Evidence of 2024 Summer as the Warmest During the Last Four Decades in the Aegean, Ionian, and Cretan Seas
Abstract
:1. Introduction
2. Methods and Data
2.1. Satellite Observations
2.2. Argo Floats
2.3. Meteorological (Atmospheric) Data
3. Results
3.1. Sea Surface Conditions and Marine Heatwaves
3.2. Upper-Ocean Conditions
3.3. Atmospheric Conditions
3.4. Upper-Ocean Cooling Mechanisms in the Aegean Sea
4. Discussion
5. Concluding Remarks
- The year 2024 generally showed the largest recorded sea temperatures compared to previous years. This was valid not only at the surface but also at depths down to 50 m, confirming the upper-ocean warming.
- Specifically, the summer of 2024 records showed unprecedented high temperatures across the AICS, with the warmest sea surface waters in over four decades. These were primarily driven by increased positive (downward) net heat fluxes and, therefore, net heat transfer towards the sea.
- Mean summer temperatures over 28 °C were observed over extended areas of the Ionian Sea, the South Cretan Sea, the South Dodecanese islands, and the entire North Aegean.
- A strong interannual trend (0.59 °C/decade) of the summer sea temperature was detected over the entire AICS region.
- Longer and more intensified marine heatwaves (MHWs) occurred progressively over the last four decades (>16 °C × days/decade).
- Although the number of MHW events was not abnormally increased in 2024, their duration and cumulative intensity were the highest on record, significantly impacting the ecosystem, particularly in regions like the North Aegean.
- Mechanisms that traditionally help mitigate the increase of temperatures in the Aegean Sea, such as coastal upwelling and the inflow of cooler Black Sea waters, were provenly weakened in 2024, reducing their potential cooling effects on regional seawater masses.
- The SST increasing trend through the four decades could be indicative of climate change with a persistent warming mode and possibly decadal-scale variability in the AICS’s climate system, following the respective warming tendency of atmospheric temperatures.
- The rise in sea temperatures has broad physical, biological, and socioeconomic consequences, including disruptions in water stratification, reduced oxygen solubility, and significant economic losses, such as the mussel farming collapse due to thermal shock mortality of aquaculture mollusks in Thermaikos Gulf (North Greece) observed during the summer of 2024.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Geostrophic Circulation in the Mediterranean Sea During the Summer of 2024
References
- Rayner, N.A.A.; Parker, D.E.; Horton, E.B.; Folland, C.K.; Alexander, L.V.; Rowell, D.P.; Kent, E.C.; Kaplan, A. Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res. Atmos. 2003, 108, 4407. [Google Scholar] [CrossRef]
- Marino, G.; Rohling, E.J.; Rijpstra, W.I.C.; Sangiorgi, F.; Schouten, S.; Damsté, J.S.S. Aegean Sea as driver of hydrographic and ecological changes in the eastern Mediterranean. Geology 2007, 35, 675–678. [Google Scholar] [CrossRef]
- Roether, W.; Klein, B.; Manca, B.B.; Theocharis, A.; Kioroglou, S. Transient Eastern Mediterranean deep waters in response to the massive dense-water output of the Aegean Sea in the 1990s. Progr. Oceanogr. 2007, 74, 540–571. [Google Scholar] [CrossRef]
- Pisano, A.; Marullo, S.; Artale, V.; Falcini, F.; Yang, C.; Leonelli, F.E.; Santoleri, R.; Buongiorno Nardelli, B. New evidence of Mediterranean climate change and variability from sea surface temperature observations. Remote Sens. 2020, 12, 132. [Google Scholar] [CrossRef]
- Androulidakis, Y.S.; Krestenitis, Y.N. Sea surface temperature variability and marine heat waves over the Aegean, Ionian, and Cretan Seas from 2008–2021. J. Mari. Sci. Eng. 2022, 10, 42. [Google Scholar] [CrossRef]
- Lagouvardos, K.; Dafis, S.; Kotroni, V.; Kyros, G.; Giannaros, C. Exploring Recent (1991–2020) Trends of Essential Climate Variables in Greece. Atmosphere 2024, 15, 1104. [Google Scholar] [CrossRef]
- García-Monteiro, S.; Sobrino, J.A.; Julien, Y.; Sòria, G.; Skokovic, D. Surface Temperature trends in the Mediterranean Sea from MODIS data during years 2003–2019. Reg. Studies Mar. Sci. 2022, 49, 102086. [Google Scholar] [CrossRef]
- Zittis, G.; Almazroui, M.; Alpert, P.; Ciais, P.; Cramer, W.; Dahdal, Y.; Fnais, M.; Francis, D.; Hadjinicolaou, P.; Howari, F.; et al. Climate change and weather extremes in the Eastern Mediterranean and Middle East. Review Geophys. 2022, 60, e2021RG000762. [Google Scholar] [CrossRef]
- National Observatory of Athens (NOA). Available online: https://www.meteo.gr/ (accessed on 6 September 2024).
- Copernicus Climate Change Service (CCCS). Available online: https://climate.copernicus.eu/ (accessed on 30 September 2024).
- Keep Talking Greece. Summer 2024 Was the Hottest ever Recorded in Greece. 2024. Available online: https://www.keeptalkinggreece.com/2024/09/06/summer-2024-hottest-recorded-greece// (accessed on 30 September 2024).
- Kyros, G.; Dafis, S.; and Lagouvardos, K. The Hottest Summer on Record for Greece. Summer. 2024. Available online: https://www.meteo.gr/article_view.cfm?entryID=3384 (accessed on 6 September 2024). (In Greek).
- Hobday, A.J.; Alexander, L.V.; Perkins, S.E.; Smale, D.A.; Straub, S.C.; Oliver, E.C.; Benthuysen, J.A.; Burrows, M.T.; Donat, M.G.; Feng, M.; et al. A hierarchical approach to defining marine heatwaves. Prog. Oceanogr. 2016, 141, 227–238. [Google Scholar] [CrossRef]
- Pastor, F.; Khodayar, S. Marine heat waves: Characterizing a major climate impact in the Mediterranean. Sci. Total Environ. 2023, 861, 160621. [Google Scholar] [CrossRef]
- Ibrahim, O.; Mohamed, B.; Nagy, H. Spatial Variability and Trends of Marine Heat Waves in the Eastern Mediterranean Sea over 39 Years. J. Mar. Sci. Eng. 2021, 9, 643. [Google Scholar] [CrossRef]
- Simon, A.; Plecha, S.M.; Russo, A.; Teles-Machado, A.; Donat, M.G.; Auger, P.A.; Trigo, R.M. Hot and cold marine extreme events in the Mediterranean over the period 1982–2021. Front. Mar. Sci. 2022, 9, 892201. [Google Scholar] [CrossRef]
- Androulidakis, Y.; Makris, C.; Kombiadou, K.; Krestenitis, Y.; Stefanidou, N.; Antoniadou, C.; Krasakopoulou, E.; Kalatzi, M.I.; Baltikas, V.; Moustaka-Gouni, M.; et al. Oceanographic Research in the Thermaikos Gulf: A Review over Five Decades. J. Mar. Sci. Eng. 2024, 12, 795. [Google Scholar] [CrossRef]
- Litsi-Mizan, V.; Efthymiadis, P.T.; Gerakaris, V.; Serrano, O.; Tsapakis, M.; Apostolaki, E.T. Decline of seagrass (Posidonia oceanica) production over two decades in the face of warming of the Eastern Mediterranean Sea. New Phytol. 2023, 239, 2126–2137. [Google Scholar] [CrossRef] [PubMed]
- Antoniadou, C.; Pantelidou, M.; Skoularikou, M.; Chintiroglou, C.C. Mass Mortality of Shallow-Water Temperate Corals in Marine Protected Areas of the North Aegean Sea (Eastern Mediterranean). Hydrobiology 2023, 2, 311–325. [Google Scholar] [CrossRef]
- Lattos, A.; Papadopoulos, D.K.; Feidantsis, K.; Karagiannis, D.; Giantsis, I.A.; Michaelidis, B. Are Marine Heatwaves Responsible for Mortalities of Farmed Mytilus galloprovincialis? A Pathophysiological Analysis of Marteilia Infected Mussels from Thermaikos Gulf, Greece. Animals 2022, 12, 2805. [Google Scholar] [CrossRef]
- Ragkousis, M.; Sini, M.; Koukourouvli, N.; Zenetos, A.; Katsanevakis, S. Invading the Greek Seas: Spatiotemporal patterns of marine impactful alien and cryptogenic species. Diversity 2023, 15, 353. [Google Scholar] [CrossRef]
- Tsikliras, A.C. Climate-related geographic shift and sudden population increase of a small pelagic fish (Sardinella aurita) in the eastern Mediterranean Sea. Mar. Biol. Res. 2008, 4, 477–481. [Google Scholar] [CrossRef]
- Ünlülata, Ü.; Oğuz, T.; Latif, M.A.; Özsoy, E. On the physical oceanography of the Turkish Straits. In The Physical Oceanography of Sea Straits; Springer: Dordrecht, The Netherlands, 1990; pp. 25–60. [Google Scholar]
- Androulidakis, Y.S.; Kourafalou, V.H. Evolution of a buoyant outflow in the presence of complex topography: The Dardanelles plume (North Aegean Sea). J. Geophy Res. Oceans 2011, 116, C04019. [Google Scholar] [CrossRef]
- Androulidakis, Y.S.; Kourafalou, V.H.; Krestenitis, Y.N.; Zervakis, V. Variability of deep water mass characteristics in the North Aegean Sea: The role of lateral inputs and atmospheric conditions. Deep Sea Res. Part I Oceanogr. Res. Pap. 2012, 67, 55–72. [Google Scholar] [CrossRef]
- Mamoutos, I.G.; Potiris, E.; Androulidakis, Y.; Tragou, E.; Zervakis, V. Evidence for reduced Black Sea water outflow to the North Aegean. Earth Space Sci. 2024, 11, e2024EA003674. [Google Scholar] [CrossRef]
- Zervakis, V.; Georgopoulos, D.; Drakopoulos, P.G. The role of the North Aegean in triggering the recent Eastern Mediterranean climatic changes. J. Geophys. Res. Ocean. 2000, 105, 26103–26116. [Google Scholar] [CrossRef]
- Zervakis, V.; Georgopoulos, D.; Karageorgis, A.P.; Theocharis, A. On the response of the Aegean Sea to climatic variability: A review. Int. J. Climatol. 2004, 24, 1845–1858. [Google Scholar] [CrossRef]
- Potiris, M.; Mamoutos, I.G.; Tragou, E.; Zervakis, V.; Kassis, D.; Ballas, D. Dense water formation in the North–central Aegean Sea during winter 2021–2022. J. Mar. Sci. Eng. 2024, 12, 221. [Google Scholar] [CrossRef]
- Bakun, A.; Agostini, V.N. Seasonal patterns of wind-induced upwelling/downwelling in the Mediterranean Sea. Sci. Mar. 2001, 65, 243–257. [Google Scholar] [CrossRef]
- Savvidis, Y.G.; Dodou, M.G.; Krestenitis, Y.N.; Koutitas, C.G. Modeling of the upwelling hydrodynamics in the Aegean Sea. Med. Mar. Sci. 2004, 5, 5–18. [Google Scholar] [CrossRef]
- Androulidakis, Y.S.; Krestenitis, Y.N.; Psarra, S. Coastal upwelling over the North Aegean Sea: Observations and simulations. Cont. Shelf Res. 2017, 149, 32–51. [Google Scholar] [CrossRef]
- Mamoutos, I.; Zervakis, V.; Tragou, E.; Karydis, M.; Frangoulis, C.; Kolovoyiannis, V.; Georgopoulos, D.; Psarra, S. The role of wind-forced coastal upwelling on the thermohaline functioning of the North Aegean Sea. Cont. Shelf Res. 2017, 149, 52–68. [Google Scholar] [CrossRef]
- Poupkou, A.; Zanis, P.; Nastos, P.; Papanastasiou, D.; Melas, D.; Tourpali, K.; Zerefos, C. Present climate trend analysis of the Etesian winds in the Aegean Sea. Theor. Appl. Climatol. 2011, 106, 459–472. [Google Scholar] [CrossRef]
- Theocharis, A.; Balopoulos, E.; Kioroglou, S.; Kontoyiannis, H.; Iona, A. A synthesis of the circulation and hydrography of the South Aegean Sea and the Straits of the Cretan Arc (March 1994–January 1995). Prog. Oceanogr. 1999, 44, 469–509. [Google Scholar] [CrossRef]
- Kalimeris, A.; Kassis, D. Sea surface circulation variability in the Ionian-Adriatic Seas. Prog. Oceanogr. 2020, 189, 102454. [Google Scholar] [CrossRef]
- Copernicus Marine Service (CMS). Available online: https://marine.copernicus.eu/ (accessed on 30 September 2024).
- Pisano, A.; Nardelli, B.B.; Tronconi, C.; Santoleri, R. The new Mediterranean optimally interpolated pathfinder AVHRR SST Dataset (1982–2012). Remote Sens. Environ. 2016, 176, 107–116. [Google Scholar] [CrossRef]
- Saha, K.; Zhao, X.; Zhang, H.M.; Casey, K.S.; Zhang, D.; Baker-Yeboah, S.; Kilpatrick, K.A.; Evans, R.H.; Ryan, T.; Relph, J.M. AVHRR Pathfinder Version 5.3 Level 3 Collated (L3C) Global 4 km Sea Surface Temperature for 1981-Present; NOAA National Centers for Environmental Information: Asheville, NC, USA, 2018. [Google Scholar]
- Berthon, J.F.; Zibordi, G. Bio-optical relationships for the northern Adriatic Sea. Int. J. Remote Sens. 2004, 25, 1527–1532. [Google Scholar] [CrossRef]
- Volpe, G.; Colella, S.; Brando, V.E.; Forneris, V.; La Padula, F.; Di Cicco, A.; Sammartino, M.; Bracaglia, M.; Artuso, F.; Santoleri, R. Mediterranean ocean colour Level 3 operational multi-sensor processing. Ocean Sci. 2019, 15, 127–146. [Google Scholar] [CrossRef]
- Volpe, G.; Nardelli, B.B.; Colella, S.; Pisano, A.; Santoleri, R. Operational interpolated ocean colour product in the mediterranean sea. In New Frontiers in Operational Oceanography; CreateSpace Independent Publishing Platform: Scotts Valley, CA, USA, 2018; pp. 227–244. [Google Scholar]
- Available online: https://fleetmonitoring.euro-argo.eu/ (accessed on 10 September 2024).
- European Research Infrastructure Consortium (ERIC). Available online: https://www.euro-argo.eu/ (accessed on 1 October 2024).
- Hersbach, H.; Bell, B.; Berrisford, P.; Biavati, G.; Horányi, A.; Muñoz Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; et al.; Rozum, I. ERA5 Hourly Data on Single Levels from 1940 to Present. Copernicus Climate Change Service (C3S) Climate Data Store (CDS). 2023. Available online: https://cds.climate.copernicus.eu/datasets/reanalysis-era5-single-levels?tab=overview (accessed on 30 September 2024).
- Sen, P.K. Robustness of some nonparametric procedures in linear models. Annals Math. Stat. 1968, 39, 1913–1922. [Google Scholar] [CrossRef]
- Mann, H.B. Nonparametric tests against trend. Econom. J. Econom. Soc. 1945, 13, 245–259. [Google Scholar] [CrossRef]
- Kendall, M. Rank Correlation Measures; Charles Griffin: London, UK, 1975. [Google Scholar]
- Malanotte-Rizzoli, P.; Manca, B.B.; d’Alcalà, M.R.; Theocharis, A.; Bergamasco, A.; Bregant, D.; Budillon, G.; Civitarese, G.; Georgopoulos, D.; Michelato, A.; et al. A synthesis of the Ionian Sea hydrography, circulation and water mass pathways during POEM-Phase I. Prog. Oceanogr. 1997, 39, 153–204. [Google Scholar] [CrossRef]
- Skliris, N.; Sofianos, S.S.; Gkanasos, A.; Axaopoulos, P.; Mantziafou, A.; Vervatis, V. Long-term sea surface temperature variability in the Aegean Sea. Adv. Oceanogr. Limnol. 2011, 2, 125–139. [Google Scholar] [CrossRef]
- Hamdeno, M.; Alvera-Azcarate, A. Marine heatwaves characteristics in the Mediterranean Sea: Case study the 2019 heatwave events. Front. Mar. Sci. 2023, 10, 1093760. [Google Scholar] [CrossRef]
- Zgouridou, A.; Tripidaki, E.; Giantsis, I.A.; Theodorou, J.A.; Kalaitzidou, M.; Raitsos, D.E.; Lattos, A.; Mavropoulou, A.M.; Sofianos, S.; Karagiannis, D.; et al. The current situation and potential effects of climate change on the microbial load of marine bivalves of the Greek coastlines: An integrative review. Environ. Microbiol. 2022, 24, 1012–1034. [Google Scholar] [CrossRef]
- Juza, M.; Fernández-Mora, À.; Tintoré, J. Sub-regional marine heat waves in the Mediterranean Sea from observations: Long-term surface changes, sub-surface and coastal responses. Front. Mar. Sci. 2022, 9, 785771. [Google Scholar] [CrossRef]
- Dong, S.; Gille, S.T.; Sprintall, J. An assessment of the Southern Ocean mixed layer heat budget. J. Clim. 2007, 20, 4425–4442. [Google Scholar] [CrossRef]
- Gao, Y.; Kamenkovich, I.; Perlin, N.; Kirtman, B. Oceanic advection controls mesoscale mixed layer heat budget and air–sea heat exchange in the southern ocean. J. Phys. Oceanogr. 2022, 52, 537–555. [Google Scholar] [CrossRef]
- Meli, M.; Camargo, C.M.; Olivieri, M.; Slangen, A.B.; Romagnoli, C. Sea-level trend variability in the Mediterranean during the 1993–2019 period. Front. Mar. Sci. 2023, 10, 1150488. [Google Scholar] [CrossRef]
- Androulidakis, Y.; Makris, C.; Mallios, Z.; Pytharoulis, I.; Baltikas, V.; Krestenitis, Y. Storm surges and coastal inundation during extreme events in the Mediterranean Sea: The IANOS Medicane. Nat. Hazards 2023, 117, 939–978. [Google Scholar] [CrossRef]
- Makris, C.V.; Tolika, K.; Baltikas, V.N.; Velikou, K.; Krestenitis, Y.N. The impact of climate change on the storm surges of the Mediterranean Sea: Coastal sea level responses to deep depression atmospheric systems. Ocean Mod. 2023, 181, 102149. [Google Scholar] [CrossRef]
- Nagy, H.; Di Lorenzo, E.; El-Gindy, A. The impact of climate change on circulation patterns in the Eastern Mediterranean Sea upper layer using Med-ROMS model. Prog. Oceanogr. 2019, 175, 226–244. [Google Scholar] [CrossRef]
- Pallacks, S.; Ziveri, P.; Schiebel, R.; Vonhof, H.; Rae, J.W.; Littley, E.; Garcia-Orellana, J.; Langer, G.; Grelaud, M.; Martrat, B. Anthropogenic acidification of surface waters drives decreased biogenic calcification in the Mediterranean Sea. Commun. Earth Environ. 2023, 4, 301. [Google Scholar] [CrossRef]
- Oschlies, A.; Brandt, P.; Stramma, L.; Schmidtko, S. Drivers and mechanisms of ocean deoxygenation. Nat. Geosci. 2018, 11, 467–473. [Google Scholar] [CrossRef]
- Keeling, R.F.; Körtzinger, A.; Gruber, N. Ocean deoxygenation in a warming world. Annu. Rev. Mar. Sci. 2010, 2, 199–229. [Google Scholar] [CrossRef]
- Zervoudaki, S.; Protopapa, M.; Koutsandrea, A.; Jansson, A.; von Weissenberg, E.; Fyttis, G.; Sakavara, A.; Kavakakis, K.; Chariati, C.; Anttila, K.; et al. Zooplankton responses to simulated marine heatwave in the Mediterranean Sea using in situ mesocosms. PLoS ONE 2024, 19, e0308846. [Google Scholar] [CrossRef] [PubMed]
- Georgoulis, I.; Giantsis, I.; Lattos, A.; Pisinaras, V.; Feidantsis, K.; Michaelidis, B.; Delis, G.; Theodoridis, A. The Influence of Climatic-oceanographic Changes in Aquaculture. A Case Review Concerning Mussel Farming from Vistonikos Bay, Greece. In Proceedings of the 9th International Conference on Information and Communication Technologies in Agricultre, Food & Environment (HAICTA 2020), Thessaloniki, Greece, 24–27 September 2020; pp. 51–61. [Google Scholar]
- MakThes. Available online: https://www.makthes.gr/thessaloniki-ta-mydia-xalastras-kiminon-thymata-tis-klimatikis-allaghis-662271 (accessed on 30 September 2024).
- OlympioBima. Available online: https://olympiobima.gr/erchetai-oikonomiko-paketo-stirixis-stous-mydokalliergites/ (accessed on 30 September 2024).
- RThess. Available online: https://www.rthess.gr/thessaloniki/mydia-thermaikou-pano-apo-90-i-katastrofi-video-audio/ (accessed on 30 September 2024).
- TyposThess. Available online: https://www.typosthes.gr/thessaloniki/363789_thessaloniki-oloklirotiki-katastrofi-gia-ta-mydia-ston-thermaiko (accessed on 30 September 2024).
- Poulain, P.M.; Menna, M.; Mauri, E. Surface geostrophic circulation of the Mediterranean Sea derived from drifter and satellite altimeter data. J. Phys. Oceanogr. 2012, 42, 973–990. [Google Scholar] [CrossRef]
- Estournel, C.; Marsaleix, P.; Ulses, C. A new assessment of the circulation of Atlantic and Intermediate Waters in the Eastern Mediterranean. Prog. Oceanogr. 2021, 198, 102673. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Androulidakis, Y.; Kolovoyiannis, V.; Makris, C.; Krestenitis, Y. Evidence of 2024 Summer as the Warmest During the Last Four Decades in the Aegean, Ionian, and Cretan Seas. J. Mar. Sci. Eng. 2024, 12, 2020. https://doi.org/10.3390/jmse12112020
Androulidakis Y, Kolovoyiannis V, Makris C, Krestenitis Y. Evidence of 2024 Summer as the Warmest During the Last Four Decades in the Aegean, Ionian, and Cretan Seas. Journal of Marine Science and Engineering. 2024; 12(11):2020. https://doi.org/10.3390/jmse12112020
Chicago/Turabian StyleAndroulidakis, Yannis, Vassilis Kolovoyiannis, Christos Makris, and Yannis Krestenitis. 2024. "Evidence of 2024 Summer as the Warmest During the Last Four Decades in the Aegean, Ionian, and Cretan Seas" Journal of Marine Science and Engineering 12, no. 11: 2020. https://doi.org/10.3390/jmse12112020
APA StyleAndroulidakis, Y., Kolovoyiannis, V., Makris, C., & Krestenitis, Y. (2024). Evidence of 2024 Summer as the Warmest During the Last Four Decades in the Aegean, Ionian, and Cretan Seas. Journal of Marine Science and Engineering, 12(11), 2020. https://doi.org/10.3390/jmse12112020