Water Quality in the Ma’an Archipelago Marine Special Protected Area: Remote Sensing Inversion Based on Machine Learning
Abstract
:1. Introduction
2. Data and Methods
2.1. Study Area
2.2. Data Sources and Processing
2.2.1. Remote Sensing Data Source and Image Pre-Processing
2.2.2. Sampling
2.3. Model Construction
2.3.1. RF Model
- (1)
- A bootstrap sampling technique with replacement is used to extract n training sets from the original dataset, each of which is approximately two-thirds the size of the original dataset.
- (2)
- CART regression trees are built separately for each bootstrap training set, producing a total of n decision trees constituting a “forest” without pruning the decision trees. During the growth of each tree, the optimal attributes are selected from m ≤ M randomly chosen attributes for branching.
- (3)
- The prediction results of the n-decision trees are assembled, and voting is used to decide the category of the new sample.
- (4)
- According to steps 1 to 3, a large number of decision trees were established, which constitutes a Random Forest (RF).
2.3.2. Model Training
2.3.3. Model Accuracy
3. Results and Discussion
3.1. Validation of Chl-a, Phosphate and DIN Inversion Models
3.2. Spatial and Temporal Evolution of Water Quality in the MMSPA from 2002 to 2022
3.2.1. Spatial and Temporal Evolution of Chl-a
3.2.2. Spatial and Temporal Evolution of Phosphate
3.2.3. Spatial and Temporal Evolution of DIN
3.3. Comparative Analysis of Machine Learning in Remote Sensing Inversion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ma, C.; Zhang, X.; Chen, W.; Zhang, G.; Duan, H.; Ju, M.; Li, H.; Yang, Z. China’s special marine protected area policy: Trade-off between economic development and marine conservation. Ocean. Coast Manag. 2013, 76, 1–11. [Google Scholar] [CrossRef]
- Arneth, A.; Leadley, P.; Claudet, J.; Coll, M.; Rondinini, C.; Rounsevell, M.D.; Shin, Y.J.; Alexander, P.; Fuchs, R. Making protected areas effective for biodiversity, climate and food. Glob. Chang. Biol. 2023, 29, 3883–3894. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Li, X.; Zhao, X.; Chen, J.; Wang, Z.; Chen, L.; Zhang, S.; Wang, K. Assessment of fish diversity in the Ma’an Archipelago special protected area using environmental DNA. Biology 2022, 11, 1832. [Google Scholar] [CrossRef] [PubMed]
- Yu, X.; Dong, Y. Local practice of marine protected areas legislation in China: The case of Zhoushan. Mar. Policy 2022, 141, 105084. [Google Scholar] [CrossRef]
- Zhejiang Marine Disaster Bulletin; Department of Natural Resources of Zhejiang Province: Hangzhou, China, 2002–2022.
- Liu, L.; Zhang, X.; Chen, Z.; Zhou, H.; Li, C.; Chen, Y. Assessment of ecological sustainability for international bays in the context of common prosperity—A case study of sanmen bay in Zhejiang province. Front. Environ. Sci. 2022, 10, 944936. [Google Scholar] [CrossRef]
- Peterson, K.T.; Sagan, V.; Sloan, J.J. Deep learning-based water quality estimation and anomaly detection using Landsat-8/sentinel-2 virtual constellation and cloud computing. GISci. Remote Sens. 2020, 57, 510–525. [Google Scholar] [CrossRef]
- Yang, H.; Kong, J.; Hu, H.; Du, Y.; Gao, M.; Chen, F. A review of remote sensing for water quality retrieval: Progress and challenges. Remote Sens. 2022, 14, 1770. [Google Scholar] [CrossRef]
- Dogliotti, A.I.; Ruddick, K.; Nechad, B.; Doxaran, D.; Knaeps, E. A single algorithm to retrieve turbidity from remotely-sensed data in all coastal and estuarine waters. Remote Sens. Environ. 2015, 156, 157–168. [Google Scholar] [CrossRef]
- Fang, X.; Wen, Z.; Chen, J.; Wu, S.; Huang, Y.; Ma, M. Remote sensing estimation of suspended sediment concentration based on random forest regression model. J. Remote Sens. 2019, 23, 756–772. [Google Scholar] [CrossRef]
- Guo, J.; Nie, Y.; Sun, B.; Lv, X. Remote sensing of transparency in the China seas from the ESA-OC-CCI data. Estuar. Coast. Shelf Sci. 2022, 264, 107693. [Google Scholar] [CrossRef]
- Marinho, R.R.; Martinez, J.-M.; de Oliveira, T.C.S.; Moreira, W.P.; de Carvalho, L.A.S.; Moreira-Turcq, P.; Harmel, T. Estimating the colored dissolved organic matter in the negro river, amazon basin, with in situ remote sensing data. Remote Sens. 2024, 16, 613. [Google Scholar] [CrossRef]
- Song, W.; Yinglan, A.; Wang, Y.; Fang, Q.; Tang, R. Study on remote sensing inversion and temporal-spatial variation of hulun lake water quality based on machine learning. J. Contam. Hydrol. 2024, 260, 104282. [Google Scholar] [CrossRef] [PubMed]
- Yan, X.; Zhang, T.; Du, W.; Meng, Q.; Xu, X.; Zhao, X. A comprehensive review of machine learning for water quality prediction over the past five years. J. Mar. Sci. Eng. 2024, 12, 159. [Google Scholar] [CrossRef]
- Gao, L.; Shangguan, Y.; Sun, Z.; Shen, Q.; Shi, Z. Estimation of non-optically active water quality parameters in Zhejiang province based on machine learning. Remote Sens. 2024, 16, 514. [Google Scholar] [CrossRef]
- Huang, H.; Zhang, J. Prediction of chlorophyll a and risk assessment of water blooms in poyang lake based on a machine learning method. Environ. Pollut. 2024, 347, 15. [Google Scholar] [CrossRef]
- Li, H.; Li, X.; Song, D.; Nie, J.; Liang, S. Prediction on daily spatial distribution of chlorophyll-a in coastal seas using a synthetic method of remote sensing, machine learning and numerical modeling. Sci. Total Environ. 2024, 910, 168642. [Google Scholar] [CrossRef] [PubMed]
- Yuan, X.; Wang, S.; Fan, F.; Dong, Y.; Li, Y.; Lin, W.; Zhou, C. Spatiotemporal dynamics and anthropologically dominated drivers of chlorophyll-a, tn and tp concentrations in the pearl river estuary based on retrieval algorithm and random forest regression. Environ. Res. 2022, 215, 114380. [Google Scholar] [CrossRef]
- Zhang, Z.; Liao, Y.; Huang, J. A framework to quantify riverine dissolved inorganic nitrogen exports under changing land-use patterns and hydrologic regimes. Water 2023, 15, 3528. [Google Scholar] [CrossRef]
- Duhamel, S.; Diaz, J.M.; Adams, J.C.; Djaoudi, K.; Steck, V.; Waggoner, E.M. Phosphorus as an integral component of global marine biogeochemistry. Nat. Geosci. 2021, 14, 359–368. [Google Scholar] [CrossRef]
- Han, X.; Zhang, S.; Wang, Z.; Wang, K.; Lin, J.; Deng, M.; Wu, X. Fish community structure and its relationship with environmental factors in the Ma’an Archipelago and its eastern waters. J. Fish. China 2019, 43, 1483–1497. [Google Scholar] [CrossRef]
- Yin, W.; Ma, Y.; Wang, D.; He, S.; Huang, D. Surface upwelling off the Zhoushan islands, East China Sea, from Himawari-8 ahi data. Remote Sens. 2022, 14, 3261. [Google Scholar] [CrossRef]
- Ding, W.; Li, C. Algal blooms forecasting with hybrid deep learning models from satellite data in the Zhoushan fishery. Ecol. Inf. 2024, 82, 102664. [Google Scholar] [CrossRef]
- Li, X.; Zhao, X.; Yuan, H.; Guo, Y.; Li, J.; Zhang, S.; Chen, J.; Wang, Z.; Wang, K. Diversity and carbon sequestration of seaweed in the Ma’an Archipelago, China. Diversity 2022, 15, 12. [Google Scholar] [CrossRef]
- Zhou, X.; Zhao, X.; Zhang, S.; Lin, J. Marine ranching construction and management in East China Sea: Programs for sustainable fishery and aquaculture. Water 2019, 11, 1237. [Google Scholar] [CrossRef]
- Schmidt, G.; Jenkerson, C.B.; Masek, J.; Vermote, E.; Gao, F. Landsat Ecosystem Disturbance Adaptive Processing System (LEDAPS) Algorithm Description; 2331-1258; US Geological Survey: Reston, VA, USA, 2013. [Google Scholar] [CrossRef]
- Masek, J.G.; Vermote, E.F.; Saleous, N.; Wolfe, R.; Hall, F.G.; Huemmrich, F.; Gao, F.; Kutler, J.; Lim, T.K. LEDAPS Landsat Calibration, Reflectance, Atmospheric Correction Preprocessing Code; ORNL DAAC: Oak Ridge, TN, USA, 2012. [Google Scholar] [CrossRef]
- Jang, J.-C.; Park, K.-A. High-resolution sea surface temperature retrieval from Landsat 8 OLI/TIRS data at coastal regions. Remote Sens. 2019, 11, 2687. [Google Scholar] [CrossRef]
- Vermote, E.; Justice, C.; Claverie, M.; Franch, B. Preliminary analysis of the performance of the Landsat 8/OLI land surface reflectance product. Remote Sens. Environ. 2016, 185, 46–56. [Google Scholar] [CrossRef]
- Liu, Z.; Yao, Z.; Wang, R. Assessing methods of identifying open water bodies using Landsat 8 OLI imagery. Environ. Earth Sci. 2016, 75, 873. [Google Scholar] [CrossRef]
- Li, P.; Li, H.; Si, B.; Zhou, T.; Zhang, C.; Li, M. Mapping planted forest age using landtrendr algorithm and Landsat 5–8 on the loess plateau, China. Agric. For. Meteorol. 2024, 344, 109795. [Google Scholar] [CrossRef]
- Chen, J.; Zhu, W. Consistency evaluation of Landsat-7 and Landsat-8 for improved monitoring of colored dissolved organic matter in complex water. Geocarto Int. 2022, 37, 91–102. [Google Scholar] [CrossRef]
- Li, J.; Gao, S.; Wang, Y. Delineating suspended sediment concentration patterns in surface waters of the Changjiang Estuary by remote sensing analysis. Acta Oceanolog. Sin. 2010, 29, 38–47. [Google Scholar] [CrossRef]
- Ho, T.K. The random subspace method for constructing decision forests. IEEE Trans. Pattern Anal. Mach. Intell. 1998, 20, 832–844. [Google Scholar] [CrossRef]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Biau, G.; Scornet, E. A random forest guided tour. Test 2016, 25, 197–227. [Google Scholar] [CrossRef]
- Rigatti, S.J. Random forest. J. Insur. Med. 2017, 47, 31–39. [Google Scholar] [CrossRef] [PubMed]
- Lee, T.-H.; Ullah, A.; Wang, R. Bootstrap Aggregating and Random Forest; Fuleky, P., Ed.; Springer: Cham, Switzerland, 2020; Volume 52, pp. 389–429. [Google Scholar] [CrossRef]
- Pino-Mejías, R.; Jiménez-Gamero, M.-D.; Cubiles-de-la-Vega, M.-D.; Pascual-Acosta, A. Reduced bootstrap aggregating of learning algorithms. Pattern Recognit. Lett. 2008, 29, 265–271. [Google Scholar] [CrossRef]
- Pal, M. Random forest classifier for remote sensing classification. Int. J. Remote Sens. 2005, 26, 217–222. [Google Scholar] [CrossRef]
- Wu, J.; Chen, X.-Y.; Zhang, H.; Xiong, L.-D.; Lei, H.; Deng, S.-H. Hyperparameter optimization for machine learning models based on bayesian optimization. J. Electron. Sci. Technol. 2019, 17, 26–40. [Google Scholar] [CrossRef]
- Liu, S.; Tai, H.; Ding, Q.; Li, D.; Xu, L.; Wei, Y. A hybrid approach of support vector regression with genetic algorithm optimization for aquaculture water quality prediction. Math. Comput. Modell. 2013, 58, 458–465. [Google Scholar] [CrossRef]
- Rahaman, M.H.; Sajjad, H.; Hussain, S.; Masroor, M.; Sharma, A. Surface water quality prediction in the lower thoubal river watershed, India: A hyper-tuned machine learning approach and dnn-based sensitivity analysis. J. Environ. Chem. Eng. 2024, 12, 112915. [Google Scholar] [CrossRef]
- Huang, Q.; Mao, J.; Liu, Y. An improved grid search algorithm of SVR parameters optimization. In Proceedings of the 2012 IEEE 14th International Conference on Communication Technology, Chengdu, China, 9–11 November 2012; pp. 1022–1026. [Google Scholar] [CrossRef]
- Wainer, J.; Fonseca, P. How to tune the RBF SVM hyperparameters? An empirical evaluation of 18 search algorithms. Artif. Intell. Rev. 2021, 54, 4771–4797. [Google Scholar] [CrossRef]
- Di Bucchianico, A. Coefficient of Determination (r2); Ruggeri, F., Kenett, R.S., Faltin, F.W., Eds.; John Wiley & Sons, Ltd.: Chichester, UK, 2008; Volume 39, pp. 279–285. [Google Scholar] [CrossRef]
- Wang, W.; Lu, Y. Analysis of the mean absolute error (MAE) and the root mean square error (RMSE) in assessing rounding model. IOP Conf. Ser. Mater. Sci. Eng. 2018, 324, 012049. [Google Scholar] [CrossRef]
- Hodson, T.O. Root mean square error (RMSE) or mean absolute error (MAE): When to use them or not. Geosci. Model Dev. Discuss. 2022, 15, 5481–5487. [Google Scholar] [CrossRef]
- Chicco, D.; Warrens, M.J.; Jurman, G. The coefficient of determination r-squared is more informative than smape, MAE, mape, mse and RMSE in regression analysis evaluation. PeerJ Comput. Sci. 2021, 7, e623. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Zhou, J.; Zheng, B.; Cai, W.; Lin, K.; Tang, J. Temporal and spatial distribution of red tide outbreaks in the Yangtze River Estuary and adjacent waters, China. Mar. Pollut. Bull. 2013, 72, 213–221. [Google Scholar] [CrossRef]
- Han, J.; Liu, X.; Pan, K.; Liu, J.; Sun, Y.; Jin, G.; Li, Y.; Li, Y. Impacts of integrated multi-trophic aquaculture on phytoplankton in Sanggou Bay. J. Ocean. Univ. China 2024, 23, 835–843. [Google Scholar] [CrossRef]
- Tan, K.; Xu, P.; Huang, L.; Luo, C.; Huang, J.; Fazhan, H.; Kwan, K.Y. Effects of bivalve aquaculture on plankton and benthic community. Sci. Total Environ. 2024, 37, 169892. [Google Scholar] [CrossRef] [PubMed]
- Murphy, A.E.; Kolkmeyer, R.; Song, B.; Anderson, I.C.; Bowen, J. Bioreactivity and microbiome of biodeposits from filter-feeding bivalves. Microb. Ecol. 2019, 77, 343–357. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Yang, D.; Yu, R.; Feng, X.; Gao, G.; Cui, X.; Bai, T.; Yin, B. Nonlocal population sources triggering dinoflagellate blooms in the Changjiang Estuary and adjacent seas: A modeling study. J. Geophys. Res. Biogeosci. 2021, 126, e2021JG006424. [Google Scholar] [CrossRef]
- Jing, Y.; Feng, C.; Chen, T.; Zhu, Y.; Li, C.; Tao, B.; Song, Q. Use of GOCI-II images for detection of harmful algal blooms in the East China Sea. Geosci. Lett. 2024, 11, 2. [Google Scholar] [CrossRef]
- Xu, Y.; Chen, J.; Yang, Q.; Jiang, X.; Fu, Y.; Pan, D. Trend of harmful algal bloom dynamics from GOCI observed diurnal variation of chlorophyll a off southeast coast of China. Front. Mar. Sci. 2024, 11, 1357669. [Google Scholar] [CrossRef]
- Feng, C.; Shen, A.; Zhu, Y.; Xu, Y.; Lu, X. Changes in dinoflagellate and diatom blooms in the East China Sea over the last two decades, under different spatial and temporal scale scenarios. Mar. Pollut. Bull. 2024, 200, 116097. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.; Yang, F.; Costa Jr, O.S.; Yan, X.; Wu, M.; Qiu, H.; Li, W.; Xu, G. Nutrient budgets and biogeochemical dynamics in the coastal regions of northern Beibu Gulf, south China sea: Implication for the severe impact of human disturbance. Mar. Environ. Res. 2024, 197, 106447. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Liu, S.; Ren, J.; Wu, Y.; Zhang, G. Nutrient gradients from the eutrophic Changjiang (Yangtze River) Estuary to the oligotrophic kuroshio waters and re-evaluation of budgets for the East China Sea shelf. Prog. Oceanogr. 2007, 74, 449–478. [Google Scholar] [CrossRef]
- Liu, S.M.; Qi, X.H.; Li, X.; Ye, H.R.; Wu, Y.; Ren, J.L.; Zhang, J.; Xu, W.Y. Nutrient dynamics from the Changjiang (Yangtze River) Estuary to the east China sea. J. Mar. Syst. 2016, 154, 15–27. [Google Scholar] [CrossRef]
- Wen, L.; Song, J.; Dai, J.; Li, X.; Ma, J.; Yuan, H.; Duan, L.; Wang, Q. Nutrient characteristics driven by multiple factors in large estuaries during summer: A case study of the Yangtze River Estuary. Mar. Pollut. Bull. 2024, 201, 116241. [Google Scholar] [CrossRef]
- GB 3097-1997; Sea Water Quality Standard. Chinese Standard; National Environmental Protection Agency: Beijing, China, 1997.
- Beardsley, R.; Limeburner, R.; Yu, H.; Cannon, G. Discharge of the Changjiang (Yangtze River) into the East China sea. Cont. Shelf Res. 1985, 4, 57–76. [Google Scholar] [CrossRef]
- Xu, L.; Yang, D.; Greenwood, J.; Feng, X.; Gao, G.; Qi, J.; Cui, X.; Yin, B. Riverine and oceanic nutrients govern different algal bloom domain near the Changjiang Estuary in summer. J. Geophys. Res. Biogeosci. 2020, 125, e2020JG005727. [Google Scholar] [CrossRef]
- Zhang, S.; Qiao, L.; Gao, F.; Yao, Z.; Liu, X. Intra-tidal upwelling variability off Zhoushan islands, East China Sea. Estuar. Coast. Shelf Sci. 2024, 298, 108635. [Google Scholar] [CrossRef]
- Xiao, T.; Feng, J.; Qiu, Z.; Tang, R.; Zhao, A.; Wong, K.; Tsou, J.Y.; Zhang, Y. Remote-sensing estimation of upwelling-frequent areas in the adjacent waters of Zhoushan (China). J. Mar. Sci. Eng. 2024, 12, 1085. [Google Scholar] [CrossRef]
- Huang, C.; Guo, Y.; Yang, H.; Li, Y.; Zou, J.; Zhang, M.; Lyu, H.; Zhu, A.; Huang, T. Using remote sensing to track variation in phosphorus and its interaction with chlorophyll-a and suspended sediment. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 4171–4180. [Google Scholar] [CrossRef]
- Lan, F.; Liu, Q.; Ye, W.; Wang, X.; Yin, K. Riverine fluxes of different species of phosphorus in the pearl river estuary. Mar. Pollut. Bull. 2024, 200, 116079. [Google Scholar] [CrossRef] [PubMed]
- Chi, Y.; Liu, D.; Qu, Y.; Zhang, Z.; Liu, Z. Archipelagic human-land spatial interrelations: An empirical study in shengsi Archipelago, China. Land Use Policy 2023, 130, 106671. [Google Scholar] [CrossRef]
- Alsaleh, M. The impact of aquaculture economics expansion on marine water quality in the EU region. Reg. Stud. Mar. Sci. 2024, 77, 103625. [Google Scholar] [CrossRef]
- Fan, X.; Cheng, F.; Yu, Z.; Song, X. Diatom-based dissolved inorganic nitrogen reconstruction in the Changjiang River estuary and its adjacent areas. J. Oceanol. Limnol. 2023, 41, 1464–1480. [Google Scholar] [CrossRef]
- Ye, L.; Zhang, H.; Fei, Y.; Liu, L.; Li, D. Nutrient distributions in the east china sea and changes over the last 25 years. Appl. Ecol. Environ. Res. 2020, 18, 973–985. [Google Scholar] [CrossRef]
- Zhang, R.; Fang, J.; Zhang, Y.; Qin, X.; Zheng, X.; Zeng, C.; Wang, J. Effects of mussel-phytoplankton interactions on the aquatic environment. Aquacult. Rep. 2024, 37, 102242. [Google Scholar] [CrossRef]
- Jiang, H.; Hu, Y. Coastal water quality investigation and evaluation of shengsi Ma’an Archipelago conservation area from 2010 to 2017. J. Guangdong Ocean Univ. 2020, 40, 38–43. [Google Scholar] [CrossRef]
- Wu, T.; Xia, L.; Zhuang, M.; Pan, J.; Liu, J.; Dai, W.; Zhao, Z.; Zhang, M.; Shen, X.; He, P. Effects of global warming on the growth and proliferation of attached sargassum horneri in the aquaculture area near gouqi island, China. J. Mar. Sci. Eng. 2022, 11, 9. [Google Scholar] [CrossRef]
- Xu, S.; Li, S.; Tao, Z.; Song, K.; Wen, Z.; Li, Y.; Chen, F. Remote sensing of chlorophyll-a in xinkai lake using machine learning and GF-6 WFV images. Remote Sens. 2022, 14, 5136. [Google Scholar] [CrossRef]
- Zhu, X.; Guo, H.; Huang, J.J.; Tian, S.; Xu, W.; Mai, Y. An ensemble machine learning model for water quality estimation in coastal area based on remote sensing imagery. J. Environ. Manag. 2022, 323, 116187. [Google Scholar] [CrossRef] [PubMed]
- Gómez, D.; Salvador, P.; Sanz, J.; Casanova, J.L. A new approach to monitor water quality in the menor sea (spain) using satellite data and machine learning methods. Environ. Pollut. 2021, 286, 117489. [Google Scholar] [CrossRef] [PubMed]
- Patricio-Valerio, L.; Schroeder, T.; Devlin, M.J.; Qin, Y.; Smithers, S. A machine learning algorithm for Himawari-8 total suspended solids retrievals in the great barrier reef. Remote Sens. 2022, 14, 3503. [Google Scholar] [CrossRef]
- Mélin, F.; Vantrepotte, V. How optically diverse is the coastal ocean? Remote Sens. Environ. 2015, 160, 235–251. [Google Scholar] [CrossRef]
- Wang, F.; Wang, Y.; Zhang, K.; Hu, M.; Weng, Q.; Zhang, H. Spatial heterogeneity modeling of water quality based on random forest regression and model interpretation. Environ. Res. 2021, 202, 111660. [Google Scholar] [CrossRef] [PubMed]
- Wong, W.Y.; Al-Ani, A.K.I.; Hasikin, K.; Khairuddin, A.S.M.; Razak, S.A.; Hizaddin, H.F.; Mokhtar, M.I.; Azizan, M.M. Water quality index using modified random forest technique: Assessing novel input features. CMES-Comput. Model. Eng. Sci. 2022, 132, 1011–1038. [Google Scholar] [CrossRef]
- Chen, B.; Mu, X.; Chen, P.; Wang, B.; Choi, J.; Park, H.; Xu, S.; Wu, Y.; Yang, H. Machine learning-based inversion of water quality parameters in typical reach of the urban river by uav multispectral data. Ecol. Indic. 2021, 133, 108434. [Google Scholar] [CrossRef]
- Bi, J.; Lin, Y.; Dong, Q.; Yuan, H.; Zhou, M. Large-scale water quality prediction with integrated deep neural network. Inf. Sci. 2021, 571, 191–205. [Google Scholar] [CrossRef]
- Wang, J.; Wu, X.; Ma, D.; Wen, J.; Xiao, Q. Remote sensing retrieval based on machine learning algorithm: Uncertainty analysis. J. Remote Sens. 2023, 27, 790–801. [Google Scholar] [CrossRef]
Bandwidth | Wavelength Range (μm) | Resolution Ratio (m) | Uses |
---|---|---|---|
Band 1 Blue | 0.45–0.52 | 30 | Very strong water penetration for land use, soil, and vegetation characteristics |
Band 2 Green | 0.52–0.60 | 30 | Emphasizing peak vegetation, useful for assessing plant vigor |
Band 3 Red | 0.63–0.69 | 30 | Discriminating vegetation slopes |
Band 4 Near IR | 0.76–0.90 | 30 | Identifying crops and highlighting soil/crop, land/water contrasts |
Band 5 SWIR | 1.55–1.75 | 30 | Monitoring crop drought studies and vegetation growth surveys, distinguishing between cloud, snow, and ice bands |
Band 6 Thermal | 10.40–12.5 | 120 | Determination of geothermal activity, vegetation classification, vegetation stress analysis, and soil moisture |
Band 7 SWIR | 2.08–2.35 | 30 | Distinguishing geological formations and identifying hydrothermal alteration zones in rocks |
Sensors | Bandwidth | Wavelength Range (μm) | Resolution Ratio (m) | Uses |
---|---|---|---|---|
OLI | Band 1 Coastal | 0.43–0.45 | 30 | Coastal Zone Observations |
Band 2 Blue | 0.45–0.51 | 30 | Distinguish between soil, vegetation | |
Band 3 Green | 0.53–0.59 | 30 | Distinguishing Vegetation | |
Band 4 Red | 0.64–0.67 | 30 | Observation of roads, bare soil, vegetation types | |
Band 5 NIR | 0.85–0.88 | 30 | Estimated biomass | |
Band 6 SWIR 1 | 1.57–1.65 | 30 | Vegetation moisture stress, soil moisture, and rock/mineralogy identification | |
Band 7 SWIR 2 | 2.11–2.29 | 30 | Vegetation analysis and soil moisture | |
Band 8 Pan | 0.50–0.68 | 15 | High-resolution black and white imagery, and to enhance the resolution of other bands through pansharpening techniques | |
Band 9 Cirrus | 1.36–1.38 | 30 | Cloud and cirrus detection, as well as for data quality assessment | |
TIRS | Band 10 TIRS 1 | 10.60–11.19 | 100 | Land surface temperature and soil moisture |
Band 11 TIRS 2 | 11.50–12.51 | 100 | Land surface temperature and soil moisture, with a focus on cloud-free observations |
Water Quality Parameters | Max | Min | Average | Aggregate |
---|---|---|---|---|
Chl-a | 38.8 μg/L | 1.1 μg/L | 8.975 μg/L | 72 |
Phosphate | 0.026 mg/L | 0.002 mg/L | 0.013 mg/L | 108 |
DIN | 0.71 mg/L | 0.285 mg/L | 0.533 mg/L | 108 |
Band | Chl-a | DIN | Phosphate |
---|---|---|---|
B1 | 0.271 | 0.133 | 0.427 |
B2 | 0.757 | 0.598 | 0.113 |
B3 | 0.731 | 0.389 | 0.279 |
B4 | 0.700 | 0.371 | 0.113 |
B5 | −0.046 | 0.045 | 0.019 |
B6 | −0.054 | −0.182 | 0.505 |
B7 | −0.128 | −0.193 | 0.500 |
Band-Ratio | Chl-a | DIN | Phosphate | Band Arithmetic | Chl-a | DIN | Phosphate |
---|---|---|---|---|---|---|---|
B3/B5 | 0.777 | 0.358 | 0.235 | B1, B7 | 0.389 | 0.189 | 0.551 |
B5/B2 | −0.608 | −0.586 | −0.058 | B2, B3 | 0.753 | 0.517 | 0.201 |
B6/B5 | 0.098 | −0.190 | 0.684 | B2, B4 | 0.529 | 0.688 | 0.062 |
B1/B2 | −0.742 | 0.111 | −0.378 | B2, B5 | 0.772 | 0.636 | 0.117 |
B3/B4 | −0.066 | 0.043 | 0.043 | B2, B7 | 0.720 | 0.546 | 0.218 |
B4/B6 | 0.716 | 0.473 | −0.199 | B3, B4 | 0.674 | 0.273 | 0.553 |
B5/B6 | −0.098 | 0.225 | −0.570 | B4, B5 | 0.608 | 0.313 | 0.097 |
B6/B2 | −0.529 | −0.520 | 0.312 | B4, B7 | 0.710 | 0.425 | −0.033 |
B6/B7 | 0.517 | 0.219 | −0.010 | B5, B7 | 0.118 | 0.220 | −0.410 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Z.; Zhang, Z.; Li, H.; Jiang, H.; Zhuo, L.; Cai, H.; Chen, C.; Zhao, S. Water Quality in the Ma’an Archipelago Marine Special Protected Area: Remote Sensing Inversion Based on Machine Learning. J. Mar. Sci. Eng. 2024, 12, 1742. https://doi.org/10.3390/jmse12101742
Wang Z, Zhang Z, Li H, Jiang H, Zhuo L, Cai H, Chen C, Zhao S. Water Quality in the Ma’an Archipelago Marine Special Protected Area: Remote Sensing Inversion Based on Machine Learning. Journal of Marine Science and Engineering. 2024; 12(10):1742. https://doi.org/10.3390/jmse12101742
Chicago/Turabian StyleWang, Zhixin, Zhenqi Zhang, Hailong Li, Hong Jiang, Lifei Zhuo, Huiwen Cai, Chao Chen, and Sheng Zhao. 2024. "Water Quality in the Ma’an Archipelago Marine Special Protected Area: Remote Sensing Inversion Based on Machine Learning" Journal of Marine Science and Engineering 12, no. 10: 1742. https://doi.org/10.3390/jmse12101742
APA StyleWang, Z., Zhang, Z., Li, H., Jiang, H., Zhuo, L., Cai, H., Chen, C., & Zhao, S. (2024). Water Quality in the Ma’an Archipelago Marine Special Protected Area: Remote Sensing Inversion Based on Machine Learning. Journal of Marine Science and Engineering, 12(10), 1742. https://doi.org/10.3390/jmse12101742