Assessment of a Tropical Transition over the Southwestern South Atlantic Ocean: The Case of Cyclone Akará
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data
2.3. Analyses
2.3.1. Cyclone Tracking, Basic Features, and Classification
2.3.2. Physical Mechanisms
- Synoptic charts: they are constructed using MSLP, 1000–500 hPa thickness (i.e., the distance between two pressure levels, it reflects the temperature distribution in the atmosphere, and helps identify fronts), and 250 hPa wind intensity higher than 30 m s−1 (to represent the upper-level jets). The combination of these three variables allows the identification of low- and high-pressure systems and cold, warm, and occluded fronts. After the identification of these systems, they are manually drawn on the charts.
- Vertical shear of the horizontal wind (also referred to in the literature as environmental vertical wind shear): a preliminary analysis of the cyclone’s characteristics showed that this system had a deep core and slow movement aligning with those described by Zeng et al. [10], where deep vertical wind shear (200–850 hPa) has a greater influence on cyclogenesis than shear at other vertical levels. Therefore, we computed the vertical wind shear (defined here as the difference in wind intensity) using 200–850 hPa isobaric levels. Regions with strong shear indicate that the upper-level winds are more intense than those at lower levels (typically characterizing baroclinic regions). In addition, environments with wind shear > 10 m s−1 are not proper for tropical cyclones.
- Relative vorticity due to horizontal wind shear (hereafter shear vorticity): shear vorticity induces rotation through a change in wind speed in the direction normal to the flow. Relative vorticity (ζ) can be defined as the sum of shear vorticity and curvature vorticity as ζ = + , and the shear vorticity can be calculated using Equation B.9 from Schenkel [32] adapted for spherical coordinates:
- Mass divergence: this quantity is computed as the dot product of the del operator () and the velocity vector field [33]. In spherical coordinates, mass divergence is expressed as:
- Horizontal temperature advection: it is calculated as the negative dot product of the wind vector and the gradient of temperature [33]. The formula in spherical coordinates is as follows:
- Vertically Integrated Moisture Flux (VIMF): this quantity, following Peixoto and Oort [34] (pg. 274), is calculated as follows:
- Equivalent potential temperature (θe): it is the temperature that an air parcel would have if it were lifted from its current level to the upper atmosphere until all the water vapor condenses out (saturated adiabatically), and then brought back down to standard pressure (typically 1000 hPa) along a dry adiabat [35]. Essentially, it accounts for both the temperature and the moisture content of the air [36], making it a useful variable for assessing instability and convective potential. For stability, a positive gradient of θe with height (i.e., increasing θe with increasing height) means a stable condition, and a negative gradient of θe (i.e., decreasing θe with increasing height) represents an unstable condition [37,38]. θe allows us to understand the vertical structure of the atmosphere without needing to compute deviations, as is required with air temperature. In the latter case, since temperature tends to decrease with height, it becomes difficult to identify which regions in the troposphere are experiencing physical processes such as advection. Here, θe is computed using the expression obtained from [33]:
3. Results and Discussions
3.1. Basic Features and Classification
3.2. Physical Processes at Cyclogenesis
3.3. Tropical Transition
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zehr, R.M. Tropical Cyclogenesis in the Western North Pacific; NOAA Technical Report NESDIS; NESDIDS: Silver Spring, MD, USA, 1992; Volume 61, p. 181.
- DeMaria, M.; Knaff, J.A.; Connell, B.H. A tropical cyclone genesis parameter for the tropical Atlantic. Weather. Forecast. 2001, 16, 219–233. [Google Scholar] [CrossRef]
- Zheng, X.; Duan, Y.; Yu, H. Dynamical effects of environmental vertical wind shear on tropical cyclone motion, structure, and intensity. Meteorol. Atmos. Phys. 2007, 97, 207–220. [Google Scholar] [CrossRef]
- Uddin, M.J.; Nasrin, Z.M.; Li, Y. Effects of vertical wind shear and storm motion on tropical cyclone rainfall asymmetries over the North Indian Ocean. Dyn. Atmos. Oceans 2021, 93, 101196. [Google Scholar] [CrossRef]
- Rios-Berrios, R.; Finocchio, P.M.; Alland, J.J.; Chen, X.; Fischer, M.S.; Stevenson, S.N.; Tao, D. A review of the interactions between tropical cyclones and environmental vertical wind shear. J. Atmos. Sci. 2024, 81, 713–741. [Google Scholar] [CrossRef]
- Palmén, E. On the Distribution of Temperature and Wind in the Upper Westerlies. J. Atmos. Sci. 1948, 5, 20–27. [Google Scholar]
- McTaggart-Cowan, R.; Galarneau, T.J., Jr.; Bosart, L.F.; Moore, R.W.; Martius, O. A global climatology of baroclinically influenced tropical cyclogenesis. Mon. Weather Rev. 2013, 141, 1963–1989. [Google Scholar] [CrossRef]
- Mundell, D.B. Prediction of Tropical Cyclone Rapid Intensification Events. Master’s Thesis, Colorado State University, Fort Collins, CO, USA, 1990. [Google Scholar]
- Frank, W.M.; Ritchie, E.A. Effects of vertical wind shear on the intensity and structure of numerically simulated hurricanes. Mon. Weather Rev. 2001, 129, 2249–2269. [Google Scholar] [CrossRef]
- Zeng, Z.; Wang, Y.; Chen, L. A statistical analysis of vertical shear effect on tropical cyclone intensity change in the North Atlantic. Geophys. Res. Lett. 2010, 37, 3434–3453. [Google Scholar] [CrossRef]
- Velden, C.S.; Sears, J. Computing deep-tropospheric vertical wind shear analyses for tropical cyclone applications: Does the methodology matter? Weather. Forecast. 2014, 29, 1169–1180. [Google Scholar] [CrossRef]
- Wang, Y.; Rao, Y.; Tan, Z.M.; Schönemann, D. A statistical analysis of the effects of vertical wind shear on tropical cyclone intensity change over the western North Pacific. Mon. Weather Rev. 2015, 143, 3434–3453. [Google Scholar] [CrossRef]
- Emanuel, K.A. An air–sea interaction theory for tropical cyclones. Part I: Steady-state maintenance. J. Atmos. Sci. 1986, 43, 585–605. [Google Scholar] [CrossRef]
- Pezza, A.B.; Simmonds, I. The first South Atlantic hurricane: Unprecedented blocking, low shear and climate change. Geophys. Res. Lett. 2005, 32, L15712. [Google Scholar] [CrossRef]
- Silva, B.A.; Reboita, M.S. Climatologia do Índice do Potencial de Gênese de Ciclones Tropicais nos Oceanos Adjacentes à América do Sul. Anuário do Instituto de Geociências 2021, 44, 39515. [Google Scholar]
- McTaggart-Cowan, R.; Bosart, L.F.; Davis, C.A.; Atallah, E.H.; Gyakum, J.R.; Emanuel, K.A. Analysis of hurricane Catarina (2004). Mon. Weather Rev. 2006, 134, 3029–3053. [Google Scholar] [CrossRef]
- McTaggart-Cowan, R.; Davies, E.L.; Fairman, J.G.; Galarneau, T.J.; Schultz, D.M. Revisiting the 26.5 °C sea surface temperature threshold for tropical cyclone development. Bull. Am. Meteorol. Soc. 2015, 96, 1929–1943. [Google Scholar] [CrossRef]
- Reboita, M.S.; Crespo, N.M.; Dutra, L.M.M.; Silva, B.A.; Capucin, B.C.; da Rocha, R.P. Iba: The first pure tropical cyclogenesis over the western South Atlantic Ocean. J. Geophys. Res. Atmos. 2021, 126, e2020JD033431. [Google Scholar] [CrossRef]
- Gozzo, L.F.; da Rocha, R.P.; Reboita, M.S.; Sugahara, S. Subtropical cyclones over the southwestern South Atlantic: Climatological aspects and case study. J. Clim. 2014, 27, 8543–8562. [Google Scholar] [CrossRef]
- da Rocha, R.P.; Reboita, M.S.; Gozzo, L.F.; Dutra, L.M.M.; de Jesus, E.M. Subtropical cyclones over the oceanic basins: A review. Ann. N. Y. Acad. Sci. 2019, 1436, 138–156. [Google Scholar] [CrossRef]
- Reboita, M.S.; da Rocha, R.P.; de Oliveira, D.M. Key features and adverse weather of the named subtropical cyclones over the southwestern South Atlantic Ocean. Atmosphere 2019, 10, 6. [Google Scholar] [CrossRef]
- Silva, B.A.; Reboita, M.S.; Crespo, N.M.; da Rocha, R.P.; Dutra, L.M.M. Ciclones Subtropicais Guará e Lexi Parte I: Estrutura Térmica e Características Gerais. Rev. Bras. De Geogr. Física 2022, 15, 333–342. [Google Scholar] [CrossRef]
- Ribeiro, J.G.; Paz, G.; Reboita, M.S.; Gozzo, L. Análise do Índice do Potencial de Gênese em Ciclones Subtropicais na Costa do Brasil. Rev. Bras. De Geogr. Física 2023, 16, 2832–2857. [Google Scholar] [CrossRef]
- Emanuel, K.A.; Nolan, D.S. Tropical cyclone activity and global system. In Proceedings of the 26th Conference on Hurricanes and Tropical Meteorology, Miami, FL, USA, 3–7 May 2004; American Meteorological Society: Miami, FL, USA, 2004. [Google Scholar]
- Lauton, G.; Marta-Almeida, M.; S Dorfschäfer, G.; AD Lentini, C. Metocean modulators of the first recorded South Atlantic Hurricane: Catarina. Geophys. Res. Lett. 2021, 48, e2020GL091416. [Google Scholar] [CrossRef]
- DHN. Diretoria de Hidrografia e Navegação. 2024. Available online: https://www.marinha.mil.br/dhn/ (accessed on 25 February 2024).
- Reboita, M.S.; Crespo, N.M.; da Rocha, R.P.; Gozzo, L.F. Synoptic-Scale Cyclones Affecting South America and the South Atlantic Ocean. ORE/Oxford, 2024; Volume 1. [Google Scholar]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al. The ERA5 global reanalysis. Q. J. R. Meteorolog. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Maria, E.; Budiman, E.; Taruk, M. Measure distance locating nearest public facilities using Haversine and Euclidean Methods. J. Phys. Conf. Ser. 2020, 1450, 012080. [Google Scholar] [CrossRef]
- Hart, R.E. A cyclone phase space derived from thermal wind and thermal asymmetry. Mon. Weather Rev. 2003, 131, 585–616. [Google Scholar] [CrossRef]
- NORMAM-701. Atos Normativos Inferiores a Decreto Vigentes no Âmbito do Comando da Marinha. 2023. Available online: https://www.marinha.mil.br/sites/default/files/atos-normativos/dhn/normam/normam-701.html (accessed on 25 February 2024).
- Schenkel, B.A. An examination of Tropical Cyclone Evolution Using Curvature Vorticity and Shear Vorticity. Master’s Thesis, Florida State University, Tallahassee, FL, USA, 2009. Available online: https://repository.lib.fsu.edu/islandora/object/fsu:254015/datastream/PDF/view (accessed on 20 September 2024).
- Holton, J.R.; Hakim, G.J. An Introduction to Dynamic Meteorology, 5th ed.; Elsevier: Amsterdam, The Netherlands, 2012; pp. 1–532. [Google Scholar]
- Peixoto, J.P.; Oort, A.H. Physics of Climate; American Institute of Physics: New York, NY, USA, 1992; pp. 1–520. [Google Scholar]
- Wallace, J.M.; Hobbs, P.V. Atmospheric Science: An Introductory Survey, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2006; pp. 1–483. [Google Scholar]
- Song, F.; Zhang, G.J.; Ramanathan, V.; Leung, L.R. Trends in surface equivalent potential temperature: A more comprehensive metric for global warming and weather extremes. Proc. Natl. Acad. Sci. USA 2022, 119, e2117832119. [Google Scholar] [CrossRef]
- ZAMG. Manual of Synoptic Satellite Meteorology. Version 5. 2005. Available online: https://rammb.cira.colostate.edu/wmovl/vrl/tutorials/satmanu-eumetsat/satmanu/basic/convection/stability.htm (accessed on 22 February 2024).
- Rohli, R.V.; Li, C. Atmospheric Stability and Potential Temperature. In Meteorology for Coastal Scientists; Springer: Cham, Switzerland, 2021. [Google Scholar]
- Hawkins, H.F.; Rubsam, D.T. Hurricane Hilda, 1964: II. Structure and budgets of the hurricane on October 1, 1964. Mon. Weather Rev. 1968, 96, 617–636. [Google Scholar] [CrossRef]
- Hawkins, H.F.; Imbembo, S.M. The structure of a small intense hurricane—Inez 1966. Mon. Weather Rev. 1976, 104, 418–442. [Google Scholar] [CrossRef]
- Gamache, J.F.; Houze, R.A.; Marks, F.D. Dual-aircraft investigation of the inner core of Hurricane Norbert Part III: Water budget. J. Atmos. Sci. 1993, 50, 3221–3243. [Google Scholar] [CrossRef]
- Kidder, S.Q.; Goldberg, M.D.; Zehr, R.M.; DeMaria, M.; Purdom, J.F.; Velden, C.S.; Grody, N.C.; Kusselson, S.J. Satellite analysis of tropical cyclones using the Advanced Microwave Sounding Unit (AMSU). Bull. Am. Meteorol. Soc. 2000, 81, 1241–1260. [Google Scholar] [CrossRef]
- Emanuel, K. 100 Years of Progress in Tropical Cyclone Research. Meteorol. Monogr. 2018, 59, 15.1–15.68. [Google Scholar]
- Wood, K.; Yanase, W.; Beven, J.; Camargo, S.J.; Courtney, J.B.; Fogarty, C.; Fukuda, J.; Kitabatake, N.; Kucas, M.; McTaggart-Cowan, R.; et al. Phase transitions between tropical, subtropical, and extratropical cyclones: A review from IWTC-10. Trop. Cyclone Res. Rev. 2023, 12, 294–308. [Google Scholar] [CrossRef]
- Veselov, E.P. On the formation and development of tropical cyclones. Russ. Meteorol. Hydrol. 2008, 33, 360–368. [Google Scholar] [CrossRef]
- Gozzo, L.F.; da Rocha, R.P.; Gimeno, L.; Drumond, L. Climatology and numerical case study of moisture sources associated with subtropical cyclogenesis over the southwestern Atlantic Ocean. J. Geophys. Res. Atmos. 2017, 122, 5636–5653. [Google Scholar] [CrossRef]
- Martin, J.E. Extratropical Cyclones. Elsevier, 2024. Update of A. Joly, Synoptic Meteorology|Extratropical Cyclones. In Encyclopedia of Atmospheric Sciences, 2nd ed.; North, G.R., Pyle, J., Zhang, F., Eds.; Academic Press: New York, NY, USA, 2015; p. 304.e336. [Google Scholar] [CrossRef]
- Raju, P.V.S.; Potty, J.; Mohanty, U.C. Sensitivity of physical parameterizations on prediction of tropical cyclone Nargis over the Bay of Bengal using WRF model. Meteorol. Atmos. Phys. 2011, 113, 125–137. [Google Scholar] [CrossRef]
- Flaounas, E.; Raveh-Rubin, S.; Wernli, H.; Drobinski, P.; Bastin, S. The dynamical structure of intense Mediterranean cyclones. Clim. Dyn. 2015, 44, 2411–2427. [Google Scholar] [CrossRef]
- Dekker, M.M.; Haarsma, R.J.; Vries, H.D.; Baatsen, M.; Delden, A.J.V. Characteristics and development of European cyclones with tropical origin in reanalysis data. Clim. Dyn. 2018, 50, 445–455. [Google Scholar] [CrossRef]
- NWS. Beaufort Wind Scale. 2024. Available online: https://www.weather.gov/mfl/beaufort (accessed on 23 September 2024).
- RMets. The Beaufort Wind Scale. 2024. Available online: https://www.rmets.org/metmatters/beaufort-wind-scale (accessed on 23 September 2024).
Day | Hour (UTC) | Lat (°S) | Lon (°W) | MSLP (hPa) | MSLPNavy (hPa) | V (m s−1) | VNavy (m s−1 and knots) | CPS | ClasNavy | Observation |
---|---|---|---|---|---|---|---|---|---|---|
* 15 | 1200 | 25 | 40.5 | 1014 | 1016 | 11 | S | |||
15 | 1800 | 25 | 40.25 | 1013 | 10 | S | ||||
16 | 0000 | 25 | 40.75 | 1013 | 1010 | 11 | S | SD | ||
16 | 0600 | 24.5 | 40.75 | 1011 | 10 | S/T | The time when the cyclone transitions to a tropical phase following CPS with a moderate warm core. | |||
16 | 1200 | 24 | 39.75 | 1013 | 1010 | 13 | S/T | SD | ||
16 | 1800 | 25 | 39 | 1011 | 14 | S/T | ||||
17 | 0000 | 24.5 | 39.5 | 1011 | 1008 | 14 | S/T | SD | ||
* 17 | 0600 | 24.5 | 39.5 | 1008 | 15 | T | The time when the cyclone transitions to a tropical phase according to the classic CPS. | |||
17 | 1200 | 25 | 39.5 | 1009 | 1006 | 13 | T | SD | ||
17 | 1800 | 25 | 39.25 | 1009 | 12 | T | ||||
18 | 0000 | 25.25 | 39.25 | 1007 | 1006 | 13 | T | SD | ||
18 | 0600 | 26 | 39.5 | 1004 | 14 | T | ||||
18 | 1200 | 26.75 | 39.75 | 1005 | 1006 | 14 | T | TD | ||
18 | 1800 | 27.75 | 40.75 | 1003 | 14 | T | ||||
19 | 0000 | 28.75 | 41.5 | 1001 | 1000 | 17 | 21 m s−1 40 knot | T | TS | The time when the cyclone transitions to a tropical phase following the Brazilian Navy. |
19 | 0600 | 29.5 | 42.25 | 998 | 15 | T | ||||
19 | 1200 | 30.25 | 42 | 997 | 998 | 18 | 23 m s−1 45 knot | T | TS | |
* 19 | 1800 | 31.5 | 42 | 996 | 18 | T | ||||
20 | 0000 | 31.75 | 42.25 | 995 | 994 | 16 | 23 m s−1 45 knot | T | TS | |
20 | 0600 | 32.25 | 42 | 994 | 16 | T | ||||
20 | 1200 | 32.25 | 42 | 997 | 996 | 15 | 18 m s−1 35 knot | T | TS | |
20 | 1800 | 32.25 | 41.5 | 998 | 13 | T | ||||
21 | 0000 | 32.25 | 41.5 | 1001 | 1002 | 15 | T | TD | ||
21 | 0600 | 32.25 | 42.25 | 1002 | 14 | T | ||||
21 | 1200 | 32.5 | 42.25 | 1004 | 1002 | 14 | S/T | SD | ||
21 | 1800 | 32.75 | 42.75 | 1004 | 12 | S/T | ||||
22 | 0000 | 33 | 43.5 | 1006 | 1004 | 11 | S/T | SD | ||
22 | 0600 | 33.5 | 44 | 1005 | 10 | S/T | ||||
22 | 1200 | 33.75 | 44.5 | 1008 | 1006 | 9 | S/T | |||
22 | 1800 | 34.25 | 44.75 | 1008 | 9 | S/T | ||||
23 | 0000 | 34.75 | 45.0 | 1009 | 1010 | 7 | S |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Reboita, M.S.; Nogueira, N.C.d.O.; Gomes, I.B.d.S.; Palma, L.L.d.C.; da Rocha, R.P. Assessment of a Tropical Transition over the Southwestern South Atlantic Ocean: The Case of Cyclone Akará. J. Mar. Sci. Eng. 2024, 12, 1934. https://doi.org/10.3390/jmse12111934
Reboita MS, Nogueira NCdO, Gomes IBdS, Palma LLdC, da Rocha RP. Assessment of a Tropical Transition over the Southwestern South Atlantic Ocean: The Case of Cyclone Akará. Journal of Marine Science and Engineering. 2024; 12(11):1934. https://doi.org/10.3390/jmse12111934
Chicago/Turabian StyleReboita, Michelle Simões, Natan Chrysostomo de Oliveira Nogueira, Isabelly Bianca dos Santos Gomes, Lucas Lemos da Cunha Palma, and Rosmeri Porfírio da Rocha. 2024. "Assessment of a Tropical Transition over the Southwestern South Atlantic Ocean: The Case of Cyclone Akará" Journal of Marine Science and Engineering 12, no. 11: 1934. https://doi.org/10.3390/jmse12111934
APA StyleReboita, M. S., Nogueira, N. C. d. O., Gomes, I. B. d. S., Palma, L. L. d. C., & da Rocha, R. P. (2024). Assessment of a Tropical Transition over the Southwestern South Atlantic Ocean: The Case of Cyclone Akará. Journal of Marine Science and Engineering, 12(11), 1934. https://doi.org/10.3390/jmse12111934