Predictive Model for Hydrostatic Curves of Chine-Type Small Ships Based on Deep Learning
Abstract
:1. Introduction
1.1. Background of Research
1.2. Status of Related Research
2. Ship Stability and Hydrostatic Curve
2.1. Ship Stability Calculation
2.2. Hydrostatic Curve
3. Deep Learning Data Configuration
3.1. Dimensionless Learning Data
3.2. Deep Learning Range
3.3. Deep Learning Feature Data
3.4. Deep Learning Target Data
3.4.1. Mathematical Modeling Using Form Parameters
3.4.2. Volume and KB Data Mathematical Modeling
3.4.3. It Data Mathematical Modeling
3.4.4. Mathematical Model Test Results
3.5. Data Normalization
4. Composition of Deep Learning Model and Test Results
4.1. Composition of Deep Learning Model
4.2. Deep Learning Test Results
4.3. Hydrostatic Data Mathematical Modeling Results
5. Conclusions and Future Work
- Hydrostatic data based on form parameters were converted into a mathematical model, and the overall average MAPE of the mathematical model was 1.04%. The model showed an average alignment of approximately 99% with the raw data.
- Hydrostatic data required for initial stability calculations can be inferred by training a deep learning model using hull form feature data identifiable from general arrangements.
- The deep learning model implemented in this study yielded an MAPE of 2.91% for the KMT (transverse metacentric height) curve, and those of Volume, KB, and It curve were 2.87%, 2.86%, and 2.54%, respectively. The overall average of the hydrostatic curve MAPE was approximately 2.80%, which was 97% consistent with the raw data, confirming satisfactory results.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
1 | Min-Max Scaling: All feature data are transformed to be positioned between [0, 1]. |
2 | KMT: Transverse Metacenter Height (). |
References
- Kim, T. Integrated CAD/CAE System for Planning Hull form Design. Master’s Thesis, Pukyong National University, Busan, Republic of Korea, 2002. [Google Scholar]
- Kim, I.; Go, D.; Park, D. A study on hull form design for small fishing vessels. J. Korean Soc. Mar. Eng. 2017, 41, 316–322. [Google Scholar]
- Jung, U.; Park, J.; Koo, J. Hull form development of small-size coastal leisure boat-resistance performance at high speed ranges. In Proceedings of the Korea Committee for Ocean Resources and Engineering Conference; Korean Society of Ocean Engineers: Busan, Republic of Korea, 2003; pp. 60–63. [Google Scholar]
- KOMSA. Final Report on the Study of Expanding Practical Stability Checks for the Enhancement of Fishing Vessel Safety; MOMAF Report; KOMSA: Seoul, Republic of Korea, 2020. [Google Scholar]
- Oh, K.; Im, N. Analysis of Domestic Fishing vessel stability regulations and research on their criteria amendment for improvement. J. Korean Soc. Mar. Environ. Safety 2022, 28, 290–296. [Google Scholar]
- Kim, J.; Choi, J.; Oh, J. A study on the resistance characteristics of leisure boat according to chine shape. J. Korean Soc. Mar. Environ. Safety 2017, 23, 566–573. [Google Scholar] [CrossRef]
- Lee, G. A study on the estimation method of EHP of Small fishing boats having chine line and optimization technique of hull form parameters having low resistance. J. Korean Soc. Fish. Ocean Technol. 1994, 30, 341–349. [Google Scholar]
- Kim, J. A Study for Stability Criteria of Small Fishing Vessel. Master’s Thesis, Chosun University, Gwangju, Republic of Korea, 1999. [Google Scholar]
- Oh, S.; Kang, J.; Lim, C.; Park, B.; Park, K.; Kim, H.; Shin, S. Inverse design of stern shape using a convolutional neural network. In Proceedings of the Annual Autumn Conference, The Society of Naval Architects of Korea, Gyeongju, Republic of Korea, 24–25 October 2019; pp. 347–351. [Google Scholar]
- Kim, B. Development of a Prediction System for Shell Plate Forming Information Based on Machine Learning. Ph.D. Thesis, Seoul National University, Seoul, Republic of Korea, 2020. [Google Scholar]
- Kim, G.; Ban, I.; Park, B.; Oh, S.; Lim, C.; Shin, S. Estimation of lightweight in the initial design of ships using deep neural networks. J. Korean Inst. Intell. Syst. 2019, 29, 416–423. [Google Scholar]
- Jang, M.; Kim, D.; Zhao, Y. A study on estimating the main dimensions of a small fishing boat using deep learning. J. Korean Soc. Fish. Ocean Technol. 2022, 58, 272–280. [Google Scholar] [CrossRef]
- Chon, H.; Noh, J. Deep learning based distress awareness system for small boat. IEMEK J. Embed. Syst. Appl. 2022, 17, 281–288. [Google Scholar]
- Park, W.; Shin, S.; Kim, S.; Jang, H. Preliminary hull form design using form parameter method and neural networks. J. Ocean Eng. Technol. 1999, 13, 174–181. [Google Scholar]
Feature Data (Unit) | Dimensionless Scaled by | Remarks | |
---|---|---|---|
Offset Data (m) | Length (x) | LT (Upper Deck Length) | At aft end, value is 0 |
Breadth (y) | Bm (Molded Breadth) | At centerline, value is 0 | |
Depth (z) | Dm (Molded Depth) | At baseline, value is 0 | |
Volume (m3) | LT × Bm × Dm (Cubic Number) | - | |
KB (m) | Dm (Molded Depth) | At baseline, value is 0 | |
It (m4) | LT × Bm3/12 (Rectangle I) | - |
Items Statistics | Draft | Volume | ||
---|---|---|---|---|
Min. | Max. | Min. | Max. | |
Mean | 0.4896 | 0.6538 | 0.2899 | 0.4294 |
Standard Deviation | 0.0804 | 0.0898 | 0.0577 | 0.0872 |
Min. Value | 0.2405 | 0.3778 | 0.1517 | 0.2418 |
25th Percentile | 0.4369 | 0.5898 | 0.2515 | 0.3692 |
50th Percentile | 0.4915 | 0.6521 | 0.2870 | 0.4207 |
75th Percentile | 0.5442 | 0.7116 | 0.3273 | 0.4796 |
Max. Value | 0.7950 | 0.9250 | 0.4588 | 0.7835 |
Items Particulars and Offsets | Description | No. |
---|---|---|
Principal Dimension Ratio | L/B, B/D, L/D | 3 |
Principal Particulars | Aft and Fore Sheer Height | 2 |
Upper Deck Offsets | Aft End, Midship, Max. Breadth End Offsets | 3 |
Chine Offsets | Aft End, Midship, Max. Breadth End, Fore End Offsets | 4 |
Box Keel Offsets | Max. Height and Offsets, Aft and Fore End Offsets | 3 |
Hydro. Data Error Statistics | Volume Curve | KB Curve | It Curve | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
MAPE (%) | MAEN (-) | MAER (m3) | R2 (-) | MAPE (%) | MAEN (-) | MAER (m) | R2 (-) | MAPE (%) | MAEN (-) | MAER (m4) | R2 (-) | |
Mean | 1.00 | 0.0022 | 0.1164 | 0.9961 | 1.12 | 0.0024 | 0.0023 | 0.9967 | 1.01 | 0.0048 | 0.3235 | 0.9875 |
Standard Deviation | 0.69 | 0.0011 | 0.0771 | 0.0040 | 0.63 | 0.0011 | 0.0011 | 0.0034 | 1.71 | 0.0044 | 0.4281 | 0.0268 |
Min. Value | 0.08 | 0.0002 | 0.0091 | 0.9774 | 0.19 | 0.0006 | 0.0006 | 0.9765 | 0.07 | 0.0005 | 0.0230 | 0.5754 |
25th Percentile | 0.51 | 0.0013 | 0.0600 | 0.9946 | 0.72 | 0.0016 | 0.0015 | 0.9960 | 0.33 | 0.0022 | 0.1036 | 0.9871 |
50th Percentile | 0.88 | 0.0022 | 0.1043 | 0.9974 | 1.00 | 0.0022 | 0.0021 | 0.9978 | 0.54 | 0.0035 | 0.1949 | 0.9943 |
75th Percentile | 1.37 | 0.0030 | 0.1503 | 0.9989 | 1.36 | 0.0030 | 0.0028 | 0.9988 | 0.93 | 0.0054 | 0.3677 | 0.9978 |
Max. Value | 3.94 | 0.0058 | 0.4269 | 1.0000 | 4.97 | 0.0069 | 0.0066 | 0.9998 | 17.96 | 0.0450 | 4.8369 | 0.9999 |
Remark: Verification range: 0.28d to 0.89d, frequency: 430 vessels |
Items | Error Target Data | MAE | Test Data Average | Error Rate (%) |
---|---|---|---|---|
Volume | 0.0021 | 0.0383 | 5.53 | |
0.0090 | 0.3132 | 2.88 | ||
0.0115 | 0.7509 | 1.53 | ||
0.0245 | 0.1280 | 19.16 | ||
0.0161 | 0.8291 | 1.94 | ||
Average | 0.0127 | 0.4119 | 6.21 | |
KB | 0.0087 | 0.2038 | 4.28 | |
0.0041 | 0.2445 | 1.69 | ||
0.0043 | 0.5412 | 0.80 | ||
0.0502 | 1.0953 | 4.58 | ||
0.0204 | 0.6898 | 2.95 | ||
Average | 0.0175 | 0.5549 | 2.86 | |
It | 0.0263 | 0.3369 | 7.80 | |
0.0148 | 0.7526 | 1.97 | ||
0.0468 | 0.3153 | 14.84 | ||
0.0178 | 0.1480 | 12.04 | ||
0.0505 | 0.2279 | 22.18 | ||
0.0435 | 0.1825 | 23.82 | ||
Average | 0.0333 | 0.3272 | 13.77 |
Target Data Statistics | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
Test | Predict | Test | Predict | Test | Predict | Test | Predict | Test | Predict | |
Mean | 0.0383 | 0.0385 | 0.3132 | 0.3101 | 0.7509 | 0.7489 | 0.1280 | 0.1269 | 0.8291 | 0.8341 |
Standard Deviation | 0.0156 | 0.0158 | 0.0453 | 0.0443 | 0.0535 | 0.0504 | 0.0614 | 0.0517 | 0.0499 | 0.0464 |
Min. Value | 0.0094 | 0.0096 | 0.2040 | 0.2093 | 0.6296 | 0.6396 | 0.0565 | 0.0456 | 0.6608 | 0.6689 |
25th Percentile | 0.0304 | 0.0302 | 0.2837 | 0.2766 | 0.7202 | 0.7162 | 0.0837 | 0.0937 | 0.8068 | 0.8131 |
50th Percentile | 0.0378 | 0.0371 | 0.3168 | 0.3156 | 0.7427 | 0.7545 | 0.1174 | 0.1190 | 0.8317 | 0.8428 |
75th Percentile | 0.0458 | 0.0475 | 0.3411 | 0.3374 | 0.7882 | 0.7812 | 0.1555 | 0.1429 | 0.8570 | 0.8625 |
Max. Value | 0.0873 | 0.0850 | 0.3962 | 0.3991 | 0.8372 | 0.8552 | 0.3375 | 0.2858 | 0.9185 | 0.9025 |
Target Data Statistics | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
Test | Predict | Test | Predict | Test | Predict | Test | Predict | Test | Predict | |
Mean | 0.2038 | 0.2055 | 0.2445 | 0.2449 | 0.5412 | 0.5423 | 1.0953 | 1.0834 | 0.6898 | 0.6972 |
Standard Deviation | 0.0602 | 0.0582 | 0.0348 | 0.0343 | 0.0285 | 0.0281 | 0.1415 | 0.1130 | 0.0868 | 0.0861 |
Min. Value | 0.0724 | 0.0965 | 0.1547 | 0.1545 | 0.4668 | 0.4620 | 0.7347 | 0.8453 | 0.5544 | 0.5597 |
25th Percentile | 0.1645 | 0.1726 | 0.2313 | 0.2294 | 0.5208 | 0.5252 | 1.0075 | 1.0115 | 0.6380 | 0.6428 |
50th Percentile | 0.1996 | 0.2047 | 0.2469 | 0.2482 | 0.5434 | 0.5394 | 1.0920 | 1.0762 | 0.6710 | 0.6800 |
75th Percentile | 0.2359 | 0.2392 | 0.2650 | 0.2661 | 0.5536 | 0.5575 | 1.1860 | 1.1503 | 0.7126 | 0.7372 |
Max. Value | 0.3722 | 0.3688 | 0.3128 | 0.3244 | 0.6119 | 0.6163 | 1.4043 | 1.3396 | 1.0325 | 1.0412 |
Target Data Statistics | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Test | Predict | Test | Predict | Test | Predict | Test | Predict | Test | Predict | Test | Predict | |
Mean | 0.3369 | 0.3531 | 0.7526 | 0.7546 | 0.3153 | 0.2978 | 0.1480 | 0.1501 | 0.2279 | 0.2337 | 0.1825 | 0.1545 |
Standard Deviation | 0.0868 | 0.0775 | 0.0538 | 0.0473 | 0.0806 | 0.0636 | 0.0530 | 0.0536 | 0.1422 | 0.1309 | 0.1219 | 0.1001 |
Min. Value | 0.1891 | 0.2328 | 0.6441 | 0.6471 | 0.2123 | 0.1929 | 0.0512 | 0.0595 | 0.0259 | 0.0654 | 0.0439 | 0.0518 |
25th Percentile | 0.2779 | 0.2997 | 0.7140 | 0.7198 | 0.2623 | 0.2642 | 0.1079 | 0.1126 | 0.1049 | 0.1259 | 0.0698 | 0.0725 |
50th Percentile | 0.3182 | 0.3318 | 0.7392 | 0.7562 | 0.2917 | 0.2819 | 0.1444 | 0.1530 | 0.2114 | 0.1898 | 0.1407 | 0.1205 |
75th Percentile | 0.4011 | 0.4218 | 0.7907 | 0.7843 | 0.3567 | 0.3285 | 0.1823 | 0.1857 | 0.3357 | 0.3399 | 0.2531 | 0.2024 |
Max. Value | 0.5402 | 0.5287 | 0.8623 | 0.8392 | 0.5793 | 0.5646 | 0.2694 | 0.3022 | 0.5694 | 0.5180 | 0.5144 | 0.4131 |
Items Error Ship No | Volume Curve | KB Curve | It Curve | KMT Curve | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
MAPE (%) | MAE | R2 | MAPE (%) | MAE | R2 | MAPE (%) | MAE | R2 | MAPE (%) | MAE | R2 | |
S947 | 0.30 | 0.0010 | 0.9999 | 1.47 | 0.0036 | 0.9979 | 0.50 | 0.0035 | 0.9944 | 0.45 | 0.0140 | 0.9984 |
A714 | 0.69 | 0.0023 | 0.9997 | 0.85 | 0.0015 | 0.9997 | 0.52 | 0.0041 | 0.9893 | 0.66 | 0.0201 | 0.9975 |
A913 | 1.00 | 0.0027 | 0.9995 | 3.21 | 0.0053 | 0.9977 | 1.32 | 0.0088 | 0.9846 | 1.01 | 0.0293 | 0.9909 |
S513 | 3.49 | 0.0119 | 0.9930 | 4.03 | 0.0086 | 0.9917 | 3.81 | 0.0257 | 0.7961 | 1.05 | 0.0278 | 0.9917 |
S720 | 1.22 | 0.0055 | 0.9985 | 2.01 | 0.0017 | 0.9997 | 0.27 | 0.0020 | 0.9942 | 1.08 | 0.0263 | 0.9975 |
S067 | 0.71 | 0.0027 | 0.9996 | 0.52 | 0.0009 | 0.9999 | 1.23 | 0.0092 | 0.9895 | 1.21 | 0.0443 | 0.9885 |
S624 | 1.54 | 0.0067 | 0.9979 | 1.92 | 0.0056 | 0.9969 | 0.71 | 0.0056 | 0.9692 | 1.29 | 0.0317 | 0.9972 |
S818 | 2.13 | 0.0072 | 0.9969 | 0.55 | 0.0017 | 0.9997 | 1.44 | 0.0100 | 0.9926 | 1.34 | 0.0333 | 0.9878 |
S763 | 1.44 | 0.0040 | 0.9992 | 1.44 | 0.0048 | 0.9977 | 0.57 | 0.0038 | 0.9990 | 1.35 | 0.0393 | 0.9867 |
S959 | 0.95 | 0.0034 | 0.9995 | 0.66 | 0.0019 | 0.9996 | 1.66 | 0.0113 | 0.9721 | 1.56 | 0.0509 | 0.9760 |
S804 | 1.43 | 0.0050 | 0.9989 | 0.72 | 0.0026 | 0.9989 | 0.23 | 0.0017 | 0.9903 | 1.56 | 0.0397 | 0.9923 |
S729 | 0.71 | 0.0022 | 0.9997 | 2.96 | 0.0050 | 0.9980 | 1.12 | 0.0073 | 0.9887 | 1.64 | 0.0441 | 0.9873 |
A923 | 1.56 | 0.0031 | 0.9992 | 2.57 | 0.0051 | 0.9981 | 0.68 | 0.0031 | 0.9988 | 1.92 | 0.0514 | 0.9661 |
S999 | 3.00 | 0.0091 | 0.9954 | 1.80 | 0.0060 | 0.9967 | 3.73 | 0.0265 | 0.9630 | 1.93 | 0.0540 | 0.9866 |
S984 | 4.73 | 0.0162 | 0.9865 | 1.27 | 0.0031 | 0.9992 | 2.71 | 0.0178 | 0.9710 | 1.99 | 0.0547 | 0.9861 |
S032 | 1.76 | 0.0036 | 0.9993 | 0.57 | 0.0013 | 0.9997 | 3.68 | 0.0207 | 0.9806 | 2.01 | 0.0517 | 0.9668 |
S023 | 1.31 | 0.0032 | 0.9993 | 1.87 | 0.0036 | 0.9986 | 1.11 | 0.0067 | 0.9946 | 2.05 | 0.0634 | 0.9612 |
A710 | 2.86 | 0.0101 | 0.9956 | 1.83 | 0.0052 | 0.9975 | 1.67 | 0.0114 | 0.9491 | 2.11 | 0.0474 | 0.9847 |
S979 | 2.03 | 0.0069 | 0.9976 | 1.44 | 0.0039 | 0.9984 | 1.38 | 0.0098 | 0.9781 | 2.25 | 0.0568 | 0.9854 |
A804 | 0.93 | 0.0030 | 0.9995 | 1.11 | 0.0029 | 0.9992 | 2.52 | 0.0185 | 0.9267 | 2.27 | 0.0833 | 0.9560 |
S648 | 3.16 | 0.0126 | 0.9930 | 1.75 | 0.0045 | 0.9981 | 2.11 | 0.0157 | 0.9504 | 2.32 | 0.0636 | 0.9722 |
S709 | 1.50 | 0.0045 | 0.9990 | 4.90 | 0.0127 | 0.9788 | 1.59 | 0.0102 | 0.9834 | 2.33 | 0.0706 | 0.9789 |
S956 | 3.07 | 0.0113 | 0.9933 | 0.52 | 0.0014 | 0.9998 | 2.19 | 0.0160 | 0.7036 | 2.34 | 0.0973 | 0.9521 |
S820 | 2.89 | 0.0105 | 0.9951 | 2.69 | 0.0077 | 0.9942 | 1.16 | 0.0086 | 0.9113 | 2.49 | 0.0588 | 0.9872 |
A914 | 3.07 | 0.0126 | 0.9925 | 5.22 | 0.0078 | 0.9959 | 4.38 | 0.0339 | 0.9416 | 2.62 | 0.1233 | 0.9427 |
S667 | 3.50 | 0.0107 | 0.9945 | 0.79 | 0.0020 | 0.9995 | 6.01 | 0.0418 | 0.7213 | 2.75 | 0.0516 | 0.9840 |
S066 | 2.78 | 0.0106 | 0.9947 | 3.04 | 0.0073 | 0.9960 | 2.46 | 0.0198 | 0.9126 | 2.82 | 0.1016 | 0.9851 |
A909 | 1.26 | 0.0031 | 0.9993 | 3.74 | 0.0088 | 0.9931 | 2.45 | 0.0083 | 0.9954 | 2.85 | 0.0774 | 0.9506 |
A915 | 1.53 | 0.0033 | 0.9994 | 5.35 | 0.0164 | 0.9812 | 2.40 | 0.0132 | 0.9928 | 2.89 | 0.0798 | 0.9834 |
S706 | 2.42 | 0.0074 | 0.9962 | 1.00 | 0.0035 | 0.9987 | 3.90 | 0.0205 | 0.9646 | 3.06 | 0.0865 | 0.8897 |
S784 | 0.62 | 0.0017 | 0.9998 | 3.14 | 0.0069 | 0.9963 | 3.54 | 0.0247 | 0.8437 | 3.56 | 0.0983 | 0.8942 |
S980 | 8.32 | 0.0353 | 0.9486 | 1.47 | 0.0041 | 0.9981 | 4.62 | 0.0379 | 0.2933 | 3.69 | 0.1111 | 0.9770 |
S411 | 3.72 | 0.0160 | 0.9890 | 14.39 | 0.0099 | 0.9867 | 1.14 | 0.0090 | 0.6384 | 3.88 | 0.3108 | 0.9622 |
S778 | 3.83 | 0.0137 | 0.9915 | 5.28 | 0.0091 | 0.9916 | 5.83 | 0.0409 | 0.5320 | 4.18 | 0.1721 | 0.9053 |
A202 | 2.52 | 0.0086 | 0.9968 | 1.18 | 0.0036 | 0.9985 | 7.01 | 0.0471 | 0.4598 | 4.20 | 0.1008 | 0.8376 |
S816 | 6.10 | 0.0219 | 0.9758 | 1.88 | 0.0054 | 0.9969 | 2.35 | 0.0169 | 0.9610 | 4.22 | 0.1208 | 0.9483 |
S702 | 2.62 | 0.0085 | 0.9967 | 3.05 | 0.0067 | 0.9954 | 2.12 | 0.0149 | 0.9445 | 4.61 | 0.1464 | 0.8863 |
S064 | 7.19 | 0.0294 | 0.9636 | 4.99 | 0.0092 | 0.9898 | 3.03 | 0.0219 | 0.5322 | 4.90 | 0.1364 | 0.9591 |
S009 | 1.83 | 0.0070 | 0.9958 | 3.57 | 0.0117 | 0.9871 | 6.08 | 0.0433 | 0.8645 | 4.94 | 0.1347 | 0.9356 |
S909 | 4.62 | 0.0170 | 0.9884 | 9.44 | 0.0124 | 0.9814 | 3.47 | 0.0280 | 0.8381 | 5.47 | 0.2559 | 0.9326 |
A606 | 5.57 | 0.0099 | 0.9942 | 1.24 | 0.0031 | 0.9992 | 5.07 | 0.0109 | 0.9928 | 6.68 | 0.1227 | 0.7573 |
S753 | 9.03 | 0.0290 | 0.9508 | 1.69 | 0.0054 | 0.9969 | 1.70 | 0.0106 | 0.9880 | 8.55 | 0.1557 | 0.5112 |
A803 | 8.60 | 0.0311 | 0.9507 | 10.04 | 0.0118 | 0.9870 | 3.55 | 0.0241 | 0.8971 | 9.08 | 0.3310 | 0.6866 |
Average | 2.87 | 0.0099 | 0.9919 | 2.86 | 0.0057 | 0.9955 | 2.54 | 0.0169 | 0.8903 | 2.91 | 0.0900 | 0.9419 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, D.; Lim, C.; Oh, S.-j.; Kim, M.; Park, J.S.; Shin, S.-c. Predictive Model for Hydrostatic Curves of Chine-Type Small Ships Based on Deep Learning. J. Mar. Sci. Eng. 2024, 12, 180. https://doi.org/10.3390/jmse12010180
Lee D, Lim C, Oh S-j, Kim M, Park JS, Shin S-c. Predictive Model for Hydrostatic Curves of Chine-Type Small Ships Based on Deep Learning. Journal of Marine Science and Engineering. 2024; 12(1):180. https://doi.org/10.3390/jmse12010180
Chicago/Turabian StyleLee, Dongkeun, Chaeog Lim, Sang-jin Oh, Minjoon Kim, Jun Soo Park, and Sung-chul Shin. 2024. "Predictive Model for Hydrostatic Curves of Chine-Type Small Ships Based on Deep Learning" Journal of Marine Science and Engineering 12, no. 1: 180. https://doi.org/10.3390/jmse12010180
APA StyleLee, D., Lim, C., Oh, S. -j., Kim, M., Park, J. S., & Shin, S. -c. (2024). Predictive Model for Hydrostatic Curves of Chine-Type Small Ships Based on Deep Learning. Journal of Marine Science and Engineering, 12(1), 180. https://doi.org/10.3390/jmse12010180