An Updated Analysis of Long-Term Sea Level Change in China Seas and Their Adjacent Ocean with T/P: Jason-1/2/3 from 1993 to 2022
Abstract
:1. Introduction
2. Satellite Altimetry Data and Processing
2.1. Sources of Study Areas and Altimetry Data
2.2. Collinear Processing
2.3. The Proper Weight
2.4. T/P and Jason-1/2/3 Four Satellites to Establish a Continuous Time Series
3. Results and Analysis
3.1. Study on the Interannual SLC in the CSO
3.2. Study on the Intra-Annual Change in Sea Level in the CSO
3.3. Spatial Characteristics of the SLC in the CSO
3.4. Characteristics of the SLC Cycles in the CSO
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Church, J.; White, N. A 20th century acceleration in global sea-level rise. Geophys. Res. Lett. 2006, 33, L01602. [Google Scholar] [CrossRef]
- Chen, J.L.; Wilson, C.R.; Tapley, B.; Famiglietti, J.; Rodell, M. Seasonal global mean sea level change from satellite altimeter, GRACE, and geophysical models. J. Geod. 2005, 79, 532–539. [Google Scholar] [CrossRef]
- Church, J.; White, N. Sea-level rise from the late 19th to the early 21st century. Surv. Geophys. 2011, 32, 585–602. [Google Scholar] [CrossRef]
- Xie, J.; Sun, Z.; Zhou, S.; Zong, P.; Xiong, Y.; Tu, L. Significant Increase in Global Steric Sea Level Variations over the Past 40 Years. Remote Sens. 2024, 16, 2466. [Google Scholar] [CrossRef]
- Jayne, S.R.; Wahr, J.M.; Bryan, F. Observing ocean heat content using satellite gravity and altimetry. Geophys. Res. Earth Surf. 2003, 108, 3031. [Google Scholar]
- Feng, J.; Li, D.; Wang, T.; Liu, Q.; Deng, L.; Zhao, L. Acceleration of the extreme sea level rise along the Chinese coast. Earth Space Sci. 2019, 6, 10–15. [Google Scholar] [CrossRef]
- Guo, J.; Wang, J.; Hu, Z.; Liu, X.; Kong, Q.; Zhao, C. Vertical land movement over China coasts determined by tide gauge and satellite altimetric data. Arab. J. Geosci. 2016, 9, 23–25. [Google Scholar] [CrossRef]
- Shanwei, L.; Yue, J.; Qinting, S.; Iiang, J. Estimation of Sea Level Change in the South China Sea from Satellite Altimetry Data. Sci. Program. 2021, 3, 12–13. [Google Scholar]
- Zeng, Z.; Lai, C.; Wang, Z.; Chen, Y.; Chen, X. Future sea level rise exacerbates compound floods induced by rainstorm and storm tide during super typhoon events: A case study from Zhuhai, China. Sci. Total Environ. 2023, 119, 168799. [Google Scholar] [CrossRef]
- Cazenave, A.; Dieng, H.; Meyssignac, B.; Von Schuckmann, K.; Decharme, B.; Berthier, E. The rate of sea-level rise. Nat. Clim. Change 2014, 4, 358–361. [Google Scholar] [CrossRef]
- Timmermans, W.; Gommenginger, P.; Donlon, J. Uncertainty in Sea State Observations from Satellite Altimeters and Buoys during the Jason-3/Sentinel-6 MF Tandem Experiment. Remote Sens. 2024, 16, 2395. [Google Scholar] [CrossRef]
- Jia, Y.; Xiao, K.; Lin, M.; Zhang, X. Analysis of Global Sea Level Change Based on Multi-Source Data. Remote Sens. 2022, 14, 4854. [Google Scholar] [CrossRef]
- Wang, F.; Shen, Y.; Chen, Q.; Chen, J.; Geng, J. Global Sea Level Change Rate, Acceleration and Its Components from 1993 to 2016. Mar. Geod. 2024, 47, 23–40. [Google Scholar] [CrossRef]
- Guo, J.; Wang, J.; Hu, Z.; Huang, J.; Chen, C.; Gao, Y. Spatiotemporal variations of sea level in China from 1993 to 2012 detected by TOPEX/Poseidon and Jason-1/2. Chin. J. Geophys. 2015, 58, 3103–3120. [Google Scholar]
- Xiao, K. Study on Sea Level Changes Based on Multi-Source Satellite Altimetry Data. Ph.D. Thesis, Jiangsu University of Science and Technology, Lianyungang, China, 2022. [Google Scholar]
- Desai, S.; Wahr, J.; Beckley, B. Revisiting the pole tide for and from satellite altimetry. J. Geod. 2015, 89, 1233–1243. [Google Scholar] [CrossRef]
- Legeais, J.-F.; Ablain, M.; Zawadzki, L.; Zuo, H.; Johannessen, J.A.; Scharffenberg, M.G.; Fenoglio-Marc, L.; Fernandes, M.J.; Andersen, O.B.; Rudenko, S. An improved and homogeneous altimeter sea level record from the ESA Climate Change Initiative. Earth Syst. Sci. Data 2018, 10, 281–301. [Google Scholar] [CrossRef]
- Shao, Q.; Zhao, J. Comparing the steric height in the Nordic Seas with satellite altimeter sea surface height. Acta Oceanol. Sin. 2015, 34, 32–37. [Google Scholar] [CrossRef]
- Ardalan, A.; Hashemifaraz, A. Tidal modeling based on satellite altimetry observations of TOPEX/Poseidon, Jason1, Jason2, and Jason3 with high prediction capability: A case study of the Baltic Sea. Geod. Geodyn. 2024, 15, 404–418. [Google Scholar] [CrossRef]
- Arnault, S.; Pujol, I.; Mélice, J.L. In Situ Validation of Jason-1 and Jason-2 Altimetry Missions in the Tropical Atlantic Ocean. Mar. Geod. 2011, 34, 319–339. [Google Scholar] [CrossRef]
- Wan, J.; Sun, Q.; Liu, S.; Li, Y. Sea-Level Change over the China Sea and Its Vicinity Derived from 25-Year T/P Series Altimeter Data. J. Indian Soc. Remote Sens. 2018, 46, 1939–1947. [Google Scholar] [CrossRef]
- Srinivasan, M.; Tsontos, V. Satellite Altimetry for Ocean and Coastal Applications: A Review. Remote Sens. 2023, 15, 3939. [Google Scholar] [CrossRef]
- Bonnefond, P.; Exertier, P.; Laurain, O.; Jan, G. Absolute Calibration of Jason-1 and Jason-2 Altimeters in Corsica during the Formation Flight Phase. Mar. Geod. 2010, 33, 80–90. [Google Scholar] [CrossRef]
- Beckley, B.D.; Zelensky, N.P.; Holmes, S.A.; Lemoine, F.G.; Brown, S.T. Assessment of the jason2 extension to the topex/poseidon, jason1 sea-surface height time series for global mean sea level monitoring. Mar. Geod. 2010, 33, 447–471. [Google Scholar] [CrossRef]
- Yuan, J. Modeling of Mean Sea Level and Fine Sea Level Changes Based on Multi-Source Satellite Altimetry Data. Ph.D. Thesis, Shandong University of Science and Technology, Qingdao, China, 2021. [Google Scholar]
- Dong, X.; Huang, C. Monitoring Global mean sea level variation with TOPEX/Poseidon altimetry. Acta Geod. Cartogr. Sin. 2000, 29, 266–272. [Google Scholar]
- AVISO. Along-Track Level-2 +(L2P) SLA Product Handbook; SALP-MU-P-EA-23150-CLS; AVISO: Redwood City, CA, USA, 2017. [Google Scholar]
- Yuan, J.; Guo, J.; Zhang, C. SDUST2020 MSS: A global 1′ × 1′ mean sea surface model determined from multi-satellite altimetry data. Earth Syst. Sci. Data 2023, 15, 155–169. [Google Scholar] [CrossRef]
- Sun, Q.; Wan, J.; Liu, S.; Jiang, J.; Muhammad, Y. A new decomposition model of sea level variability for the sea level anomaly time series prediction. J. Oceanol. Limnol. 2023, 41, 1629–1642. [Google Scholar] [CrossRef]
- Maitland, O.D.; Taylor, A.M.; Stephenson, S.T. Investigation of Multi-Timescale Sea Level Variability near Jamaica in the Caribbean Using Satellite Altimetry Records. J. Mar. Sci. Eng. 2023, 11, 1499. [Google Scholar] [CrossRef]
- Wang, H.; Quan, M.; Xu, W.; Xiang, W.; Li, W. Prediction of Sea Level Rise in China’s Coastal and Nearshore Areas. Acta Oceanol. Sin. 2023, 45, 1–10. [Google Scholar]
- Fu, Y.; Zhou, X.; Zhou, D.; Li, J.; Zhang, W. Estimation of sea level variability in the South China Sea from satellite altimetry and tide gauge data. Adv. Space Res. 2021, 68, 523–533. [Google Scholar] [CrossRef]
- Voosen, P. Seas are rising faster than ever. Science 2020, 370, 901. [Google Scholar] [CrossRef]
- Mu, D.; Xu, T.; Yan, H. Sea level rise along China coast from 1950 to 2020. Sci. China Earth Sci. 2024, 67, 802–810. [Google Scholar] [CrossRef]
- Hayes, D.P. Influenza pandemics, solar activity cycles, and vitamin d. Med. Hypotheses 2010, 74, 831–834. [Google Scholar] [CrossRef]
Region/Rate/ Season | Spring | Summer | Autumn | Winter |
---|---|---|---|---|
Bohai Sea | 3.6 | 3.8 | 4.4 | 3.4 |
Yellow Sea | 3.5 | 4.1 | 3.9 | 3.3 |
East China Sea | 3.1 | 3.3 | 2.4 | 3.2 |
South China Sea | 3.6 | 3.7 | 4.0 | 4.2 |
China seas and their adjacent ocean | 3.6 | 3.7 | 3.8 | 4.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, L.; Yuan, J.; Wu, Z.; Hu, L.; Zhang, J.; Sun, J. An Updated Analysis of Long-Term Sea Level Change in China Seas and Their Adjacent Ocean with T/P: Jason-1/2/3 from 1993 to 2022. J. Mar. Sci. Eng. 2024, 12, 1889. https://doi.org/10.3390/jmse12101889
Wu L, Yuan J, Wu Z, Hu L, Zhang J, Sun J. An Updated Analysis of Long-Term Sea Level Change in China Seas and Their Adjacent Ocean with T/P: Jason-1/2/3 from 1993 to 2022. Journal of Marine Science and Engineering. 2024; 12(10):1889. https://doi.org/10.3390/jmse12101889
Chicago/Turabian StyleWu, Lingling, Jiajia Yuan, Zhendong Wu, Liyu Hu, Jiaojiao Zhang, and Jianpin Sun. 2024. "An Updated Analysis of Long-Term Sea Level Change in China Seas and Their Adjacent Ocean with T/P: Jason-1/2/3 from 1993 to 2022" Journal of Marine Science and Engineering 12, no. 10: 1889. https://doi.org/10.3390/jmse12101889
APA StyleWu, L., Yuan, J., Wu, Z., Hu, L., Zhang, J., & Sun, J. (2024). An Updated Analysis of Long-Term Sea Level Change in China Seas and Their Adjacent Ocean with T/P: Jason-1/2/3 from 1993 to 2022. Journal of Marine Science and Engineering, 12(10), 1889. https://doi.org/10.3390/jmse12101889