Application of Hyperspectral Image for Monitoring in Coastal Area with Deep Learning: A Case Study of Green Algae on Artificial Structure
Abstract
:1. Introduction
2. Study Site
3. Data Description
3.1. Hyperspectral Camera
3.2. Observation of Green Algae
3.3. Hyperspectral Data
(1 ≤ i ≤ R, 1 ≤ j ≤ C, 1 ≤ k ≤ L)
3.4. Preprocessing for Classification Dataset
4. Classification Models
4.1. Support Vector Machine (SVM)
4.2. Basic Convolutional Neural Network (CNN)
4.3. Dense Convolutional Network (DenseNet)
4.4. Classification Based on Deep-Leaning Models
5. Results
5.1. Learning Results in ROI
5.2. Predicted Results in Entire Area
6. Discussion
6.1. Comparison Between Machine- and Deep-Learning Models
6.2. Comparison Between Hyperspectral, Multispectral, and RGB Data
6.3. Application Plan
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Klemas, V. Remote sensing of algal blooms: An overview with case studies. J. Coastal Res. 2012, 28, 34–43. [Google Scholar] [CrossRef]
- Barnes, R.A.; Clark, D.K.; Esaias, W.E.; Fargion, G.S.; Feldman, G.C.; McClain, C.R. Development of a consistent multi-sensor global ocean colour time series. Int. J. Remote Sens. 2003, 24, 4047–4064. [Google Scholar] [CrossRef]
- Rashid, A.; Yang, C.S. Hourly variation of green tide in the Yellow Sea during summer 2015 and 2016 using Geostationary Ocean Color Imager data. Int. J. Remote Sens. 2018, 39, 4402–4415. [Google Scholar] [CrossRef]
- Rashid, A.; Yang, C.S. Improved Detection of Tiny Macroalgae Patches in Korea Bay and Gyeonggi Bay by Modification of Floating Algae Index. Remote Sens. 2018, 10, 1478. [Google Scholar] [CrossRef]
- Min, S.H.; Hwang, J.D.; Oh, H.J.; Son, Y.B. Reflectivity characteristics of the green and golden tides from the Yellow Sea and East China Sea. J. Coastal Res. 2019, 90, 310–316. [Google Scholar] [CrossRef]
- Kudela, R.M.; Palacios, S.L.; Austerberry, D.C.; Accorsi, E.K.; Guild, L.S.; Torres-Perez, J. Application of hyperspectral remote sensing to cyanobacterial blooms in inland waters. Remote Sens. Environ. 2015, 167, 196–205. [Google Scholar] [CrossRef]
- Dierssen, H.M.; Chlus, A.; Russell, B. Hyperspectral discrimination of floating mats of seagrass wrack and the macroalgae Sargassum in coastal waters of Greater Florida Bay using airborne remote sensing. Remote Sens. Environ. 2015, 167, 247–258. [Google Scholar] [CrossRef]
- Oh, S.Y.; Kim, D.H.; Yoon, H.J. Application of unmanned aerial image application red tide monitoring on the aquaculture fields in the coastal waters of the South Sea, Korea. Korean J. Remote Sens. 2016, 32, 87–96. (In Korean) [Google Scholar] [CrossRef]
- Duffy, J.P.; Pratt, L.; Anderson, K.; Land, P.E.; Shutler, J.D. Spatial assessment of intertidal seagrass meadows using optical imaging systems and a lightweight drone. Estuar. Coast. Shelf S. 2018, 200, 169–180. [Google Scholar] [CrossRef]
- Ventura, D.; Bonifazi, A.; Gravina, M.F.; Belluscio, A.; Ardizzone, G. Mapping and classification of ecologically sensitive marine habitats using unmanned aerial vehicle (UAV) imagery and object-based image analysis (OBIA). Remote Sens. 2018, 10, 1331. [Google Scholar] [CrossRef]
- Kim, S.H.; Yang, C.S. Current status of hyperspectral data processing techniques for monitoring coastal waters. J. Korean Assoc. Geogr. Inf. Stud. 2015, 18, 48–63. (In Korean) [Google Scholar] [CrossRef]
- Khan, M.J.; Khan, H.S.; Yousaf, A.; Khurshid, K.; Abbas, A. Modern trends in hyperspectral image analysis: A review. IEEE Access 2018, 6, 14118–14129. [Google Scholar] [CrossRef]
- Gao, Q.; Lim, S.; Jia, X. Hyperspectral image classification using convolutional neural networks and multiple feature learning. Remote Sens. 2018, 10, 299. [Google Scholar] [CrossRef]
- Ran, L.; Zhang, Y.; Wei, W.; Zhang, Q. A hyperspectral image classification framework with spatial pixel pair features. Sensors 2017, 17, 2421. [Google Scholar] [CrossRef]
- Song, A.; Kim, Y. Deep learning-based hyperspectral image classification with application to environmental geographic information systems. Korean J. Remote Sens. 2017, 33, 1061–1073. (In Korean) [Google Scholar]
- Han, M.; Cong, R.; Li, X.; Fu, H.; Lei, J. Joint spatial-spectral hyperspectral image classification based on convolutional neural network. Pattern Recognit. Lett. 2020, 130, 38–45. [Google Scholar] [CrossRef]
- Rupasinghe, P.A.; Milas, A.S.; Arend, K.; Simonson, M.A.; Mayer, C.; Mackey, S. Classification of shoreline vegetation in the Western Basin of Lake Erie using airborne hyperspectral imager HSI2, Pleiades and UAV data. Int. J. Remote Sens. 2019, 40, 3008–3028. [Google Scholar] [CrossRef]
- Hu, Y.; Zhang, J.; Ma, Y.; Li, X.; Sun, Q.; An, J. Deep learning classification of coastal wetland hyperspectral image combined spectra and texture features: A case study of Huanghe (Yellow) River Estuary wetland. Acta Oceanol. Sin. 2019, 38, 142–150. [Google Scholar] [CrossRef]
- Hu, Y.; Zhang, J.; Ma, Y.; An, J.; Ren, G.; Li, X. Hyperspectral coastal wetland classification based on a multiobject convolutional neural network model and decision fusion. IEEE Geosci. Remote Sens. Lett. 2019, 16, 1110–1114. [Google Scholar] [CrossRef]
- Kim, H.O.; Yeom, J.M. A study on object-based image analysis methods for land cover classification in agricultural areas. J. Korean Assoc. Geogr. Inf. Stud. 2012, 15, 26–41. (In Korean) [Google Scholar] [CrossRef]
- Shin, J.S.; Lee, T.H.; Jung, P.M.; Kwon, H.S. A study on land cover map of UAV imagery using an object-based classification method. J. Korean Assoc. Geogr. Inf. Stud. 2015, 23, 25–33. (In Korean) [Google Scholar]
- Pyo, J.; Duan, H.; Baek, S.; Kim, M.S.; Jeon, T.; Kwon, Y.S.; Lee, H.; Cho, K.H. A convolutional neural network regression for quantifying cyanobacteria using hyperspectral imagery. Remote Sens. Environ. 2019, 233, 111350. [Google Scholar] [CrossRef]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet Classification with Deep Convolutional Neural Networks. Adv. Neural Inf. Process. Syst. 2012, 25, 1097–1105. [Google Scholar] [CrossRef]
- LeCun, Y.; Boser, B.; Denker, J.S.; Henderson, D.; Howard, R.E.; Hubbard, W.; Jackel, L.D. Backpropagation applied to handwritten zip code recognition. Neural Comput. 1989, 1, 541–551. [Google Scholar] [CrossRef]
- Lin, L.; Song, X. Using CNN to classify hyperspectral data based on spatial-spectral information. In Advances in Intelligent Information Hiding and Multimedia Signal Processing; Springer: Cham, Switzerland, 2017; pp. 61–68. [Google Scholar]
- Cervantes, J.; Garcia-Lamont, F.; Rodríguez-Mazahua, L.; Lopez, A. A comprehensive survey on support vector machine classification: Applications, challenges and trends. Neurocomputing 2020, 408, 189–215. [Google Scholar] [CrossRef]
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; et al. Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830. [Google Scholar]
- Huang, G.; Liu, Z.; Van Der Maaten, L.; Weinberger, K.Q. Densely connected convolutional networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 4700–4708. [Google Scholar]
- Nair, V.; Hinton, G.E. Rectified linear units improve restricted boltzmann machines. In Proceedings of the 27th International Conference on Machine Learning (ICML-10), Haifa, Israel, 21–24 June 2010; pp. 807–814. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- Meng, X.; Zhang, S.; Zang, S. Lake wetland classification based on an SVM-CNN composite classifier and high-resolution images using Wudalianchi as an example. J. Coastal Res. 2019, 93, 153–162. [Google Scholar] [CrossRef]
- Kim, D.S. Study on improvement of coastal safety management system to prevent coastal water accident. J. Korean Public Secur. Adm. 2019, 16, 19–46. (In Korean) [Google Scholar]
- Korean Coast Guard. Effective Coastal Safety Management for Coastal Accident Prevention; Korean Coast Guard: Incheon, Republic of Korea, 2016; p. 118. (In Korean) [Google Scholar]
- An, J.W. The Current Conditions and Mitigation Plans for Coastal Safety. Master’s Thesis, Yonsei University, Wonju, Republic of Korea, 14 June 2016. [Google Scholar]
Item | Specification |
---|---|
Wavelength range | 400–900 nm |
Spectral channels | 240 bands |
Spatial channels | 640 samples |
Spectral resolution | 2.1 nm |
Weight | 1.3 kg |
Dimensions | 9.7 cm × 16.8 cm × 6.4 cm |
Pixel size | 7.4 µm |
Layers | Output Size | DenseNet-201 |
---|---|---|
Convolution | 16 × 16 | 7 × 7 conv, stride 2 |
Pooling | 8 × 8 | 3 × 3 max pool, stride 2 |
Dense Block 1 | 8 × 8 | × 6 |
Transition Layer | 8 × 8 | 1 × 1 conv |
4 × 4 | 2 × 2 average pool, stride 2 | |
Dense Block 2 | 4 × 4 | × 12 |
Transition Layer | 4 × 4 | 1 × 1 conv |
2 × 2 | 2 × 2 average pool, stride 2 | |
Dense Block 3 | 2 × 2 | × 48 |
Transition Layer | 2 × 2 | 1 × 1 conv |
1 × 1 | 2 × 2 average pool, stride 2 | |
Dense Block 4 | 1 × 1 | × 32 |
Classification Layer | 1 × 1 | 7 × 7 global average pool, |
fully connected |
Classification Models | Manual Inspection Class (Pixels) | Accuracy | ||||
---|---|---|---|---|---|---|
Concrete | Dense Green Algae | Sparse Green Algae | ||||
SVM | Predicted class (pixels) | Concrete | 78,907 | 9 | 1017 | 90.22% |
Dense green algae | 12 | 29,146 | 1168 | |||
Sparse green algae | 7274 | 5167 | 27,118 | |||
CNN | Concrete | 83,133 | 126 | 1866 | 91.48% | |
Dense green algae | 302 | 32,660 | 6171 | |||
Sparse green algae | 2758 | 1536 | 21,266 | |||
DenseNet | Concrete | 83,133 | 126 | 1866 | 92.80% | |
Dense green algae | 302 | 32,660 | 6171 | |||
Sparse green algae | 2758 | 1536 | 21,266 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, T.-H.; Min, J.E.; Lee, H.M.; Kim, K.J.; Yang, C.-S. Application of Hyperspectral Image for Monitoring in Coastal Area with Deep Learning: A Case Study of Green Algae on Artificial Structure. J. Mar. Sci. Eng. 2024, 12, 2042. https://doi.org/10.3390/jmse12112042
Kim T-H, Min JE, Lee HM, Kim KJ, Yang C-S. Application of Hyperspectral Image for Monitoring in Coastal Area with Deep Learning: A Case Study of Green Algae on Artificial Structure. Journal of Marine Science and Engineering. 2024; 12(11):2042. https://doi.org/10.3390/jmse12112042
Chicago/Turabian StyleKim, Tae-Ho, Jee Eun Min, Hye Min Lee, Kuk Jin Kim, and Chan-Su Yang. 2024. "Application of Hyperspectral Image for Monitoring in Coastal Area with Deep Learning: A Case Study of Green Algae on Artificial Structure" Journal of Marine Science and Engineering 12, no. 11: 2042. https://doi.org/10.3390/jmse12112042
APA StyleKim, T. -H., Min, J. E., Lee, H. M., Kim, K. J., & Yang, C. -S. (2024). Application of Hyperspectral Image for Monitoring in Coastal Area with Deep Learning: A Case Study of Green Algae on Artificial Structure. Journal of Marine Science and Engineering, 12(11), 2042. https://doi.org/10.3390/jmse12112042