Three-Dimensional CKANs: UUV Noncooperative Target State Estimation Approach Based on 3D Convolutional Kolmogorov–Arnold Networks
Abstract
:1. Introduction
2. UUV Noncooperative Target Tracking Model
3. Convolutional Kolmogorov–Arnold Network-Based Target State Estimation
4. Simulation Results and Analysis
4.1. Statistical Experiment and Analysis
4.2. Simulation Cases and Analysis
- (1)
- Simulation Case 1
- (2)
- Simulation Case 2
5. Conclusions and Future Work
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Er, M.J.; Gong, H.; Liu, Y.; Liu, T. Intelligent trajectory tracking and formation control of underactuated autonomous underwater vehicles: A critical review. IEEE Trans. Syst. Man Cybern. Syst. 2024, 54, 543–555. [Google Scholar] [CrossRef]
- Liu, F.; Ma, Z.; Mu, B.; Duan, C.; Chen, R.; Qin, Y.; Pu, H.; Luo, J. Review on fault-tolerant control of unmanned underwater vehicles. Ocean. Eng. 2023, 285, 115471. [Google Scholar] [CrossRef]
- Zhou, J.; Si, Y.; Chen, Y. A review of subsea AUV technology. J. Mar. Sci. Eng. 2023, 11, 1119. [Google Scholar] [CrossRef]
- Zhang, B.; Hou, X.; Yang, Y.; Zhou, J.; Xu, S. Variational Bayesian cardinalized probability hypothesis density filter for robust underwater multi-target direction-of-arrival tracking with uncertain measurement noise. Front. Phys. 2023, 11, 1142400. [Google Scholar] [CrossRef]
- Huang, H.; Zhang, S.; Wang, D.; Ling, K.-V.; Liu, F.; He, X. A novel Bayesian-based adaptive algorithm applied to unobservable sensor measurement information loss for underwater navigation. IEEE Trans. Instrum. Meas. 2023, 72, 1–12. [Google Scholar] [CrossRef]
- Challa, S.; Morelande, M.R.; Mušicki, D.; Evans, R.J. Fundamentals of Object Tracking; Cambridge University Press: Cambridge, UK, 2011. [Google Scholar]
- Wang, G.; Zhao, J.; Yang, C.; Ma, L.; Fan, X.; Dai, W. Robust Kalman filter for systems with colored heavy-tailed process and measurement noises. IEEE Trans. Circuits Syst. II Express Briefs 2023, 70, 4256–4260. [Google Scholar] [CrossRef]
- Ljung, L. Asymptotic behavior of the extended Kalman filter as a parameter estimator for linear systems. IEEE Trans. Autom. Control. 1979, AC-24, 36–50. [Google Scholar] [CrossRef]
- Ford, K.R.; Haug, A.J. A study of endpoint-constrained nonlinear tracking filters. IEEE Trans. Aerosp. Electron. Syst. 2021, 57, 3952–3961. [Google Scholar] [CrossRef]
- Wan, E.A.; Van Der Merwe, R.; Haykin, S. The unscented Kalman filter. Kalman Filter. Neural Netw. 2001, 5, 221–280. [Google Scholar]
- Shen, H.; Wen, G.; Lv, Y.; Zhou, J.; Wang, L. USV parameter estimation: Adaptive unscented Kalman filter-based approach. IEEE Trans. Ind. Inform. 2023, 19, 7751–7761. [Google Scholar] [CrossRef]
- Kumar, M.; Mondal, S. A fuzzy-based adaptive unscented Kalman filter for state estimation of three-dimensional target tracking. Int. J. Control Autom. Syst. 2023, 21, 3804–3812. [Google Scholar] [CrossRef]
- Arasaratnam, I.; Haykin, S. Cubature Kalman filters. IEEE Trans. Autom. Control 2009, 54, 1254–1269. [Google Scholar] [CrossRef]
- Fu, H.; Cheng, Y.; Cheng, C. A novel improved cubature Kalman filter with adaptive generation of cubature points and weights for target tracking. Meas. Sci. Technol. 2022, 33, 035002. [Google Scholar] [CrossRef]
- Arulampalam, M.S.; Maskell, S.; Gordon, N.; Clapp, T. A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking. IEEE Trans. Signal Process. 2002, 50, 174–188. [Google Scholar] [CrossRef]
- Zhang, Z.; Yang, G.; Jin, M.; Fan, S. Motion parameters and state estimation of non-cooperative target. In Intelligent Robotics and Applications; ICIRA 2022. Lecture Notes in Computer Science; Springer: Cham, Switzerland, 2022; Volume 13455. [Google Scholar]
- Wei, Y.; Yang, X.; Bai, X.; Xu, Z. Adaptive hybrid Kalman filter for attitude motion parameters estimation of space non-cooperative tumbling target. Aerosp. Sci. Technol. 2024, 144, 108832. [Google Scholar] [CrossRef]
- Seo, M.; Kia, S.S. Online target localization using adaptive belief propagation in the HMM framework. IEEE Robot. Autom. Lett. 2022, 7, 10288–10295. [Google Scholar] [CrossRef]
- Li, Q.; Gan, R.; Liang, J.; Godsill, S.J. An adaptive and scalable multi-object tracker based on the non-homogeneous Poisson process. IEEE Trans. Signal Process. 2023, 71, 105–120. [Google Scholar] [CrossRef]
- Wang, P.; Liu, Y. Underwater target tracking algorithm based on improved adaptive IMM-UKF. J. Electron. Inf. Technol. 2022, 44, 1999–2005. [Google Scholar]
- Li, X.; Lu, B.; Li, Y.; Lu, X.; Jin, H. Adaptive interacting multiple model for underwater maneuvering target tracking with one-step randomly delayed measurements. Ocean. Eng. 2023, 280, 114933. [Google Scholar] [CrossRef]
- Xie, G.; Sun, L.; Wen, T.; Hei, X.; Qian, F. Adaptive transition probability matrix-based parallel IMM algorithm. IEEE Trans. Syst. Man Cybern. Syst. 2021, 51, 2980–2989. [Google Scholar] [CrossRef]
- Lan, H.; Liang, Y.; Yang, F.; Wang, Z.; Pan, Q. Joint estimation and identification for stochastic systems with unknown inputs. IET Control Theory Appl. 2013, 7, 1377–1386. [Google Scholar] [CrossRef]
- Das, B.P.; Sharma, K.D.; Chatterjee, A.; Bera, J. Joint state estimation of indoor thermal dynamics with unknown inputs using augmented fading memory Kalman filter. J. Build. Perform. Simul. 2023, 16, 90–106. [Google Scholar] [CrossRef]
- Wang, S.; Li, C.; Lim, A. Optimal joint estimation and identification theorem to linear Gaussian system with unknown inputs. Signal Process. 2019, 161, 268–288. [Google Scholar] [CrossRef]
- Cao, W.; Lan, J.; Wu, Q. Joint tracking and identification based on constrained joint decision and estimation. IEEE Trans. Intell. Transp. Syst. 2021, 22, 6489–6502. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, G.; Zhang, X.; He, Y. A deep learning model based on transformer structure for radar tracking of maneuvering targets. Inf. Fusion 2024, 103, 102120. [Google Scholar] [CrossRef]
- Liu, Y.; Shi, S.; Fang, Y.; Fu, A. Robust data-driven wave excitation force estimation for wave energy converters with nonlinear probabilistic modelling. Ocean. Eng. 2024, 310, 118726. [Google Scholar] [CrossRef]
- Liu, Z.; Wang, Z.; Yang, Y.; Lu, Y. A data-driven maneuvering target tracking method aided with partial models. IEEE Trans. Veh. Technol. 2024, 73, 414–425. [Google Scholar] [CrossRef]
- Liu, J.; Yan, J.; Wan, D.; Li, X.; Al-Rubaye, S. Digital twins based intelligent state prediction method for maneuvering-target tracking. IEEE J. Sel. Areas Commun. 2023, 41, 3589–3606. [Google Scholar] [CrossRef]
- Zhang, C.; Deng, J.; Yi, W. Data-driven online tracking filter architecture: A LightGBM implementation. Signal Process. 2024, 221, 109477. [Google Scholar] [CrossRef]
- Jin, X.-B.; Chen, W.; Ma, H.-J.; Kong, J.-L.; Su, T.-L.; Bai, Y.-T. Parameter-free state estimation based on Kalman filter with attention learning for GPS tracking in autonomous driving system. Sensors 2023, 23, 8650. [Google Scholar] [CrossRef]
- Wang, Q.; Fan, S.; Zhang, Y.; Gao, W.; Wei, J.; Wang, Y. A novel adaptive sliding observation-based cooperative positioning algorithm under factor graph framework for multiple UUVs. IEEE Trans. Ind. Inform. 2023, 19, 8743–8753. [Google Scholar] [CrossRef]
- Zhou, T.; Wang, Y.; Chen, B.; Zhu, J.; Yu, X. Underwater multitarget tracking with sonar images using thresholded sequential Monte Carlo probability hypothesis density algorithm. IEEE Geosci. Remote Sens. Lett. 2022, 19, 1–5. [Google Scholar] [CrossRef]
- Wolek, A.; Dzikowicz, B.R.; McMahon, J.; Houston, B.H. At-sea evaluation of an underwater vehicle behavior for passive target tracking. IEEE J. Ocean. Eng. 2019, 44, 514–523. [Google Scholar] [CrossRef]
- Liu, Z.; Wang, Y.; Vaidya, S.; Ruehle, F.; Halverson, J.; Soljačić, M.; Hou, T.; Tegmark, M. KAN: Kolmogorov-Arnold Networks. arXiv 2024. [Google Scholar] [CrossRef]
- Bodner, A.D.; Tepsich, A.S.; Spolski, J.N.; Pourteau, S. Convolutional Kolmogorov-Arnold Networks. arXiv 2024, arXiv:2406.13155. [Google Scholar]
Motion State | CV | CA | CT | |
---|---|---|---|---|
UUV | [1, 40] | [111, 127] | [40, 111] | |
[127, 190] | [190, 200] | |||
Time/s | noncooperative target | [1, 6] | [6, 28] | [41, 59] |
[79, 89] | [28, 14] | [59, 79] | ||
[103, 113] | [89, 103] | [113, 136] | ||
[150, 161] | [136, 150] | [171, 181] | ||
[196, 200] | [161, 171] | |||
[181, 196] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, C.; Yu, D.; Lin, S. Three-Dimensional CKANs: UUV Noncooperative Target State Estimation Approach Based on 3D Convolutional Kolmogorov–Arnold Networks. J. Mar. Sci. Eng. 2024, 12, 2040. https://doi.org/10.3390/jmse12112040
Lin C, Yu D, Lin S. Three-Dimensional CKANs: UUV Noncooperative Target State Estimation Approach Based on 3D Convolutional Kolmogorov–Arnold Networks. Journal of Marine Science and Engineering. 2024; 12(11):2040. https://doi.org/10.3390/jmse12112040
Chicago/Turabian StyleLin, Changjian, Dan Yu, and Shibo Lin. 2024. "Three-Dimensional CKANs: UUV Noncooperative Target State Estimation Approach Based on 3D Convolutional Kolmogorov–Arnold Networks" Journal of Marine Science and Engineering 12, no. 11: 2040. https://doi.org/10.3390/jmse12112040
APA StyleLin, C., Yu, D., & Lin, S. (2024). Three-Dimensional CKANs: UUV Noncooperative Target State Estimation Approach Based on 3D Convolutional Kolmogorov–Arnold Networks. Journal of Marine Science and Engineering, 12(11), 2040. https://doi.org/10.3390/jmse12112040