The Role of Benthic TA and DIC Fluxes on Carbon Sequestration in Seagrass Meadows of Dongsha Island
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description
2.2. Seawater and Porewater Sampling
2.3. Sample Analyses
2.4. Benthic Incubations and Calculations
2.5. Statistics
3. Results
3.1. Water Properties in Two Seagrass Meadows Across Two Seasons
3.2. Water Carbonate Chemistry in Two Seagrass Meadows Across Two Seasons
3.3. Porewater Carbonate Chemistry in Two Seagrass Meadows
3.4. Benthic Chamber Incubations
3.5. Benthic Flux Calculations
3.6. Carbonate Chemistry Budgets
4. Discussion
4.1. DIC and TA Production Hotspot in the Enclosed Lagoon
4.2. DIC and TA Production Hotspot in the Enclosed Lagoon
4.3. Fate of Benthic DIC and TA Fluxes
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Duarte, C.M.; Cebrián, J. The fate of marine autotrophic production. Limnol. Oceanogr. 1996, 41, 1758–1766. [Google Scholar] [CrossRef]
- Wang, F.; Sanders, C.J.; Santos, I.R.; Tang, J.; Schurech, M.; Kirwan, M.L.; Kopp, R.E.; Zhu, K.; Li, X.; Yuan, J.; et al. Global blue carbon accumulation in tidal wetlands increases with climate change. Nat. Sci. Rev. 2021, 8, nwaa296. [Google Scholar] [CrossRef] [PubMed]
- Alongi, D.M. Current status and emerging perspectives of coastal blue carbon ecosystems. Carbon Footpr. 2023, 2, 12. [Google Scholar] [CrossRef]
- do Amaral Camara Lima, M.; Ward, R.D.; Joyce, C.B. Carbon Sequestration and Geochronology in Southern England’s Seagrass Meadows. Carbon Footpr. 2023, 2, 20. [Google Scholar] [CrossRef]
- Nellemann, C.; Corcoran, E.; Duarte, C.M.; Valdés, L.; De Young, C.; Fonseca, L.; Grimsditch, G. Blue Carbon. A Rapid Response Assessment; United Nations Environment Programme, GRID-Arendal, Birkeland Trykkeri AS: Birkeland, Norway, 2009; Available online: https://www.grida.no (accessed on 9 November 2024).
- Fourqurean, J.W.; Duarte, C.M.; Kennedy, H.; Marbà, N.; Holmer, M.; Mateo, M.A.; Apostolaki, E.T.; Kendrick, G.A.; Krause-Jensen, D.; McGlathery, K.J.; et al. Seagrass ecosystems as a globally significant carbon stock. Nat. Geo. 2012, 5, 505–509. [Google Scholar] [CrossRef]
- Santos, I.R.; Burdige, D.J.; Jennerjahn, T.C.; Bouillon, S.; Cabral, A.; Serrano, O.; Wernberg, T.; Filbee-Dexter, K.; Guimond, J.A.; Tamborski, J.J. The Renaissance of Odum’s outwelling hypothesis in ‘blue carbon’ science. Estuar. Coast. Shelf Sci. 2021, 255, 107361. [Google Scholar] [CrossRef]
- IPCC. 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands; Hiraishi, T., Krug, T., Tanabe, K., Srivastava, N., Baasansuren, J., Fukuda, M., Troxler, T.G., Eds.; IPCC: Geneva, Switzerland, 2014. [Google Scholar]
- Van Dam, B.R.; Zeller, M.A.; Lopes, C.; Smyth, A.R.; Böttcher, M.E.; Osburn, C.L.; Zimmerman, T.; Pröfrock, D.; Fourqurean, J.W.; Thomas, H. Calcification-driven CO2 emissions exceed ‘Blue Carbon’ Sequestration in a Carbonate Seagrass Meadow. Sci. Adv. 2021, 7, eabj1372. [Google Scholar] [CrossRef]
- Chen, T.-Y.; Chen, J.-J.; Chou, W.-C. Rethinking blue carbon: Unlocking invisible carbon sinks. Environ. Res. Lett. 2024, 19, 101001. [Google Scholar] [CrossRef]
- Johannessen, S.C. How to quantify blue carbon sequestration rates in seagrass meadow sediment: Geochemical method and troubleshooting. Carbon Footpr. 2023, 2, 21. [Google Scholar] [CrossRef]
- Chen, X.; Zhang, F.; Lao, Y.; Wang, X.; Du, J.; Santos, I.R. Submarine groundwater discharge-derived carbon fluxes in mangroves: An important component of blue carbon budgets? J. Geophy. Res. Oceans 2018, 123, 6962–6979. [Google Scholar] [CrossRef]
- Diggle, R.M.; Tait, D.R.; Maher, D.T.; Huggins, X.; Santos, I.R. The Role of porewater exchange as a driver of CO2 flux to the atmosphere in a temperate estuary (Squamish, Canada). Environ. Earth Sci. 2019, 78, 336. [Google Scholar] [CrossRef]
- Chou, W.-C.; Fan, L.-F.; Yang, C.-C.; Chen, Y.-H.; Hung, C.-C.; Huang, W.-J.; Shih, Y.-Y.; Soong, K.; Tseng, H.-C.; Gong, G.-C.; et al. A unique diel pattern in carbonate chemistry in the seagrass meadows of Dongsha Island: The enhancement of metabolic carbonate dissolution in a semienclosed lagoon. Front. Mar. Sci. 2021, 8, 717685. [Google Scholar] [CrossRef]
- Saderne, V.; Fusi, M.; Thomson, T.; Dunne, A.; Mahmud, F.; Roth, F.; Carvalho, S.; Duarte, C.M. Total alkalinity production in a mangrove ecosystem reveals an overlooked blue carbon component. Limnol. Oceanogr. Lett. 2021, 6, 61–67. [Google Scholar] [CrossRef]
- Yau, Y.Y.Y.; Xin, P.; Chen, X.; Zhan, L.; Call, M.; Conrad, S.R.; Sanders, C.J.; Li, L.; Du, J.; Santos, I.R. Alkalinity export to the ocean is a major carbon sequestration mechanism in a macrotidal saltmarsh. Limnol. Oceanogr. 2022, 67, S158–S170. [Google Scholar] [CrossRef]
- Reithmaier, G.M.S.; Cabral, A.; Akhand, A.; Bogard, M.J.; Borges, A.V.; Bouillon, S.; Burdige, D.J.; Call, M.; Chen, N.; Chen, X.; et al. Carbonate chemistry and carbon sequestration driven by inorganic carbon outwelling from mangroves and saltmarshes. Nat. Commun. 2023, 14, 8196. [Google Scholar] [CrossRef]
- Kenedy, H.A.; Fourqurean, J.W.; Papadimitriou, S.P. The Calcium Carbonate Cycle in Seagrass Ecosystems. In A Blue Carbon Primer: The State of Coastal Wetland Carbon Science, Practice and Policy; Windham-Myers, L., Crooks, S., Troxler, T.G., Eds.; CRC Press: Boca Raton, FL, USA, 2018; pp. 107–120. [Google Scholar] [CrossRef]
- Reithmaier, G.M.S.; Johnston, S.G.; Junginger, T.; Goddard, M.M.; Sanders, C.J.; Hutley, L.B.; Ho, D.T.; Maher, D.T. Alkalinity production coupled to pyrite formation represents an unaccounted for blue carbon sink. Glob. Biogeochem. Cycles 2021, 35, e2020GB006785. [Google Scholar] [CrossRef]
- Fan, L.-F.; Qiu, S.-Q.; Chou, W.-C. Carbonate chemistry of the Dongsha Atoll Lagoon in the northern South China Sea. Terr. Atmos. Ocean. Sci. 2021, 32, 399–409. [Google Scholar] [CrossRef]
- Saderne, V.; Baldry, K.; Anton, A.; Agustí, S.; Duarte, C.M. Characterization of the CO2 system in a coral reef, a seagrass meadow, and a mangrove forest in the central Red Sea. J. Geophys. Res. Oceans 2019, 124, 7513–7528. [Google Scholar] [CrossRef]
- Su, J.; Cai, W.-J.; Brodeur, J.; Chen, B.; Hussain, N.; Yao, Y.; Ni, C.; Testa, J.M.; Li, M.; Xie, X.; et al. Chesapeake Bay acidification buffered by spatially decoupled carbonate mineral cycling. Nat. Geosci. 2020, 13, 441–447. [Google Scholar] [CrossRef]
- Fakhraee, M.; Planavsky, N.J.; Reinhard, C.T. Ocean alkalinity enhancement through restoration of blue carbon ecosystems. Nat. Sustain. 2023, 6, 1087–1094. [Google Scholar] [CrossRef]
- Cyronak, T.; Andersson, A.J.; Langdon, C.; Albright, R.; Bates, N.R.; Caldeira, K.; Carlton, R.; Corredor, J.E.; Dunbar, R.B.; Enochs, I.; et al. Taking the metabolic pulse of the world’s coral reefs. PLoS ONE 2018, 13, e0190872. [Google Scholar] [CrossRef] [PubMed]
- Egleston, E.S.; Sabine, C.L.; Morel, F.M. Revelle revisited: Buffer factors that quantify the response of ocean chemistry to changes in DIC and alkalinity. Glob. Biogeochem. Cycles 2010, 24, GB1002. [Google Scholar] [CrossRef]
- National Academies of Sciences, Engineering, and Medicine. A Research Strategy for Ocean-Based Carbon Dioxide Removal and Sequestration; The National Academies Press: Washington, DC, USA, 2021. [Google Scholar] [CrossRef]
- Oschlies, A.; Bach, L.T.; Rickaby, R.E.M.; Satterfield, T.; Webb, R.; Gattuso, J.-P. Climate targets, carbon dioxide removal, and the potential role of ocean alkalinity enhancement. In Guide to Best Practices in Ocean Alkalinity Enhancement Research (OAE Guide 23); Oschlies, A., Stevenson, A., Bach, L.T., Fennel, K., Rickaby, R.E.M., Satterfield, T., Webb, R., Gattuso, J.-P., Eds.; Copernicus Publications: Enschede, The Netherlands, 2023. [Google Scholar] [CrossRef]
- Santos, I.R.; Maher, D.T.; Larkin, R.; Webb, R.; Sanders, C.J. Carbon outwelling and outgassing vs. burial in an estuarine tidal creek surrounded by mangrove and saltmarsh wetlands. Limnol. Oceanogr. 2019, 64, 996–1013. [Google Scholar] [CrossRef]
- Majtényi-Hill, C.; Reithmaier, G.; Yau, Y.Y.; Serrano, O.; Piñeiro-Juncal, N.; Santos, I.R. Inorganic carbon outwelling from a Mediterranean seagrass meadow using radium isotopes. Estuar. Coast. Shelf Sci. 2023, 283, 108248. [Google Scholar] [CrossRef]
- Huang, Y.-H.; Lee, C.-L.; Chung, C.-Y.; Hsiao, S.-C.; Lin, H.-J. Carbon Budgets of multispecies seagrass beds at Dongsha Island in the South China Sea. Mar. Environ. Res. 2015, 106, 92–102. [Google Scholar] [CrossRef]
- Chou, W.-C.; Fan, L.-F.; Hung, C.-C.; Shih, Y.-Y.; Huang, W.-J.; Lui, H.-K.; Chen, T.-Y. Dynamics of O2 and pCO2 in a Southeast Asia seagrass meadow: Metabolic rates and carbon sink capacity. Front. Mar. Sci. 2023, 10, 1076991. [Google Scholar] [CrossRef]
- Chou, W.-C.; Chu, H.-C.; Chen, Y.-H.; Syu, R.-W.; Hung, C.-C.; Soong, K. Short-term variability of carbon chemistry in two contrasting seagrass meadows at Dongsha Island: Implications for pH buffering and CO2 sequestration. Estuar. Coast. Shelf Sci. 2018, 210, 36–44. [Google Scholar] [CrossRef]
- Hung, C.-C.; Hsieh, H.-H.; Chou, W.-C.; Liu, E.-C.; Chow, C.H.; Chang, Y.; Lee, T.-M.; Santschi, P.H.; Ranatunga, R.R.M.K.P.; Bacosa, H.P.; et al. Assessing CO2 sources and sinks in and around Taiwan: Implication for achieving regional carbon neutrality by 2050. Mar. Pollut. Bull. 2024, 206, 116664. [Google Scholar] [CrossRef]
- Lin, H.-J.; Hsieh, L.-Y.; Liu, P.-J. Seagrasses of Tongsha Island, with descriptions of four new records to Taiwan. Bot. Bull. Acad. Sin. 2005, 46, 163–168. [Google Scholar]
- Falter, J.; Sansone, F. Shallow pore water sampling in reef sediments. Coral Reefs 2000, 19, 93–97. [Google Scholar] [CrossRef]
- Kindeberg, T.; Bates, N.R.; Courtney, T.A.; Cyronak, T.; Griffin, A.; Mackenzie, F.T.; Paulsen, M.-L.; Andersson, A.J. Porewater carbonate chemistry dynamics in a temperate and a subtropical seagrass system. Aquat. Geochem. 2020, 26, 375–399. [Google Scholar] [CrossRef]
- Dickson, A.G.; Millero, F.J. A comparison of the equilibrium constants for the dissociation of carbonic acid in seawater media. Deep-Sea Res. Part I Oceanogr. Res. Pap. 1987, 34, 1733–1743. [Google Scholar] [CrossRef]
- Fan, L.-F.; Chow, C.H.; Gong, G.-C.; Chou, W.-C. Surface seawater pCO2 variation after a typhoon passage in the Kuroshio off eastern Taiwan. Water 2022, 14, 1326. [Google Scholar] [CrossRef]
- Clayton, T.D.; Byrne, R.H. Spectrophotometric seawater pH measurements: Total hydrogen ion concentration scale calibration of m-cresol purple and at-sea results. Deep-Sea Res. Part I Oceanogr. Res. Pap. 1993, 40, 2115–2129. [Google Scholar] [CrossRef]
- Pelletier, G.J.; Lewis, E.; Wallace, D.W.R. CO2SYS.XLS: A Calculator for the CO2 System in Seawater for Microsoft Excel/VBA, Version 16; Washington State Department of Ecology: Olympia, WA, USA, 2011. [Google Scholar]
- Su, C.-K.; Ho, C.-C. Online Profiling of living rat brain extracellular pH using a pH-dependent solid phase extraction scheme coupled with microdialysis sampling and inductively coupled plasma mass spectrometry. Anal. Chim. Acta 2019, 1055, 36–43. [Google Scholar] [CrossRef]
- Roth, F.; Tongudai, M. An In situ approach for measuring biogeochemical fluxes in structurally complex benthic communities. Methods Ecol. Evol. 2019, 10, 712–725. [Google Scholar] [CrossRef]
- Baldry, K.; Saderne, V.; McCorkle, D.C.; Churchill, J.H.; Agusti, S.; Duarte, C.M. Anomalies in the carbonate system of Red Sea coastal habitats. Biogeosciences 2020, 17, 423–439. [Google Scholar] [CrossRef]
- Mair, P.; Wilcox, R. Robust statistical methods in R using the WRS2 package. Behav. Res. Methods 2020, 52, 464–488. [Google Scholar] [CrossRef]
- R Core Team. R v4.1.1,. Vienna, Austria, 2021. Available online: https://www.Rproject.org/ (accessed on 10 August 2021).
- Chou, W.-C.; Sheu, D.D.; Chen CT, A.; Wen, L.-S.; Yang, Y.; Wei, C.-L. Transport of the South China Sea subsurface water outflow and its influence on carbon chemistry of Kuroshio waters off southeastern Taiwan. J. Geophys. Res. 2007, 112, C12008. [Google Scholar] [CrossRef]
- Earth’s CO2 Home Page. Available online: https://www.co2.earth/co2-datasets (accessed on 1 October 2022).
- Wanninkhof, P. Relationship between wind speed and gas exchange over the ocean. J. Geophys. Res. 1992, 97, 7373–7382. [Google Scholar] [CrossRef]
- Morse, J.W.; Zullig, J.J.; Iverson, R.L.; Choppin, G.R.; Mucci, A.; Millero, F.J. The influence of seagrass beds on carbonate sediments in the Bahamas. Mar. Chem. 1987, 22, 71–83. [Google Scholar] [CrossRef]
- Burdige, D.J.; Zimmerman, R.C. Impact of Sea grass density on carbonate dissolution in Bahamian sediments. Limnol. Oceanogr. 2002, 47, 1751–1763. [Google Scholar] [CrossRef]
- Ku, T.C.W.; Walter, L.M.; Coleman, M.L.; Blake, R.E.; Martini, A.M. Coupling between sulfur recycling and syndepositional carbonate dissolution: Evidence from oxygen and sulfur isotope composition of pore water sulfate, South Florida platform, USA. Geochim. Cosmochim. Acta 1999, 63, 2529–2546. [Google Scholar] [CrossRef]
- Yates, K.K.; Halley, R.B. Diurnal variation in rates of calcification and carbonate sediment dissolution in Florida Bay. Estuaries Coast. 2006, 29, 24–39. [Google Scholar] [CrossRef]
- Hsieh, H.-H.; Shih, Y.Y.; Wu, S.-H.; Bacosa, H.P.; Hung, C.-C. Oceanic blue carbon in seas around Taiwan. Mar. Res. 2023, 3, 18–35. [Google Scholar] [CrossRef]
- Weerakkody, W.S.; Ling, K.H.; Hsieh, H.-H.; Abedneko, V.G.; Shyu, J.-F.; Lee, T.-M.; Shih, Y.-Y.; Ranatunga, R.R.M.K.P.; Santschi, P.H.; Hung, C.-C. Carbon capture by macroalgae Sarcodia suae using aquaculture wastewater and solar energy for cooling in subtropical regions. Sci. Total Environ. 2023, 855, 158850. [Google Scholar] [CrossRef]
- Liu, L.; Zou, D.; Jiang, H.; Chen, B.; Zeng, X. Effects of increased CO2 and temperature on the growth and photosynthesis in the marine macroalga Gracilaria lemeneiformis from the coastal waters of the South China. J. Appl. Phycol. 2018, 30, 1–10. [Google Scholar] [CrossRef]
- Chou, W.-C.; Lee Chen, Y.-L.; Sheu, D.D.; Shih, Y.-Y.; Han, C.-A.; Cho, C.L.; Tseng, C.-M.; Yang, Y.-J. Estimated net community production during the summertime at the SEATS time-series study site, northern South China Sea: Implications for nitrogen fixation. Geophy. Res. Lett. 2006, 33, L22610. [Google Scholar] [CrossRef]
- Chang, Y.-E.; Liao, C.-H.; Hsieh, H.-H.; Abedneko, V.G.; Hung, C.-C.; Lee, T.-M. Lateral carbon export of macroalgae and seagrass from diverse habitats contributes particulate organic carbon in the deep sea of the Northern South China Sea. Mar. Pollut. Bull. 2024, 206, 116672. [Google Scholar] [CrossRef]
- Dupont, S.; Metian, M. General considerations for experimental research on ocean alkalinity enhancement. In Guide to Best Practices in Ocean Alkalinity Enhancement Research (OAE Guide 23); Oschlies, A., Stevenson, A., Bach, L.T., Fennel, K., Rickaby, R.E.M., Satterfield, T., Webb, R., Gattuso, J.-P., Eds.; Copernicus Publications: Enschede, The Netherlands, 2023. [Google Scholar] [CrossRef]
- Schulz, K.G.; Bach, L.T.; Dickson, A.G. Seawater carbonate chemistry considerations for ocean alkalinity enhancement research: Theory, Measurements, and calculations. In Guide to Best Practices in Ocean Alkalinity Enhancement Research (OAE Guide 23); Copernicus Publications: Enschede, The Netherlands, 2023. [Google Scholar] [CrossRef]
- Cyronak, T.; Albright, R.; Bach, L.T. Field Experiments in ocean alkalinity enhancement research. In Guide to Best Practices in Ocean Alkalinity Enhancement Research (OAE Guide 23); Oschlies, A., Stevenson, A., Bach, L.T., Fennel, K., Rickaby, R.E.M., Satterfield, T., Webb, R., Gattuso, J.-P., Eds.; Copernicus Publications: Enschede, The Netherlands, 2023. [Google Scholar] [CrossRef]
- DeCarlo, T.M.; Cohen, A.L.; Wong, G.T.F.; Shiah, F.-K.; Lentz, S.J.; Davis, K.A.; Shamberger, K.E.F.; Lohmann, P. Community production modulates coral reef pH and the sensitivity of ecosystem calcification to ocean acidification. J. Geophy. Res. 2017, 122, 745–761. [Google Scholar] [CrossRef]
- Fennel, K.; Long, M.C.; Algar, C.; Carter, B.; Keller, D.; Laurent, A.; Mattern, J.P.; Musgrave, R.; Oschlies, A.; Ostiguy, J. Modelling considerations for research on ocean alkalinity enhancement (OAE). In Guide to Best Practices in Ocean Alkalinity Enhancement Research (OAE Guide 23); Oschlies, A., Stevenson, A., Bach, L.T., Fennel, K., Rickaby, R.E.M., Satterfield, T., Webb, R., Gattuso, J.-P., Eds.; Copernicus Publications: Enschede, The Netherlands, 2023. [Google Scholar] [CrossRef]
- Iglesias-Rodríguez, M.D.; Rickaby, R.E.M.; Singh, A.; Gately, J.A. Laboratory experiments in ocean alkalinity enhancement research. In Guide to Best Practices in Ocean Alkalinity Enhancement Research (OAE Guide 23); Oschlies, A., Stevenson, A., Bach, L.T., Fennel, K., Rickaby, R.E.M., Satterfield, T., Webb, R., Gattuso, J.-P., Eds.; Copernicus Publications: Enschede, The Netherlands, 2023. [Google Scholar] [CrossRef]
- Riebesell, U.; Basso, D.; Geilert, S.; Dale, A.W.; Kreuzburg, M. Mesocosm Experiments in Ocean Alkalinity Enhancement Research. In Guide to Best Practices in Ocean Alkalinity Enhancement Research (OAE Guide 23); Oschlies, A., Stevenson, A., Bach, L.T., Fennel, K., Rickaby, R.E.M., Satterfield, T., Webb, R., Gattuso, J.-P., Eds.; Copernicus Publications: Enschede, The Netherlands, 2023. [Google Scholar] [CrossRef]
- Wang, H.; Pilcher, D.J.; Kearney, K.A.; Cross, J.N.; Shugart, O.M.; Eisaman, M.D.; Carter, B.R. Simulated impact of ocean alkalinity enhancement on atmospheric CO2 removal in the Bering Sea. Earth’s Future 2023, 11, e2022EF002816. [Google Scholar] [CrossRef]
- Yang, B.; Leonard, J.; Langdon, C. Seawater alkalinity enhancement with magnesium hydroxide and its implication for carbon dioxide removal. Mar. Chem. 2023, 253, 104251. [Google Scholar] [CrossRef]
Season | Parameter | Inner Lagoon | South Shore | IL—SS | p Value |
---|---|---|---|---|---|
Winter | Water depth | 0.22–0.74 (0.36 ± 0.14) | 0.32–1.78 (0.96 ± 0.44) | −0.60 | <0.01 |
Temperature | 19.1–23.1 (21.1 ± 1.1) | 18.2–19.8 (19.0 ± 0.4) | 2.1 | <0.01 | |
Salinity | 34.4–35.4 (34.7 ± 0.3) | 33.7–34.0 (33.9 ± 0.1) | 0.8 | <0.01 | |
DO | 136–216 (183 ± 15) | 160–256 (195 ± 27) | −11 | <0.01 | |
pH | 8.23–8.40 (8.33 ± 0.07) | 7.86–8.13 (7.99 ± 0.11) | 0.34 | <0.01 | |
pCO2 | 138–187 (156 ± 18) | 241–504 (374 ± 102) | −218 | <0.01 | |
DIC | 1923–2035 (1970 ± 39) | 1919–2123 (2033 ± 77) | −64 | =0.08 | |
TA | 2461–2490 (2490 ± 17) | 2257–2351 (2300 ± 32) | 190 | <0.01 | |
Summer | Water depth | - | - | - | - |
Temperature | 28.8–33.2 (30.8 ± 1.1) | 30.1–33.8 (32.2 ± 1.1) | −1.4 | <0.01 | |
Salinity | 32.8–33.3 (33.0 ± 0.2) | 30.5–33.1 (31.5 ± 0.4) | 1.5 | <0.01 | |
DO | - | - | - | - | |
pH | 8.34–8.53 (8.44 ± 0.06) | 7.93–8.42 (8.20 ± 0.16) | 0.24 | <0.01 | |
pCO2 | 112–202 (149 ± 26) | 146–618 (323 ± 150) | −174 | <0.01 | |
DIC | 1852–2034 (1938 ± 64) | 1657–2039 (1874 ± 113) | 64 | =0.17 | |
TA | 2544–2623 (2592 ± 30) | 2204–2329 (2276 ± 36) | 316 | <0.01 | |
S—W | pH | 0.11 | 0.21 | ||
pCO2 | −7 | −51 | |||
DIC | −32 | −159 | |||
TA | 102 | −23 | |||
p value | pH | <0.01 | <0.01 | ||
pCO2 | =0.53 | =0.43 | |||
DIC | =0.25 | <0.01 | |||
TA | <0.01 | =0.20 |
(mmol m−2 d−1) | DIC | TA | ||
---|---|---|---|---|
Season | Winter | Summer | Winter | Summer |
d(H con.)/dt | −2.91 ± 4.86 | −2.55 ± 1.59 | −1.83 ± 0.73 | −0.34 ± 2.17 |
FGAS | 25.1 | 2.99 | - | - |
FADVH | −7.42 | −6.16 | −44.0 | −77.3 |
FSED | 107 ± 75.9 | 119 ± 144 | 69.7 ± 40.7 | 75.8 ± 81.5 |
FBIOA | −128 | −119 | −27.6 | 1.08 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fan, L.-F.; Kang, E.-C.; Natividad, M.B.; Hung, C.-C.; Shih, Y.-Y.; Huang, W.-J.; Chou, W.-C. The Role of Benthic TA and DIC Fluxes on Carbon Sequestration in Seagrass Meadows of Dongsha Island. J. Mar. Sci. Eng. 2024, 12, 2061. https://doi.org/10.3390/jmse12112061
Fan L-F, Kang E-C, Natividad MB, Hung C-C, Shih Y-Y, Huang W-J, Chou W-C. The Role of Benthic TA and DIC Fluxes on Carbon Sequestration in Seagrass Meadows of Dongsha Island. Journal of Marine Science and Engineering. 2024; 12(11):2061. https://doi.org/10.3390/jmse12112061
Chicago/Turabian StyleFan, Lan-Feng, En-Cheng Kang, Mariche B. Natividad, Chin-Chang Hung, Yung-Yen Shih, Wei-Jen Huang, and Wen-Chen Chou. 2024. "The Role of Benthic TA and DIC Fluxes on Carbon Sequestration in Seagrass Meadows of Dongsha Island" Journal of Marine Science and Engineering 12, no. 11: 2061. https://doi.org/10.3390/jmse12112061
APA StyleFan, L. -F., Kang, E. -C., Natividad, M. B., Hung, C. -C., Shih, Y. -Y., Huang, W. -J., & Chou, W. -C. (2024). The Role of Benthic TA and DIC Fluxes on Carbon Sequestration in Seagrass Meadows of Dongsha Island. Journal of Marine Science and Engineering, 12(11), 2061. https://doi.org/10.3390/jmse12112061