Crude Oil Biodegradation by a Biosurfactant-Producing Bacterial Consortium in High-Salinity Soil
Abstract
:1. Introduction
2. Materials and Methods
2.1. Soil, Crude Oil, Medium, and Chemical
2.2. Isolation and Identification of Bacteria
2.3. Biosurfactant Production Detection of Bacteria
2.3.1. Emulsification Activity
2.3.2. Cell Surface Hydrophobicity
2.4. Bacterial Consortium Construction and Tolerance to Environmental Stressors
2.5. Crude Oil Degradation Detection
2.6. Impact of Growth Conditions on Crude Oil Biodegradation
2.7. Crude-Oil-Contaminated Soil Microcosms
2.8. Degradation Kinetics of TPHs
2.9. Quantification of Degradation-Related Genes
2.10. Statistical Analysis
3. Results
3.1. Isolation and Identification of Halotolerant Crude Oil-Degrading Bacteria
3.2. Biosurfactant Production with Different Carbon Sources
3.3. Construction of a Halotolerant Bacterial Consortium
3.4. Crude Oil Degradation by Single Strains and the Constructed Bacterial Consortium
3.5. Effects of Temperature, pH, and Salinity on Crude Oil Degradation
3.6. Crude Oil Degradation in Non-Saline and Salt-Enriched Soil Microcosms
3.7. TPH Degradation Kinetics in Soil Microcosms
3.8. Abundance of Functional Genes
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lin, M.; Liu, Y.H.; Chen, W.W.; Wang, H.; Hu, X.K. Use of bacteria-immobilized cotton fibers to absorb and degrade crude oil. Int. Biodeterior. Biodegrad. 2014, 88, 8–12. [Google Scholar] [CrossRef]
- Liu, X.; Guo, J.; Guo, M.X.; Hu, X.K.; Tang, C.; Wang, C.Y.; Xing, Q.G. Modelling of oil spill trajectory for 2011 Penglai 19-3 coastal drilling field, China. Appl. Math. Model. 2015, 39, 5331–5340. [Google Scholar] [CrossRef]
- Cui, Z.S.; Luan, X.; Li, S.J.; Li, Y.C.; Bian, X.Q.; Li, G.Q.; Wei, Q.S.; Ran, X.B.; Bao, M.T.; Valentine, D.L. Occurrence and distribution of cyclic-alkane-consuming psychrophilic bacteria in the Yellow Sea and East China Sea. J. Hazard. Mater. 2022, 427, 128129. [Google Scholar] [CrossRef]
- Head, I.M.; Jones, D.M.; Röling, W.F. Marine microorganisms make a meal of oil. Nat. Rev. Microbiol. 2006, 4, 173–182. [Google Scholar] [PubMed]
- Mu, B.Z.; Nazina, T.N. Recent advances in petroleum microbiology. Microorganisms 2022, 10, 1706. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.W.; Li, J.D.; Sun, X.N.; Min, J.; Hu, X.K. High efficiency degradation of alkanes and crude oil by a salt-tolerant bacterium Dietzia species CN-3. Int. Biodeterior. Biodegrad. 2017, 118, 110–118. [Google Scholar] [CrossRef]
- McGenity, T.J. Hydrocarbon biodegradation in intertidal wetland sediments. Curr. Opin. Biotechnol. 2014, 27, 46–54. [Google Scholar] [CrossRef]
- Xia, M.Q.; Fu, D.F.; Chakraborty, R.; Singh, R.P.; Terry, N. Enhanced crude oil depletion by constructed bacterial consortium comprising bioemulsifier producer and petroleum hydrocarbon degraders. Bioresour. Technol. 2019, 282, 456–463. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.P.; Shao, Z.Z. Genes involved in alkane degradation in the Alcanivorax hongdengensis strain A-11-3. Appl. Microbiol. Biotechnol. 2012, 94, 437–448. [Google Scholar] [CrossRef]
- Wang, W.P.; Shao, Z.Z. The long-chain alkane metabolism network of Alcanivorax dieselolei. Nat. Commun. 2014, 5, 5755. [Google Scholar] [CrossRef]
- Throne-Holst, M.; Wentzel, A.; Ellingsen, T.E.; Kotlar, H.K.; Zotchev, S.B. Identification of novel genes involved in long-chain alkane degradation by Acinetobacter sp. strain DSM 17874. Appl. Environ. Microbiol. 2007, 73, 3327–3332. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Wan, Y.Y.; Wang, C.J.; Ma, Z.Y.; Liu, X.L.; Li, S.J. Biodegradation of alkanes in crude oil by three identified bacterial strains. Fuel 2020, 275, 117897. [Google Scholar] [CrossRef]
- Wang, X.B.; Chi, C.Q.; Nie, Y.; Tang, Y.Q.; Tan, Y.; Wu, G.; Wu, X.L. Degradation of petroleum hydrocarbons (C6–C40) and crude oil by a novel Dietzia strain. Bioresour. Technol. 2011, 102, 7755–7761. [Google Scholar] [CrossRef]
- Wang, W.P.; Cai, B.B.; Shao, Z.Z. Oil degradation and biosurfactant production by the deep sea bacterium Dietzia maris As-13-3. Front. Microbiol. 2014, 5, 711. [Google Scholar] [CrossRef]
- Rojo, F. Degradation of alkanes by bacteria. Environ. Microbiol. 2009, 11, 2477–2490. [Google Scholar] [CrossRef]
- Varjani, S.; Upasani, V.N. Influence of abiotic factors, natural attenuation, bioaugmentation and nutrient supplementation on bioremediation of petroleum crude contaminated agricultural soil. J. Environ. Manag. 2019, 245, 358–366. [Google Scholar] [CrossRef] [PubMed]
- Varjani, S.; Pandey, A.; Upasani, V.K. Oilfield waste treatment using novel hydrocarbon utilizing bacterial consortium—A microcosm approach. Sci. Total Environ. 2020, 745, 141043. [Google Scholar] [CrossRef]
- McKew, B.A.; Coulon, F.; Osborn, A.M.; Timmis, K.N.; McGentity, T.J. Determining the identity and roles of oil-metabolizing marine bacteria from the Thames estuary, UK. Environ. Microbiol. 2007, 9, 165–176. [Google Scholar] [CrossRef]
- Nikolopoulou, M.; Pasadakis, N.; Kalogerakis, N. Evaluation of autochthonous bioaugmentation and biostimulation during microcosm-simulated oil spills. Mar. Pollut. Bull. 2013, 72, 165–173. [Google Scholar] [CrossRef]
- Ramadass, K.; Megharaj, M.; Venkateswarlu, K.; Naidu, R. Bioavailability of weathered hydrocarbons in engine oil-contaminated soil: Impact of bioaugmentation mediated by Pseudomonas spp. on bioremediation. Sci. Total Environ. 2018, 636, 968–974. [Google Scholar] [CrossRef]
- Thompson, I.P.; Van Der Gast, C.J.; Ciric, L.; Singer, A.C. Bioaugmentation for bioremediation: The challenge of strain selection. Environ. Microbiol. 2005, 7, 909–915. [Google Scholar] [CrossRef] [PubMed]
- Parus, A.; Ciesielski, T.; Woźniak-Karczewska, M.; Ślachciński, M.; Owsianiak, M.; Ławniczak, Ł.; Loibner, A.P.; Heipieper, H.J.; Chrzanowski, Ł. Basic principles for biosurfactant-assisted (bio)remediation of soils contaminated by heavy metals and petroleum hydrocarbons-A critical evaluation of the performance of rhamnolipids. J. Hazard. Mater. 2023, 443, 130171. [Google Scholar] [CrossRef]
- Wang, X.B.; Nie, Y.; Tang, Y.Q.; Wu, G.; Wu, X.L. Alkane chain length alters Dietzia sp. strain DQ12-45-1b biosurfactant production and cell surface activity. Appl. Environ. Microbiol. 2013, 79, 400–402. [Google Scholar] [CrossRef]
- Kapellos, G.E. Microbial strategies for oil biodegradation. In Modeling of Microscale Transport in Biological Processes; Academic Press: Cambridge, MA, USA, 2017; pp. 19–39. [Google Scholar]
- Elumalai, P.; Parthipan, P.; Huang, M.; Muthukumar, B.; Cheng, L.; Govarthanan, M.; Rajasekar, A. Enhanced biodegradation of hydrophobic organic pollutants by the bacterial consortium: Impact of enzymes and biosurfactants. Environ. Pollut. 2021, 289, 117956. [Google Scholar] [CrossRef]
- Ron, E.Z.; Rosenberg, E. Biosurfactants and oil bioremediation. Curr. Opin. Biotechnol. 2002, 13, 249–252. [Google Scholar] [CrossRef] [PubMed]
- Pereira, J.V.; Osorio-Gonzalez, C.S.; Miri, S.; Brar, S.K. Petroleum hydrocarbons bioremediation by halotolerant enzymes progress & advances. J. Environ. Chem. Eng. 2024, 12, 111726. [Google Scholar]
- Khalil, C.A.; Prince, V.L.; Prince, R.C.; Greer, C.W.; Lee, K.; Zhang, B.Y.; Boufadel, M.C. Occurrence and biodegradation of hydrocarbons at high salinities. Sci. Total Environ. 2021, 762, 143165. [Google Scholar] [CrossRef]
- Ebadi, A.; Khoshkholgh Sima, N.A.; Olamaee, M.; Hashemi, M.; Ghorbani Nasrabadi, R. Effective bioremediation of a petroleum-polluted saline soil by a surfactant-producing Pseudomonas aeruginosa consortium. J. Adv. Res. 2017, 8, 627–633. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.C.; Kuang, S.P.; Shao, H.B.; Cheng, F.; Wang, H.H. Improving soil fertility by driving microbial community changes in saline soils of Yellow River Delta under petroleum pollution. J. Environ. Manag. 2022, 304, 114265. [Google Scholar] [CrossRef]
- Yang, J.S.; Yao, R.J. Spatial variability of soil water and salt characteristics in the Yellow River Delta. Sci. Geogr. Sin. 2007, 27, 348–353. [Google Scholar]
- Gao, Y.C.; Wang, J.N.; Guo, S.H.; Hu, Y.L.; Li, T.T.; Mao, R.; Zeng, D.H. Effects of salinization and crude oil contamination on soil bacterial community structure in the Yellow River Delta region, China. Appl. Soil. Ecol. 2015, 86, 165–173. [Google Scholar] [CrossRef]
- Rosenberg, M. Bacterial adherence to hydrocarbons: A useful technique for studying cell surface hydrophobicity. FEMS Microbiol. Lett. 1984, 22, 289–295. [Google Scholar] [CrossRef]
- Sun, Y.Y.; Wang, H.; Li, J.D.; Wang, B.; Qi, C.C.; Hu, X.K. Nutrient-enhanced alkanes biodegradation and succession of bacterial communities. J. Oceanol. Limnol. 2018, 36, 1294–1303. [Google Scholar] [CrossRef]
- Chen, W.W.; Kong, Y.C.; Li, J.D.; Sun, Y.Y.; Min, J.; Hu, X.K. Enhanced biodegradation of crude oil by constructed bacterial consortium comprising salt-tolerant petroleum degraders and biosurfactant producers. Int. Biodeterior. Biodegrad. 2020, 154, 105047. [Google Scholar] [CrossRef]
- Bidja Abena, M.T.; Li, T.; Shah, M.N.; Zhong, W.H. Biodegradation of total petroleum hydrocarbons (TPH) in highly contaminated soils by natural attenuation and bioaugmentation. Chemosphere 2019, 234, 864–874. [Google Scholar] [CrossRef] [PubMed]
- Suja, F.; Rahim, F.; Taha, M.R.; Hambali, N.; Razali, M.R.; Khalid, A.; Hamzah, A. Effects of local microbial bioaugmentation and biostimulation on the bioremediation of total petroleum hydrocarbons (TPH) in crude oil contaminated soil based on laboratory and field observations. Int. Biodeterior. Biodegrad. 2014, 90, 115–122. [Google Scholar] [CrossRef]
- Kachieng’a, L.; Momba, M.N.B. Kinetics of petroleum oil biodegradation by a consortium of three protozoan isolates (Aspidisca sp., Trachelophyllum sp. and Peranema sp.). Biotechnol. Rep. 2017, 15, 125–131. [Google Scholar] [CrossRef]
- Zhou, H.H.; Liu, Q.; Jiang, L.J.; Shen, Q.; Chen, C.L.; Zhang, C.F.; Tang, J.W. Enhanced remediation of oil-contaminated intertidal sediment by bacterial consortium of petroleum degraders and biosurfactant producers. Chemosphere 2023, 330, 138763. [Google Scholar] [CrossRef]
- Niu, G.L.; Zhang, J.J.; Zhao, S.; Liu, H.; Boon, N.; Zhou, N.Y. Bioaugmentation of a 4-chloronitrobenzene contaminated soil with Pseudomonas putida ZWL73. Environ. Pollut. 2009, 157, 763–771. [Google Scholar] [CrossRef]
- Suzuki, M.T.; Taylor, L.T.; Delong, E.F. Quantitative analysis of small-subunit rRNA genes in mixed microbial populations via 5′-nuclease assays. Appl. Environ. Microb. 2000, 66, 4605–4614. [Google Scholar] [CrossRef]
- Powell, S.M.; Bowman, J.P.; Ferguson, S.H.; Snape, I. The importance of soil characteristics to the structure of alkane-degrading bacterial communities on sub-Antarctic Macquarie Island. Soil. Biol. Biochem. 2010, 42, 2012–2021. [Google Scholar] [CrossRef]
- Brankatschk, R.; Bodenhausen, N.; Zeyer, J.; Bürgmann, H. Simple absolute quantification method correcting for quantitative PCR efficiency variations for microbial community samples. Appl. Environ. Microbiol. 2012, 78, 4481–4489. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Zhang, H. Microbial consortia are needed to degrade soil pollutants. Microorganisms 2022, 10, 261. [Google Scholar] [CrossRef] [PubMed]
- Rahmati, F.; Asgari Lajayer, B.; Shadfar, N.; van Bodegom, P.M.; van Hullebusch, E.D. A review on biotechnological approaches applied for marine hydrocarbon spills remediation. Microorganisms 2022, 10, 1289. [Google Scholar] [CrossRef]
- Nopcharoenkul, W.; Netsakulnee, P.; Pinyakong, O. Diesel oil removal by immobilized Pseudoxanthomonas sp. RN402. Biodegradation 2012, 24, 387–397. [Google Scholar] [CrossRef]
- Choi, E.J.; Jin, H.M.; Lee, S.H.; Math, R.K.; Madsen, E.L.; Jeon, C.O. Comparative genomic analysis and benzene, toluene, ethylbenzene, and o-, m-, and p-Xylene (BTEX) degradation pathways of Pseudoxanthomonas spadix BD-a59. Appl. Environ. Microbiol. 2013, 79, 663–671. [Google Scholar] [CrossRef]
- Li, Y.Q.; Li, C.L.; Xin, Y.; Huang, T.; Liu, J. Petroleum pollution affects soil chemistry and reshapes the diversity and networks of microbial communities. Ecotoxicol. Environ. Saf. 2022, 246, 114129. [Google Scholar] [CrossRef]
- Dastgheib, S.M.M.; Amoozegar, M.A.; Khajeh, K.; Ventosa, A. A halotolerant Alcanivorax sp. strain with potential application in saline soil remediation. Appl. Microbiol. Biotechnol. 2011, 90, 305–312. [Google Scholar] [CrossRef] [PubMed]
- Joshi, S.J.; Al-Wahaibi, Y.M.; Al-Bahry, S.N.; Elshafe, A.E.; Al-Bemani, A.S.; Al-Bahri, A.; Al-Mandhari, M.S. Production, characterization, and application of Bacillus licheniformis W16 biosurfactant in enhancing oil recovery. Front. Microbiol. 2016, 7, 1853. [Google Scholar] [CrossRef]
- Hennessee, C.T.; Li, Q.X. Effects of polycyclic aromatic hydrocarbon mixtures on degradation, gene expression, and metabolite production in four Mycobacterium species. Appl. Environ. Microbiol. 2016, 82, 3357–3369. [Google Scholar] [CrossRef]
- Truskewycz, A.; Gundry, T.D.; Khudur, L.S.; Kolobaric, A.; Taha, M.; Aburto-Medina, A.; Ball, A.S.; Shahsavari, E. Petroleum hydrocarbon contamination in terrestrial ecosystems-fate and microbial responses. Molecules 2019, 24, 3400. [Google Scholar] [CrossRef] [PubMed]
- Cui, J.; Huang, L.; Wang, W.W.; Xu, P.; Zanaroli, G.; Tang, H.Z. Maximization of the petroleum biodegradation using a synthetic bacterial consortium based on minimal value algorithm. Int. Biodeterior. Biodegrad. 2020, 150, 104964. [Google Scholar] [CrossRef]
- Vasudevan, N.; Rajaram, P. Bioremediation of crude oil-contaminated soil. Environ. Int. 2001, 26, 409–411. [Google Scholar] [CrossRef]
- Wu, M.L.; Chen, L.M.; Tian, Y.Q.; Ding, Y.; Dick, W.A. Degradation of polycyclic aromatic hydrocarbons by microbial consortia enriched from three soils using two different culture media. Environ. Pollut. 2013, 178, 152–158. [Google Scholar] [CrossRef] [PubMed]
- Magdalena, P.P.; Joanna, C.; Tomasz, P.; Zofia, P.S. The effect of bioaugmentation of petroleum-contaminated soil with Rhodococcus erythropolis strains on removal of petroleum from soil. Ecotoxicol. Environ. Saf. 2019, 169, 615–622. [Google Scholar]
- Zhang, X.; Kong, D.; Liu, X.; Xie, H.; Lou, X.; Zeng, C. Combined microbial degradation of crude oil under alkaline conditions by Acinetobacter baumannii and Talaromyces sp. Chemosphere 2021, 273, 129666. [Google Scholar] [CrossRef]
Retention Time (s) | Compounds | Formula | Retention Time (s) | Compounds | Formula |
---|---|---|---|---|---|
239.82 | Toluene | C7H8 | 1351.00 | Phytane | C20H42 |
251.95 | 1,3-dimethylcyclohexane | C8H16 | 1419.85 | Nonadecane | C19H40 |
356.53 | Ethylbenzene | C8H10 | 1451.83 | 1-methylphenanthrene | C15H12 |
366.99 | p-Xylene | C8H10 | 1493.19 | Eicosane | C20H42 |
541.12 | Decane | C10H22 | 1563.27 | Heneicosane | C21H44 |
667.04 | Undecane | C11H24 | 1630.37 | Docosane | C22H46 |
772.60 | Naphthalene | C10H8 | 1694.68 | Tricosane | C23H48 |
783.42 | Dodecane | C12H26 | 1756.41 | Tetracosane | C24H50 |
891.44 | Tridecane | C13H28 | 1815.79 | Pentacosane | C25H52 |
969.77 | 2,6,10-trimethyldodecane | C15H32 | 1872.49 | Hexacosane | C26H54 |
992.43 | Tetradecane | C14H30 | 1928.17 | Heptacosane | C27H56 |
1025.22 | 1,6-dimethylnaphthalene | C12H12 | 1981.49 | Octacosane | C28H58 |
1087.38 | Pentadecane | C15H32 | 2033.11 | Nonacosane | C29H60 |
1177.12 | Hexadecane | C16H34 | 2084.01 | Triacontane | C30H62 |
1219.37 | 2,6,10-trimethylpentadecane | C18H38 | 2140.42 | Hentriacontane | C31H64 |
1262.20 | Heptadecane | C17H36 | 2205.1 | Dotriacontane | C32H66 |
1267.30 | Pristane | C19H40 | 2280.72 | Tritriacontane | C33H68 |
1315.42 | Undecylcyclohexane | C17H34 | 2370.29 | Tetratriacontane | C34H70 |
1343.01 | Octadecane | C18H38 | 2477.33 | Pentatriacontane | C35H72 |
Treatment | k (d−1) | t1/2 (d) | R2 | Treatment | k (d−1) | t1/2 (d) | R2 |
---|---|---|---|---|---|---|---|
AC | 0.0026 | 266.60 | 0.9033 | S-AC | 0.0027 | 256.72 | 0.9437 |
NA | 0.0041 | 169.06 | 0.8756 | S-NA | 0.0029 | 239.02 | 0.9413 |
BS | 0.0078 | 88.87 | 0.9343 | S-BS | 0.0065 | 106.64 | 0.9507 |
BA | 0.0169 | 41.01 | 0.9477 | S-BA | 0.0157 | 44.15 | 0.9727 |
BS + BA | 0.0219 | 31.65 | 0.9694 | S-BS + BA | 0.0208 | 33.32 | 0.9704 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, W.; Sun, J.; Ji, R.; Min, J.; Wang, L.; Zhang, J.; Qiao, H.; Cheng, S. Crude Oil Biodegradation by a Biosurfactant-Producing Bacterial Consortium in High-Salinity Soil. J. Mar. Sci. Eng. 2024, 12, 2033. https://doi.org/10.3390/jmse12112033
Chen W, Sun J, Ji R, Min J, Wang L, Zhang J, Qiao H, Cheng S. Crude Oil Biodegradation by a Biosurfactant-Producing Bacterial Consortium in High-Salinity Soil. Journal of Marine Science and Engineering. 2024; 12(11):2033. https://doi.org/10.3390/jmse12112033
Chicago/Turabian StyleChen, Weiwei, Jiawei Sun, Renping Ji, Jun Min, Luyao Wang, Jiawen Zhang, Hongjin Qiao, and Shiwei Cheng. 2024. "Crude Oil Biodegradation by a Biosurfactant-Producing Bacterial Consortium in High-Salinity Soil" Journal of Marine Science and Engineering 12, no. 11: 2033. https://doi.org/10.3390/jmse12112033
APA StyleChen, W., Sun, J., Ji, R., Min, J., Wang, L., Zhang, J., Qiao, H., & Cheng, S. (2024). Crude Oil Biodegradation by a Biosurfactant-Producing Bacterial Consortium in High-Salinity Soil. Journal of Marine Science and Engineering, 12(11), 2033. https://doi.org/10.3390/jmse12112033