.; Othman, F.B.; Afan, H.A.; Ibrahim, R.K.; Fai, C.M.; Hossain, M.S.; Ehteram, M.; Elshafie, A. Machine learning methods for better water quality prediction. J. Hydrol. 2019, 578, 124084. [Google Scholar] [CrossRef]
- Ibrahim, H.; Yaseen, Z.M.; Scholz, M.; Ali, M.; Gad, M.; Elsayed, S.; Khadr, M.; Hussein, H.; Ibrahim, H.H.; Eid, M.H.; et al. Evaluation and Prediction of Groundwater Quality for Irrigation Using an Integrated Water Quality Indices, Machine Learning Models and GIS Approaches: A Representative Case Study. Water 2023, 15, 694. [Google Scholar] [CrossRef]
- Hanoon, M.S.; Ahmed, A.N.; Fai, C.M.; Birima, A.H.; Razzaq, A.; Sherif, M.; Sefelnasr, A.; El-Shafie, A. Application of Artificial Intelligence Models for Modeling Water Quality in Groundwater: Comprehensive Review, Evaluation and Future Trends. Water Air Soil Pollut. 2021, 232, 411. [Google Scholar] [CrossRef]
- Allawi, M.F.; Hussain, I.R.; Salman, M.I.; El-Shafie, A. Monthly inflow forecasting utilizing advanced artificial intelligence methods: A case study of Haditha Dam in Iraq. Stoch. Environ. Res. Risk Assess. 2021, 35, 2391–2410. [Google Scholar] [CrossRef]
- Tikhamarine, Y.; Souag-Gamane, D.; Ahmed, A.N.; Sammen, S.S.; Kisi, O.; Huang, Y.F.; El-Shafie, A. Rainfall-runoff modelling using improved machine learning methods: Harris hawks optimizer vs. particle swarm optimization. J. Hydrol. 2020, 589, 125133. [Google Scholar] [CrossRef]
- Kumar, L.; Afzal, M.S.; Ahmad, A. Prediction of water turbidity in a marine environment using machine learning: A case study of Hong Kong. Reg. Stud. Mar. Sci. 2022, 52, 102260. [Google Scholar] [CrossRef]
- Ma, J.; Ding, Y.; Cheng, J.C.P.; Jiang, F.; Xu, Z. Soft detection of 5-day BOD with sparse matrix in city harbor water using deep learning techniques. Water Res. 2020, 170, 115350. [Google Scholar] [CrossRef]
- Vörös, L.; Padisák, J. Phytoplankton biomass and chlorophyll-a in some shallow lakes in central Europe. Hydrobiologia 1991, 215, 111–119. [Google Scholar] [CrossRef]
- Lionard, M.; Muylaert, K.; Tackx, M.; Vyverman, W. Evaluation of the performance of HPLC–CHEMTAX analysis for determining phytoplankton biomass and composition in a turbid estuary (Schelde, Belgium). Estuar. Coast. Shelf Sci. 2008, 76, 809–817. [Google Scholar] [CrossRef]
- Brito, A.C.; Newton, A.; Tett, P.; Fernandes, T.F. Changes in the yield of microphytobenthic chlorophyll from nutrients: Considering denitrification. Ecol. Indic. 2012, 19, 226–230. [Google Scholar] [CrossRef]
- Kim, K.B.; Jung, M.-K.; Tsang, Y.F.; Kwon, H.-H. Stochastic modeling of chlorophyll-a for probabilistic assessment and monitoring of algae blooms in the Lower Nakdong River, South Korea. J. Hazard. Mater. 2020, 400, 123066. [Google Scholar] [CrossRef] [PubMed]
- Shen, J.; Qin, Q.; Wang, Y.; Sisson, M. A data-driven modeling approach for simulating algal blooms in the tidal freshwater of James River in response to riverine nutrient loading. Ecol. Model. 2019, 398, 44–54. [Google Scholar] [CrossRef]
- Yu, X.; Shen, J.; Du, J. A Machine-Learning-Based Model for Water Quality in Coastal Waters, Taking Dissolved Oxygen and Hypoxia in Chesapeake Bay as an Example. Water Resour. Res. 2020, 56, e2020WR027227. [Google Scholar] [CrossRef]
- Uddin, M.G.; Nash, S.; Rahman, A.; Dabrowski, T.; Olbert, A.I. Data-driven modelling for assessing trophic status in marine ecosystems using machine learning approaches. Environ. Res. 2023, 242, 117755. [Google Scholar] [CrossRef] [PubMed]
- Yu, X.; Shen, J.; Zheng, G.; Du, J. Chlorophyll-a in Chesapeake Bay based on VIIRS satellite data: Spatiotemporal variability and prediction with machine learning. Ocean Model. 2022, 180, 102119. [Google Scholar] [CrossRef]
- Kwon, Y.S.; Baek, S.H.; Lim, Y.K.; Pyo, J.; Ligaray, M.; Park, Y.; Cho, K.H. Monitoring Coastal Chlorophyll-a Concentrations in Coastal Areas Using Machine Learning Models. Water 2018, 10, 1020. [Google Scholar] [CrossRef]
- Yao, H.; Huang, Y.; Wei, Y.; Zhong, W.; Wen, K. Retrieval of Chlorophyll-a Concentrations in the Coastal Waters of the Beibu Gulf in Guangxi Using a Gradient-Boosting Decision Tree Model. Appl. Sci. 2021, 11, 7855. [Google Scholar] [CrossRef]
- Kim, H.-R.; Soh, H.Y.; Kwak, M.-T.; Han, S.-H. Machine Learning and Multiple Imputation Approach to Predict Chlorophyll-a Concentration in the Coastal Zone of Korea. Water 2022, 14, 1862. [Google Scholar] [CrossRef]
- Gómez, D.; Salvador, P.; Sanz, J.; Casanova, J.L. A new approach to monitor water quality in the Menor sea (Spain) using satellite data and machine learning methods. Environ. Pollut. 2021, 286, 117489. [Google Scholar] [CrossRef]
- Mohebzadeh, H.; Lee, T. Spatial downscaling of MODIS Chlorophyll-a with machine learning techniques over the west coast of the Yellow Sea in South Korea. J. Oceanogr. 2021, 77, 103–122. [Google Scholar] [CrossRef]
- Lin, J.; Liu, Q.; Song, Y.; Liu, J.; Yin, Y.; Hall, N.S. Temporal Prediction of Coastal Water Quality Based on Environmental Factors with Machine Learning. J. Mar. Sci. Eng. 2023, 11, 1608. [Google Scholar] [CrossRef]
- Niu, J.; Feng, Z.; He, M.; Xie, M.; Lv, Y.; Zhang, J.; Sun, L.; Liu, Q.; Hu, B.X. Incorporating marine particulate carbon into machine learning for accurate estimation of coastal chlorophyll-a. Mar. Pollut. Bull. 2023, 192, 115089. [Google Scholar] [CrossRef]
- Deng, T.; Chau, K.-W.; Duan, H.-F. Machine learning based marine water quality prediction for coastal hydro-environment management. J. Environ. Manag. 2021, 284, 112051. [Google Scholar] [CrossRef]
- Su, H.; Lu, X.; Chen, Z.; Zhang, H.; Lu, W.; Wu, W. Estimating Coastal Chlorophyll-A Concentration from Time-Series OLCI Data Based on Machine Learning. Remote Sens. 2021, 13, 576. [Google Scholar] [CrossRef]
- Pahlevan, N.; Smith, B.; Schalles, J.; Binding, C.; Cao, Z.; Ma, R.; Alikas, K.; Kangro, K.; Gurlin, D.; Hà, N.; et al. Seamless retrievals of chlorophyll-a from Sentinel-2 (MSI) and Sentinel-3 (OLCI) in inland and coastal waters: A machine-learning approach. Remote Sens. Environ. 2020, 240, 111604. [Google Scholar] [CrossRef]
- Woody, C.; Shih, E.; Miller, J.; Royer, T.; Atkinson, L.P.; Moody, R.S. Measurements of Salinity in the Coastal Ocean: A Review of Requirements and Technologies. Mar. Technol. Soc. J. 2000, 34, 26–33. [Google Scholar] [CrossRef]
- Luo, L.; Li, S.; Wang, D. Hypoxia in the Pearl River Estuary, the South China Sea, in July 1999. Aquat. Ecosyst. Health Manag. 2009, 12, 418–428. [Google Scholar] [CrossRef]
- He, H.; Chen, Y.; Li, X.; Cheng, Y.; Yang, C.; Zeng, G. Influence of salinity on microorganisms in activated sludge processes: A review. Int. Biodeterior. Biodegrad. 2017, 119, 520–527. [Google Scholar] [CrossRef]
- Johnson, G.C.; Schmidtko, S.; Lyman, J.M. Relative contributions of temperature and salinity to seasonal mixed layer density changes and horizontal density gradients. J. Geophys. Res. Oceans 2012, 117, 2011JC007651. [Google Scholar] [CrossRef]
- Schmidt, H.; Seitz, S.; Hassel, E.; Wolf, H. The density–salinity relation of standard seawater. Ocean Sci. 2018, 14, 15–40. [Google Scholar] [CrossRef]
- Guillou, N.; Chapalain, G.; Petton, S. Predicting sea surface salinity in a tidal estuary with machine learning. Oceanologia 2023, 65, 318–332. [Google Scholar] [CrossRef]
- Chawla, P.; Cao, X.; Fu, Y.; Hu, C.; Wang, M.; Wang, S.; Gao, J.Z. Water quality prediction of salton sea using machine learning and big data techniques. Int. J. Environ. Anal. Chem. 2023, 103, 6835–6858. [Google Scholar] [CrossRef]
- Lal, A.; Datta, B. Performance Evaluation of Homogeneous and Heterogeneous Ensemble Models for Groundwater Salinity Predictions: A Regional-Scale Comparison Study. Water Air Soil Pollut. 2020, 231, 320. [Google Scholar] [CrossRef]
- Zaitsev, N.K.; Dvorkin, V.I.; Melnikov, P.V.; Kozhukhova, A.E. A Dissolved Oxygen Analyzer with an Optical Sensor. J. Anal. Chem. 2018, 73, 102–108. [Google Scholar] [CrossRef]
- Ziyad Sami, B.F.; Latif, S.D.; Ahmed, A.N.; Chow, M.F.; Murti, M.A.; Suhendi, A.; Ziyad Sami, B.H.; Wong, J.K.; Birima, A.H.; El-Shafie, A. Machine learning algorithm as a sustainable tool for dissolved oxygen prediction: A case study of Feitsui Reservoir, Taiwan. Sci. Rep. 2022, 12, 3649. [Google Scholar] [CrossRef]
- Chan, F.; Barth, J.A.; Lubchenco, J.; Kirincich, A.; Weeks, H.; Peterson, W.T.; Menge, B.A. Emergence of Anoxia in the California Current Large Marine Ecosystem. Science 2008, 319, 920. [Google Scholar] [CrossRef]
- Grantham, B.A.; Chan, F.; Nielsen, K.J.; Fox, D.S.; Barth, J.A.; Huyer, A.; Lubchenco, J.; Menge, B.A. Upwelling-driven nearshore hypoxia signals ecosystem and oceanographic changes in the northeast Pacific. Nature 2004, 429, 749–754. [Google Scholar] [CrossRef] [PubMed]
- Salas, E.A.L.; Kumaran, S.S.; Partee, E.B.; Willis, L.P.; Mitchell, K. Potential of mapping dissolved oxygen in the Little Miami River using Sentinel-2 images and machine learning algorithms. Remote Sens. Appl. Soc. Environ. 2022, 26, 100759. [Google Scholar] [CrossRef]
- Valera, M.; Walter, R.K.; Bailey, B.A.; Castillo, J.E. Machine Learning Based Predictions of Dissolved Oxygen in a Small Coastal Embayment. J. Mar. Sci. Eng. 2020, 8, 1007. [Google Scholar] [CrossRef]
- Park, S.; Kim, K.; Hibino, T.; Sakai, Y.; Furukawa, T.; Kim, K. An Antifouling Redox Sensor with a Flexible Carbon Fiber Electrode for Machine Learning-Based Dissolved Oxygen Prediction in Severely Eutrophic Waters. Water 2023, 15, 2467. [Google Scholar] [CrossRef]
- Kim, Y.H.; Im, J.; Ha, H.K.; Choi, J.-K.; Ha, S. Machine learning approaches to coastal water quality monitoring using GOCI satellite data. GIScience Remote Sens. 2014, 51, 158–174. [Google Scholar] [CrossRef]
- Tian, S.; Guo, H.; Xu, W.; Zhu, X.; Wang, B.; Zeng, Q.; Mai, Y.; Huang, J.J. Remote sensing retrieval of inland water quality parameters using Sentinel-2 and multiple machine learning algorithms. Environ. Sci. Pollut. Res. 2022, 30, 18617–18630. [Google Scholar] [CrossRef]
- Jimeno-Sáez, P.; Senent-Aparicio, J.; Cecilia, J.M.; Pérez-Sánchez, J. Using Machine-Learning Algorithms for Eutrophication Modeling: Case Study of Mar Menor Lagoon (Spain). Int. J. Environ. Res. Public Health 2020, 17, 1189. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.; Guo, H.; Huang, J.J.; Tian, S.; Xu, W.; Mai, Y. An ensemble machine learning model for water quality estimation in coastal area based on remote sensing imagery. J. Environ. Manag. 2022, 323, 116187. [Google Scholar] [CrossRef] [PubMed]
- Quang, N.H.; Dinh, N.T.; Dien, N.T.; Son, L.T. Calibration of Sentinel-2 Surface Reflectance for Water Quality Modelling in Binh Dinh’s Coastal Zone of Vietnam. Sustainability 2023, 15, 1410. [Google Scholar] [CrossRef]
- Chen, S.; Zhang, Z.; Lin, J.; Huang, J. Machine learning-based estimation of riverine nutrient concentrations and associated uncertainties caused by sampling frequencies. PLoS ONE 2022, 17, e0271458. [Google Scholar] [CrossRef] [PubMed]
- Radu, V.-M.; Ionescu, P.; Deak, G.; Diacu, E.; Ivanov, A.A.; Zamfir, S.; Marcus, M.-I. Overall assessment of surface water quality in the Lower Danube River. Environ. Monit. Assess. 2020, 192, 135. [Google Scholar] [CrossRef]
- Said, A.; Stevens, D.K.; Sehlke, G. An Innovative Index for Evaluating Water Quality in Streams. Environ. Manag. 2004, 34, 406–414. [Google Scholar] [CrossRef] [PubMed]
- Qu, X.; Chen, Y.; Liu, H.; Xia, W.; Lu, Y.; Gang, D.-D.; Lin, L.-S. A holistic assessment of water quality condition and spatiotemporal patterns in impounded lakes along the eastern route of China’s South-to-North water diversion project. Water Res. 2020, 185, 116275. [Google Scholar] [CrossRef]
- Uddin, M.G.; Nash, S.; Rahman, A.; Olbert, A.I. A sophisticated model for rating water quality. Sci. Total Environ. 2023, 868, 161614. [Google Scholar] [CrossRef]
- Akhtar, N.; Ishak, M.I.S.; Ahmad, M.I.; Umar, K.; Md Yusuff, M.S.; Anees, M.T.; Qadir, A.; Ali Almanasir, Y.K. Modification of the Water Quality Index (WQI) Process for Simple Calculation Using the Multi-Criteria Decision-Making (MCDM) Method: A Review. Water 2021, 13, 905. [Google Scholar] [CrossRef]
- Uddin, M.G.; Nash, S.; Rahman, A.; Olbert, A.I. A novel approach for estimating and predicting uncertainty in water quality index model using machine learning approaches. Water Res. 2023, 229, 119422. [Google Scholar] [CrossRef]
- Uddin, M.G.; Nash, S.; Rahman, A.; Olbert, A.I. Assessing optimization techniques for improving water quality model. J. Clean. Prod. 2023, 385, 135671. [Google Scholar] [CrossRef]
- Pati, S.; Dash, M.K.; Mukherjee, C.K.; Dash, B.; Pokhrel, S. Assessment of water quality using multivariate statistical techniques in the coastal region of Visakhapatnam, India. Environ. Monit. Assess. 2014, 186, 6385–6402. [Google Scholar] [CrossRef]
- Gupta, A.K.; Gupta, S.K.; Patil, R.S. A Comparison of Water Quality Indices for Coastal Water. J. Environ. Sci. Health Part A 2003, 38, 2711–2725. [Google Scholar] [CrossRef] [PubMed]
- Uddin, M.G.; Nash, S.; Mahammad Diganta, M.T.; Rahman, A.; Olbert, A.I. Robust machine learning algorithms for predicting coastal water quality index. J. Environ. Manag. 2022, 321, 115923. [Google Scholar] [CrossRef] [PubMed]
- Uddin, M.G.; Nash, S.; Rahman, A.; Olbert, A.I. A comprehensive method for improvement of water quality index (WQI) models for coastal water quality assessment. Water Res. 2022, 219, 118532. [Google Scholar] [CrossRef] [PubMed]
- Rezaie-Balf, M.; Attar, N.F.; Mohammadzadeh, A.; Murti, M.A.; Ahmed, A.N.; Fai, C.M.; Nabipour, N.; Alaghmand, S.; El-Shafie, A. Physicochemical parameters data assimilation for efficient improvement of water quality index prediction: Comparative assessment of a noise suppression hybridization approach. J. Clean. Prod. 2020, 271, 122576. [Google Scholar] [CrossRef]
- Uddin, M.G.; Nash, S.; Olbert, A.I. A review of water quality index models and their use for assessing surface water quality. Ecol. Indic. 2021, 122, 107218. [Google Scholar] [CrossRef]
- Sutadian, A.D.; Muttil, N.; Yilmaz, A.G.; Perera, B.J.C. Development of river water quality indices—A review. Environ. Monit. Assess. 2016, 188, 58. [Google Scholar] [CrossRef]
- Babbar, R.; Babbar, S. Predicting river water quality index using data mining techniques. Environ. Earth Sci. 2017, 76, 504. [Google Scholar] [CrossRef]
- Bui, D.T.; Khosravi, K.; Tiefenbacher, J.; Nguyen, H.; Kazakis, N. Improving prediction of water quality indices using novel hybrid machine-learning algorithms. Sci. Total Environ. 2020, 721, 137612. [Google Scholar] [CrossRef]
- Gao, Y.; Qian, H.; Ren, W.; Wang, H.; Liu, F.; Yang, F. Hydrogeochemical characterization and quality assessment of groundwater based on integrated-weight water quality index in a concentrated urban area. J. Clean. Prod. 2020, 260, 121006. [Google Scholar] [CrossRef]
- Kouadri, S.; Elbeltagi, A.; Islam, A.R.M.T.; Kateb, S. Performance of machine learning methods in predicting water quality index based on irregular data set: Application on Illizi region (Algerian southeast). Appl. Water Sci. 2021, 11, 190. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, F.; Ding, J. Evaluation of water quality based on a machine learning algorithm and water quality index for the Ebinur Lake Watershed, China. Sci. Rep. 2017, 7, 12858. [Google Scholar] [CrossRef]
- Ho, J.Y.; Afan, H.A.; El-Shafie, A.H.; Koting, S.B.; Mohd, N.S.; Jaafar, W.Z.B.; Sai, H.L.; Malek, M.A.; Ahmed, A.N.; Mohtar, W.H.M.W.; et al. Towards a time and cost effective approach to water quality index class prediction. J. Hydrol. 2019, 575, 148–165. [Google Scholar] [CrossRef]
- Tanega, M.C.; Fajardo, A.; Limbago, J.S. Analysis of Water Quality for Taal Lake Using Machine Learning Classification Algorithm. In Proceedings of the 2023 20th International Joint Conference on Computer Science and Software Engineering (JCSSE), Phitsanulok, Thailand, 28 June–1 July 2023; pp. 397–402. [Google Scholar]
- Sheikh Khozani, Z.; Iranmehr, M.; Wan Mohtar, W.H.M. Improving Water Quality Index prediction for water resources management plans in Malaysia: Application of machine learning techniques. Geocarto Int. 2022, 37, 10058–10075. [Google Scholar] [CrossRef]
- Liu, G.; Ye, J.; Chen, Y.; Yang, X.; Gu, Y. Analysis of Water Pollution Causes and Control Countermeasures in Liaohe Estuary via Support Vector Machine Particle Swarm Optimization under Deep Learning. Comput. Model. Eng. Sci. 2022, 130, 315–329. [Google Scholar] [CrossRef]
- McKenzie, T.; Dulai, H.; Fuleky, P. Traditional and novel time-series approaches reveal submarine groundwater discharge dynamics under baseline and extreme event conditions. Sci. Rep. 2021, 11, 22570. [Google Scholar] [CrossRef]
- Gündoğdu, S.; Ayat, B.; Aydoğan, B.; Çevik, C.; Karaca, S. Hydrometeorological assessments of the transport of microplastic pellets in the Eastern Mediterranean. Sci. Total Environ. 2022, 823, 153676. [Google Scholar] [CrossRef]
- Patryniak, K.; Collu, M.; Coraddu, A. Rigid body dynamic response of a floating offshore wind turbine to waves: Identification of the instantaneous centre of rotation through analytical and numerical analyses. Renew. Energy 2023, 218, 119378. [Google Scholar] [CrossRef]
- Sanada, Y.; Kim, D.-H.; Sadat-Hosseini, H.; Stern, F.; Hossain, M.A.; Wu, P.-C.; Toda, Y.; Otzen, J.; Simonsen, C.; Abdel-Maksoud, M.; et al. Assessment of EFD and CFD capability for KRISO Container Ship added power in head and oblique waves. Ocean Eng. 2022, 243, 110224. [Google Scholar] [CrossRef]
- Ehteram, M.; Ahmed, A.N.; Latif, S.D.; Huang, Y.F.; Alizamir, M.; Kisi, O.; Mert, C.; El-Shafie, A. Design of a hybrid ANN multi-objective whale algorithm for suspended sediment load prediction. Environ. Sci. Pollut. Res. 2021, 28, 1596–1611. [Google Scholar] [CrossRef] [PubMed]
- Fei, K.; Du, H.; Gao, L. The contribution of typhoon local and remote forcings to storm surge along the Makou-Dahengqin tidal reach of Pearl River Estuary. Sci. Total Environ. 2023, 899, 165592. [Google Scholar] [CrossRef] [PubMed]
- Shamshirband, S.; Mosavi, A.; Rabczuk, T.; Nabipour, N.; Chau, K. Prediction of significant wave height; comparison between nested grid numerical model, and machine learning models of artificial neural networks, extreme learning and support vector machines. Eng. Appl. Comput. Fluid Mech. 2020, 14, 805–817. [Google Scholar] [CrossRef]
- Ayyad, M.; Hajj, M.R.; Marsooli, R. Machine learning-based assessment of storm surge in the New York metropolitan area. Sci. Rep. 2022, 12, 19215. [Google Scholar] [CrossRef] [PubMed]
- Xu, G.; Ji, C.; Xu, Y.; Yu, E.; Cao, Z.; Wu, Q.; Lin, P.; Wang, J. Machine learning in coastal bridge hydrodynamics: A state-of-the-art review. Appl. Ocean Res. 2023, 134, 103511. [Google Scholar] [CrossRef]
- Ali, M.; Prasad, R. Significant wave height forecasting via an extreme learning machine model integrated with improved complete ensemble empirical mode decomposition. Renew. Sustain. Energy Rev. 2019, 104, 281–295. [Google Scholar] [CrossRef]
- Franklin, G.L.; Torres-Freyermuth, A. On the runup parameterisation for reef-lined coasts. Ocean Model. 2022, 169, 101929. [Google Scholar] [CrossRef]
- Ayyad, M.; Hajj, M.R.; Marsooli, R. Climate change impact on hurricane storm surge hazards in New York/New Jersey Coastlines using machine-learning. NPJ Clim. Atmos. Sci. 2023, 6, 88. [Google Scholar] [CrossRef]
- Sampurno, J.; Vallaeys, V.; Ardianto, R.; Hanert, E. Integrated hydrodynamic and machine learning models for compound flooding prediction in a data-scarce estuarine delta. Nonlinear Process. Geophys. 2022, 29, 301–315. [Google Scholar] [CrossRef]
- Huang, P.-C. An effective alternative for predicting coastal floodplain inundation by considering rainfall, storm surge, and downstream topographic characteristics. J. Hydrol. 2022, 607, 127544. [Google Scholar] [CrossRef]
- Simmons, J.A.; Splinter, K.D. A multi-model ensemble approach to coastal storm erosion prediction. Environ. Model. Softw. 2022, 150, 105356. [Google Scholar] [CrossRef]
- Wei, Z.; Davison, A. A convolutional neural network based model to predict nearshore waves and hydrodynamics. Coast. Eng. 2022, 171, 104044. [Google Scholar] [CrossRef]
- Riaz, M.Z.B.; Iqbal, U.; Yang, S.-Q.; Sivakumar, M.; Enever, K.; Khalil, U.; Ji, R.; Miguntanna, N.S. SedimentNet—A 1D-CNN machine learning model for prediction of hydrodynamic forces in rapidly varied flows. Neural Comput. Appl. 2022, 35, 9145–9166. [Google Scholar] [CrossRef]
- Pham, H.V.; Dal Barco, M.K.; Cadau, M.; Harris, R.; Furlan, E.; Torresan, S.; Rubinetti, S.; Zanchettin, D.; Rubino, A.; Kuznetsov, I.; et al. Multi-model chain for climate change scenario analysis to support coastal erosion and water quality risk management for the Metropolitan city of Venice. Sci. Total Environ. 2023, 904, 166310. [Google Scholar] [CrossRef]
- Kim, J.; Park, J. Bayesian structural equation modeling for coastal management: The case of the Saemangeum coast of Korea for water quality improvements. Ocean Coast. Manag. 2017, 136, 120–132. [Google Scholar] [CrossRef]
- Cebe, K.; Balas, L. Water quality modelling in kaş bay. Appl. Math. Model. 2016, 40, 1887–1913. [Google Scholar] [CrossRef]
Author | Algorithms | Predicted Parameters | Best Algorithms |
---|---|---|---|
Yong Hoon Kim et al. [121] | Random Forest, Cubist, Support Vector Regression | Chlorophyll-a and suspended particulate matter indicators | Support Vector Regression |
Shang Tian et al. [122] | Extreme Gradient Boost, Support Vector Regression, Random Forest, and Artificial Neural Network | Chlorophyll-a, dissolved oxygen, and ammonia nitrogen | Extreme Gradient Boost |
Patricia Jimeno-Sáez et al. [123] | Multi-layer Neural Networks and Support Vector Regression | Chlorophyll-a (based on target dataset of nine different water quality parameters) | Support Vector Regression |
Xiaotong Zhu [124] | ensemble machine learning model (Extreme Gradient Boosting, Support vector regression, Multi-Layer Perception, and mixture density networks) | Chlorophyll-a, turbidity, and dissolved oxygen | Ensemble machine learning model |
Nguyen et al. [125] | Decision Tree, Random Forest, Gradient Augmented Regression, and Ada Augmented Regression | Total suspended solids, chlorophyll-a, chemical oxygen demand, and dissolved oxygen | Random Forest |
Shengyue Chen et al. [126] | Random Forest, Support Vector Machine, and Backpropagation Neural Network models | Total phosphorus, total nitrogen, and ammonia nitrogen | Random Forest |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yan, X.; Zhang, T.; Du, W.; Meng, Q.; Xu, X.; Zhao, X. A Comprehensive Review of Machine Learning for Water Quality Prediction over the Past Five Years. J. Mar. Sci. Eng. 2024, 12, 159. https://doi.org/10.3390/jmse12010159
Yan X, Zhang T, Du W, Meng Q, Xu X, Zhao X. A Comprehensive Review of Machine Learning for Water Quality Prediction over the Past Five Years. Journal of Marine Science and Engineering. 2024; 12(1):159. https://doi.org/10.3390/jmse12010159
Chicago/Turabian StyleYan, Xiaohui, Tianqi Zhang, Wenying Du, Qingjia Meng, Xinghan Xu, and Xiang Zhao. 2024. "A Comprehensive Review of Machine Learning for Water Quality Prediction over the Past Five Years" Journal of Marine Science and Engineering 12, no. 1: 159. https://doi.org/10.3390/jmse12010159
APA StyleYan, X., Zhang, T., Du, W., Meng, Q., Xu, X., & Zhao, X. (2024). A Comprehensive Review of Machine Learning for Water Quality Prediction over the Past Five Years. Journal of Marine Science and Engineering, 12(1), 159. https://doi.org/10.3390/jmse12010159