Numerical Study on Evaluation of Environmental DNA Approach for Estimating Fish Abundance and Distribution in Semi-Enclosed Bay
Abstract
:1. Introduction
2. Materials and Methods
2.1. eDNA Approach for Estimating Fish Abundance and Distribution
2.2. Simulation of Current Field
2.3. Latent Fish Density for Simulation
2.4. Evaluation of the eDNA Approach
3. Results
3.1. Comparison of Estimation Accuracies Between Cases
3.2. Evaluation of an eDNA Approach for Estimating Fish Abundance
3.3. Evaluation of an eDNA Approach for Estimating Fish Distribution
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cooke, S.J.; Fulton, E.A.; Sauer, W.H.; Lynch, A.J.; Link, J.S.; Koning, A.A.; Jena, J.; Silva, L.G.; King, A.J.; Kelly, R. Towards vibrant fish populations and sustainable fisheries that benefit all: Learning from the last 30 years to inform the next 30 years. Rev. Fish. Biol. Fish. 2023, 33, 317–347. [Google Scholar] [CrossRef] [PubMed]
- Gebremedhin, S.; Bruneel, S.; Getahun, A.; Anteneh, W.; Goethals, P. Scientific methods to understand fish population dynamics and support sustainable fisheries management. Water 2021, 13, 574. [Google Scholar] [CrossRef]
- Galbraith, E.D.; Carozza, D.A.; Bianchi, D. A coupled human-Earth model perspective on long-term trends in the global marine fishery. Nat. Commun. 2017, 8, 14884. [Google Scholar] [CrossRef]
- Munro, J.L.; Bell, J.D. Enhancement of marine fisheries resources. Rev. Fish. Sci. 1997, 5, 185–222. [Google Scholar] [CrossRef]
- Fisheries and Agriculture Organization. The State of World Fisheries and Aquaculture 2018—Meeting the Sustainable Development Goals; Fisheries and Agriculture Organization: Rome, Italy, 2018. [Google Scholar]
- Bach, V.; Hélias, A.; Muhl, M.; Wojciechowski, A.; Bosch, H.; Binder, M.; Finkbeiner, M. Assessing overfishing based on the distance-to-target approach. Int. J. Life Cycle Assess. 2022, 27, 573–586. [Google Scholar] [CrossRef]
- Pacoureau, N.; Rigby, C.L.; Kyne, P.M.; Sherley, R.B.; Winker, H.; Carlson, J.K.; Fordham, S.V.; Barreto, R.; Fernando, D.; Francis, M.P. Half a century of global decline in oceanic sharks and rays. Nature 2021, 589, 567–571. [Google Scholar] [CrossRef] [PubMed]
- Rourke, M.L.; Fowler, A.M.; Hughes, J.M.; Broadhurst, M.K.; DiBattista, J.D.; Fielder, S.; Wilkes Walburn, J.; Furlan, E.M. Environmental DNA (eDNA) as a tool for assessing fish biomass: A review of approaches and future considerations for resource surveys. Environ. DNA 2022, 4, 9–33. [Google Scholar] [CrossRef]
- Feng, Y.; Wei, Y.; Sun, S.; Liu, J.; An, D.; Wang, J. Fish abundance estimation from multi-beam sonar by improved MCNN. Aquat. Ecol. 2023, 57, 895–911. [Google Scholar] [CrossRef]
- Dennis, D.; Plagányi, É.; Van Putten, I.; Hutton, T.; Pascoe, S. Cost benefit of fishery-independent surveys: Are they worth the money? Mar. Policy 2015, 58, 108–115. [Google Scholar] [CrossRef]
- Bonar, S.A.; Hubert, W.A.; Willis, D.W. Standard Methods for Sampling North American Freshwater Fishes; American Fisheries Society: Bethesda, MD, USA, 2009. [Google Scholar]
- Lettink, M.; Armstrong, D.P. An introduction to using mark-recapture analysis for monitoring threatened species. Dep. Conserv. Tech. Ser. A 2003, 28, 5–32. [Google Scholar]
- Seber, G.A. A review of estimating animal abundance. Biometrics 1986, 42, 267–292. [Google Scholar] [CrossRef] [PubMed]
- Vaughan, D.L.; Recksiek, C.W. Detection of market squid, Loligo opalescens, with echo sounders. CalCOFI Rep. 1979, 20, 40–50. [Google Scholar]
- Deiner, K.; Bik, H.M.; Mächler, E.; Seymour, M.; Lacoursière-Roussel, A.; Altermatt, F.; Creer, S.; Bista, I.; Lodge, D.M.; De Vere, N. Environmental DNA metabarcoding: Transforming how we survey animal and plant communities. Mol. Ecol. 2017, 26, 5872–5895. [Google Scholar] [CrossRef] [PubMed]
- Hansen, B.K.; Bekkevold, D.; Clausen, L.W.; Nielsen, E.E. The sceptical optimist: Challenges and perspectives for the application of environmental DNA in marine fisheries. Fish. Fish. 2018, 19, 751–768. [Google Scholar] [CrossRef]
- Laramie, M.B.; Pilliod, D.S.; Goldberg, C.S.; Strickler, K.M. Environmental DNA Sampling Protocol-Filtering Water to Capture DNA from Aquatic Organisms; U.S. Geological Survey: Reston, VA, USA, 2015. [Google Scholar] [CrossRef]
- Lacoursière-Roussel, A.; Côté, G.; Leclerc, V.; Bernatchez, L. Quantifying relative fish abundance with eDNA: A promising tool for fisheries management. J. Appl. Ecol. 2016, 53, 1148–1157. [Google Scholar] [CrossRef]
- Sassoubre, L.M.; Yamahara, K.M.; Gardner, L.D.; Block, B.A.; Boehm, A.B. Quantification of environmental DNA (eDNA) shedding and decay rates for three marine fish. Environ. Sci. Technol. 2016, 50, 10456–10464. [Google Scholar] [CrossRef]
- Klymus, K.E.; Richter, C.A.; Chapman, D.C.; Paukert, C. Quantification of eDNA shedding rates from invasive bighead carp Hypophthalmichthys nobilis and silver carp Hypophthalmichthys molitrix. Biol. Conserv. 2015, 183, 77–84. [Google Scholar] [CrossRef]
- Maruyama, A.; Nakamura, K.; Yamanaka, H.; Kondoh, M.; Minamoto, T. The release rate of environmental DNA from juvenile and adult fish. PLoS ONE 2014, 9, e114639. [Google Scholar] [CrossRef]
- Andersen, K.; Bird, K.L.; Rasmussen, M.; Haile, J.; Breuning-Madsen, H.; Kjaer, K.H.; Orlando, L.; Gilbert, M.T.P.; Willerslev, E. Meta-barcoding of ‘dirt’DNA from soil reflects vertebrate biodiversity. Mol. Ecol. 2012, 21, 1966–1979. [Google Scholar] [CrossRef]
- Nakagawa, H.; Yamamoto, S.; Sato, Y.; Sado, T.; Minamoto, T.; Miya, M. Comparing local-and regional-scale estimations of the diversity of stream fish using eDNA metabarcoding and conventional observation methods. Freshwat. Biol. 2018, 63, 569–580. [Google Scholar] [CrossRef]
- Baldigo, B.P.; Sporn, L.A.; George, S.D.; Ball, J.A. Efficacy of environmental DNA to detect and quantify brook trout populations in headwater streams of the Adirondack Mountains, New York. Trans. Am. Fish. Soc. 2017, 146, 99–111. [Google Scholar] [CrossRef]
- Eichmiller, J.J.; Miller, L.M.; Sorensen, P.W. Optimizing techniques to capture and extract environmental DNA for detection and quantification of fish. Mol. Ecol. Resour. 2016, 16, 56–68. [Google Scholar] [CrossRef] [PubMed]
- Díaz-Ferguson, E.; Herod, J.; Galvez, J.; Moyer, G. Development of molecular markers for eDNA detection of the invasive African jewelfish (Hemichromis letourneuxi): A new tool for monitoring aquatic invasive species in National Wildlife Refuges. Manag. Biol. Invasions 2014, 5, 121. [Google Scholar] [CrossRef]
- Ghosal, R.; Eichmiller, J.J.; Witthuhn, B.A.; Sorensen, P.W. Attracting Common Carp to a bait site with food reveals strong positive relationships between fish density, feeding activity, environmental DNA, and sex pheromone release that could be used in invasive fish management. Ecol. Evol. 2018, 8, 6714–6727. [Google Scholar] [CrossRef] [PubMed]
- Nevers, M.B.; Byappanahalli, M.N.; Morris, C.C.; Shively, D.; Przybyla-Kelly, K.; Spoljaric, A.M.; Dickey, J.; Roseman, E.F. Environmental DNA (eDNA): A tool for quantifying the abundant but elusive round goby (Neogobius melanostomus). PLoS ONE 2018, 13, e0191720. [Google Scholar] [CrossRef]
- Eichmiller, J.J.; Bajer, P.G.; Sorensen, P.W. The relationship between the distribution of common carp and their environmental DNA in a small lake. PLoS ONE 2014, 9, e112611. [Google Scholar] [CrossRef]
- Fukaya, K.; Murakami, H.; Yoon, S.; Minami, K.; Osada, Y.; Yamamoto, S.; Masuda, R.; Kasai, A.; Miyashita, K.; Minamoto, T. Estimating fish population abundance by integrating quantitative data on environmental DNA and hydrodynamic modelling. Mol. Ecol. 2021, 30, 3057–3067. [Google Scholar] [CrossRef]
- Itakura, H.; Wakiya, R.; Sakata, M.K.; Hsu, H.; Chen, S.; Yang, C.; Huang, Y.; Han, Y.; Yamamoto, S.; Minamoto, T. Estimations of riverine distribution, abundance, and biomass of Anguillid Eels in Japan and Taiwan using environmental DNA analysis. Zool. Stud. 2020, 59, e17. [Google Scholar] [CrossRef]
- Itakura, H.; Wakiya, R.; Yamamoto, S.; Kaifu, K.; Sato, T.; Minamoto, T. Environmental DNA analysis reveals the spatial distribution, abundance, and biomass of Japanese eels at the river-basin scale. Aquat. Conserv. Mar. Freshwat. Ecosyst. 2019, 29, 361–373. [Google Scholar] [CrossRef]
- Capo, E.; Spong, G.; Norman, S.; Königsson, H.; Bartels, P.; Byström, P. Droplet digital PCR assays for the quantification of brown trout (Salmo trutta) and Arctic char (Salvelinus alpinus) from environmental DNA collected in the water of mountain lakes. PLoS ONE 2019, 14, e0226638. [Google Scholar] [CrossRef]
- Lacoursière-Roussel, A.; Rosabal, M.; Bernatchez, L. Estimating fish abundance and biomass from eDNA concentrations: Variability among capture methods and environmental conditions. Mol. Ecol. Resour. 2016, 16, 1401–1414. [Google Scholar] [CrossRef] [PubMed]
- Urban, P.; Bekkevold, D.; Hansen, B.K.; Jacobsen, M.W.; Nielsen, A.; Nielsen, E.E. Using eDNA to estimate biomass of bycatch in pelagic fisheries. Environ. DNA 2024, 6, e377. [Google Scholar] [CrossRef]
- Benoit, N.P.; Robinson, K.M.; Kellogg, C.T.; Lemay, M.A.; Hunt, B.P. Using qPCR of environmental DNA (eDNA) to estimate the biomass of juvenile Pacific salmon (Oncorhynchus spp.). Environ. DNA 2023, 5, 683–696. [Google Scholar] [CrossRef]
- Osathanunkul, M.; Suwannapoom, C. eDNA testing reveals surprising findings on fish population dynamics in Thailand. Heliyon 2023, 9, e17102. [Google Scholar] [CrossRef] [PubMed]
- Jo, T.; Murakami, H.; Masuda, R.; Sakata, M.K.; Yamamoto, S.; Minamoto, T. Rapid degradation of longer DNA fragments enables the improved estimation of distribution and biomass using environmental DNA. Mol. Ecol. Resour. 2017, 17, e25–e33. [Google Scholar] [CrossRef]
- Williams, B.K.; Nichols, J.D.; Conroy, M.J. Analysis and Management of Animal Populations; Academic Press: New York, NY, USA, 2002. [Google Scholar]
- Hong, S.H. The Characteristic of Tidal Current and Temperature in Jinhae Bay by Numerical Model Experiments. Ph.D. Thesis, Chonnam National University, Gwangju, Republic of Korea, 2016. [Google Scholar]
- Willmott, C.J. On the validation of models. Phys. Geogr. 1981, 2, 184–194. [Google Scholar] [CrossRef]
- Park, S.; Yoon, S.; Lee, I.-C.; Kim, B.K.; Kim, K. Prediction of Stratification Strength and Dissolved Oxygen due to Cold Discharge of Jinhae Bay in Summer. J. Korean Soc. Mar. Environ. Energy 2021, 24, 106–118. [Google Scholar] [CrossRef]
- Rosner, B. Percentage points for a generalized ESD many-outlier procedure. Technometrics 1983, 25, 165–172. [Google Scholar] [CrossRef]
- Andruszkiewicz, E.A.; Koseff, J.R.; Fringer, O.B.; Ouellette, N.T.; Lowe, A.B.; Edwards, C.A.; Boehm, A.B. Modeling environmental DNA transport in the coastal ocean using Lagrangian particle tracking. Front. Mar. Sci. 2019, 6, 477. [Google Scholar] [CrossRef]
- Jane, S.F.; Wilcox, T.M.; McKelvey, K.S.; Young, M.K.; Schwartz, M.K.; Lowe, W.H.; Letcher, B.H.; Whiteley, A.R. Distance, flow and PCR inhibition: E DNA dynamics in two headwater streams. Mol. Ecol. Resour. 2015, 15, 216–227. [Google Scholar] [CrossRef]
- Nukazawa, K.; Hamasuna, Y.; Suzuki, Y. Simulating the advection and degradation of the environmental DNA of common carp along a river. Environ. Sci. Technol. 2018, 52, 10562–10570. [Google Scholar] [CrossRef] [PubMed]
- Sansom, B.J.; Sassoubre, L.M. Environmental DNA (eDNA) shedding and decay rates to model freshwater mussel eDNA transport in a river. Environ. Sci. Technol. 2017, 51, 14244–14253. [Google Scholar] [CrossRef] [PubMed]
- Shogren, A.J.; Tank, J.L.; Andruszkiewicz, E.; Olds, B.; Mahon, A.R.; Jerde, C.L.; Bolster, D. Controls on eDNA movement in streams: Transport, retention, and resuspension. Sci. Rep. 2017, 7, 5065. [Google Scholar] [CrossRef] [PubMed]
- Wood, Z.T.; Lacoursière-Roussel, A.; LeBlanc, F.; Trudel, M.; Kinnison, M.T.; Garry McBrine, C.; Pavey, S.A.; Gagné, N. Spatial heterogeneity of eDNA transport improves stream assessment of threatened salmon presence, abundance, and location. Front. Ecol. Evol. 2021, 9, 650717. [Google Scholar] [CrossRef]
- Shelton, A.O.; Ramón-Laca, A.; Wells, A.; Clemons, J.; Chu, D.; Feist, B.E.; Kelly, R.P.; Parker-Stetter, S.L.; Thomas, R.; Nichols, K.M. Environmental DNA provides quantitative estimates of Pacific hake abundance and distribution in the open ocean. Proc. R. Soc. B 2022, 289, 20212613. [Google Scholar] [CrossRef]
Reproducibility | R Between Latent and Estimated Fish Densities | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Top KVR | Bottom KVR | Top KVR | Bottom KVR | |||||||||
1% | 50% | 90% | 1% | 50% | 90% | 1% | 50% | 90% | 1% | 50% | 90% | |
Case1-1 | 0.96 | 0.94 | 0.98 | 0.86 | 0.96 | 0.99 | 0.08 | 0.44 | 0.85 | 0.03 | 0.49 | 0.87 |
Case1-2 | 1.04 | 0.95 | 0.97 | 0.87 | 0.94 | 0.99 | 0.10 | 0.45 | 0.86 | 0.04 | 0.52 | 0.88 |
Case1-3 | 0.92 | 0.93 | 0.97 | 0.87 | 0.93 | 0.99 | 0.09 | 0.43 | 0.83 | 0.00 | 0.49 | 0.84 |
Case1-4 | 0.93 | 0.96 | 0.97 | 0.84 | 0.93 | 0.99 | 0.10 | 0.42 | 0.85 | 0.00 | 0.50 | 0.87 |
Case1-5 | 1.01 | 0.93 | 0.97 | 0.86 | 0.93 | 0.99 | 0.07 | 0.43 | 0.85 | 0.06 | 0.47 | 0.87 |
Case2-1 | 0.96 | 0.93 | 0.97 | 0.85 | 0.93 | 0.99 | 0.10 | 0.48 | 0.84 | 0.03 | 0.47 | 0.87 |
Case2-2 | 0.99 | 0.95 | 0.97 | 0.84 | 0.94 | 0.99 | 0.10 | 0.46 | 0.86 | 0.02 | 0.52 | 0.87 |
Case2-3 | 0.99 | 0.96 | 0.97 | 0.87 | 0.93 | 0.99 | 0.08 | 0.39 | 0.82 | 0.01 | 0.46 | 0.86 |
Case2-4 | 0.94 | 0.93 | 0.98 | 0.83 | 0.94 | 0.98 | 0.09 | 0.48 | 0.84 | 0.02 | 0.48 | 0.88 |
Case2-5 | 1.02 | 0.95 | 0.98 | 0.91 | 0.94 | 0.99 | 0.11 | 0.48 | 0.86 | 0.02 | 0.48 | 0.89 |
Case3-1 | 0.94 | 0.94 | 0.97 | 0.94 | 0.91 | 0.99 | 0.06 | 0.45 | 0.82 | 0.02 | 0.52 | 0.87 |
Case3-2 | 0.99 | 0.94 | 0.97 | 0.93 | 0.92 | 0.98 | 0.08 | 0.45 | 0.84 | 0.05 | 0.50 | 0.87 |
Case3-3 | 0.92 | 0.96 | 0.97 | 0.86 | 0.91 | 0.99 | 0.09 | 0.42 | 0.84 | 0.04 | 0.43 | 0.85 |
Case3-4 | 1.02 | 0.94 | 0.97 | 1.05 | 0.94 | 0.99 | 0.11 | 0.48 | 0.84 | 0.03 | 0.47 | 0.87 |
Case3-5 | 0.98 | 0.95 | 0.98 | 0.82 | 0.93 | 0.98 | 0.07 | 0.43 | 0.83 | 0.04 | 0.47 | 0.84 |
Mean | 0.97 | 0.94 | 0.97 | 0.88 | 0.93 | 0.99 | 0.09 | 0.45 | 0.84 | 0.03 | 0.48 | 0.87 |
Std. Dev. | 0.04 | 0.01 | 0.00 | 0.06 | 0.01 | 0.00 | 0.02 | 0.03 | 0.01 | 0.02 | 0.03 | 0.01 |
Case1-1 | Case2-1 | Case3-1 | |||||
---|---|---|---|---|---|---|---|
Abundance (Reproducibility) | R | Abundance (Reproducibility) | R | Abundance (Reproducibility) | R | ||
Top KVR (%) | 1 | 2.83 × 1010 (0.96) | 0.08 | 2.89 × 1010 (0.96) | 0.10 | 2.81 (0.94) | 0.06 |
3 | 2.92 (0.99) | 0.10 | 2.95 (0.97) | 0.13 | 2.85 (0.95) | 0.10 | |
5 | 2.82 (0.96) | 0.13 | 2.91 (0.96) | 0.14 | 2.72 (0.91) | 0.14 | |
7 | 2.82 (0.96) | 0.14 | 2.83 (0.94) | 0.16 | 2.70 (0.90) | 0.16 | |
10 | 2.86 (0.97) | 0.16 | 2.85 (0.94) | 0.20 | 2.73 (0.91) | 0.19 | |
20 | 2.83 (0.96) | 0.23 | 2.74 (0.91) | 0.28 | 2.75 (0.92) | 0.24 | |
30 | 2.76 (0.94) | 0.32 | 2.75 (0.91) | 0.34 | 2.79 (0.93) | 0.30 | |
40 | 2.78 (0.94) | 0.38 | 2.80 (0.93) | 0.40 | 2.81 (0.94) | 0.37 | |
50 | 2.78 (0.94) | 0.44 | 2.81 (0.93) | 0.48 | 2.82 (0.94) | 0.45 | |
60 | 2.80 (0.95) | 0.54 | 2.78 (0.92) | 0.58 | 2.84 (0.95) | 0.52 | |
70 | 2.86 (0.97) | 0.64 | 2.87 (0.95) | 0.66 | 2.86 (0.96) | 0.62 | |
80 | 2.80 (0.95) | 0.72 | 2.87 (0.95) | 0.73 | 2.84 (0.95) | 0.70 | |
90 | 2.88 (0.98) | 0.85 | 2.94 (0.97) | 0.84 | 2.91 (0.97) | 0.82 | |
Bottom KVR (%) | 1 | 2.52 (0.86) | 0.03 | 2.56 (0.85) | 0.03 | 2.80 (0.94) | 0.02 |
3 | 2.79 (0.95) | 0.01 | 2.47 (0.82) | 0.05 | 2.70 (0.91) | 0.05 | |
5 | 2.71 (0.92) | 0.07 | 2.64 (0.87) | 0.08 | 2.78 (0.93) | 0.05 | |
7 | 2.68 (0.91) | 0.10 | 2.71 (0.90) | 0.05 | 2.74 (0.92) | 0.09 | |
10 | 2.74 (0.93) | 0.12 | 2.80 (0.93) | 0.07 | 2.68 (0.90) | 0.11 | |
20 | 2.68 (0.91) | 0.21 | 2.72 (0.90) | 0.17 | 2.72 (0.91) | 0.23 | |
30 | 2.76 (0.93) | 0.30 | 2.73 (0.90) | 0.27 | 2.65 (0.89) | 0.33 | |
40 | 2.76 (0.94) | 0.41 | 2.74 (0.90) | 0.37 | 2.70 (0.90) | 0.43 | |
50 | 2.82 (0.96) | 0.49 | 2.81 (0.93) | 0.47 | 2.73 (0.91) | 0.52 | |
60 | 2.83 (0.96) | 0.59 | 2.87 (0.95) | 0.60 | 2.78 (0.93) | 0.61 | |
70 | 2.87 (0.97) | 0.68 | 2.91 (0.96) | 0.71 | 2.84 (0.95) | 0.70 | |
80 | 2.87 (0.97) | 0.79 | 2.96 (0.98) | 0.79 | 2.89 (0.97) | 0.79 | |
90 | 2.92 (0.99) | 0.87 | 3.00 (0.99) | 0.87 | 2.95 (0.99) | 0.87 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, S.; Yoon, S.; Kim, K. Numerical Study on Evaluation of Environmental DNA Approach for Estimating Fish Abundance and Distribution in Semi-Enclosed Bay. J. Mar. Sci. Eng. 2024, 12, 1891. https://doi.org/10.3390/jmse12101891
Park S, Yoon S, Kim K. Numerical Study on Evaluation of Environmental DNA Approach for Estimating Fish Abundance and Distribution in Semi-Enclosed Bay. Journal of Marine Science and Engineering. 2024; 12(10):1891. https://doi.org/10.3390/jmse12101891
Chicago/Turabian StylePark, Seongsik, Seokjin Yoon, and Kyunghoi Kim. 2024. "Numerical Study on Evaluation of Environmental DNA Approach for Estimating Fish Abundance and Distribution in Semi-Enclosed Bay" Journal of Marine Science and Engineering 12, no. 10: 1891. https://doi.org/10.3390/jmse12101891
APA StylePark, S., Yoon, S., & Kim, K. (2024). Numerical Study on Evaluation of Environmental DNA Approach for Estimating Fish Abundance and Distribution in Semi-Enclosed Bay. Journal of Marine Science and Engineering, 12(10), 1891. https://doi.org/10.3390/jmse12101891