Streptomyces hygroscopicus and rapamycinicus Evaluated from a U.S. Marine Sanctuary: Biosynthetic Gene Clusters Encode Antibiotic and Chemotherapeutic Secondary Metabolites
Abstract
:1. Introduction
Marine Derived Natural Products
2. Materials and Methods
2.1. Sampling Sites and Sample Collection
2.2. Study Sites
2.3. Cultured Isolates
2.4. DNA Extraction and Target Species Confirmation of Cultured Isolates
2.5. Bioinformatics Pipeline from Metagenomic Sequencing
2.6. Screening Database I
2.7. Screening Database II
3. Results
3.1. Streptomyces Abundance
3.2. Screening Database Analyses
4. Discussion
4.1. Notable Secondary Metabolite Activity
4.2. Secondary Metabolites and Bioactive Compounds
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rajaraman, R.; Guernsey, D.L.; Rajaraman, M.M.; Rajaraman, S.R. Stem cells, senescence, neosis and self-renewal in cancer. Cancer Cell Int. 2006, 6, 2. [Google Scholar] [CrossRef] [PubMed]
- Bray, F.; Laversanne, M.; Weiderpass, E.; Soerjomataram, I. The ever-increasing importance of cancer as a leading cause of premature death worldwide. Cancer 2021, 127, 3029–3030. [Google Scholar] [CrossRef] [PubMed]
- Kifle, Z.D.; Tadele, M.; Alemu, E.; Gedamu, T.; Ayele, A.G. A recent development of new therapeutic agents and novel drug targets for cancer treatment. SAGE Open 2021, 23, 49. [Google Scholar] [CrossRef]
- Murray, C.J.L.; Ikuta, K.S.; Sharara, F.; Swetschinski, L.; Aguilar, G.R.; Gray, A.; Han, C.; Bisignano, C.; Rao, P.; Wool, E.; et al. Global burden of bacterial antimicrobial resistance in 2019: A systematic analysis. Lancet 2022, 399, 629–655. [Google Scholar] [CrossRef]
- Molinski, T.F.; Dalisay, D.S.; Lievens, S.L.; Saludes, J.P. Drug development from marine natural products. Nat. Rev. Drug Discov. 2009, 8, 69–85. [Google Scholar] [CrossRef]
- Heinrichs, L.; Aytur, S.A.; Bucci, J.P. Whole metagenomic sequencing to characterize the sediment microbial community within the Stellwagen Bank National Marine Sanctuary and preliminary biosynthetic gene cluster screening of Streptomyces scabrisporus. Mar. Genom. 2020, 50, 100718. [Google Scholar] [CrossRef] [PubMed]
- Newman, D.J.; Cragg, G.M. Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019. J. Nat. Prod. 2020, 83, 770–803. [Google Scholar] [CrossRef]
- Chang, T.L.; Huang, T.W.; Wang, Y.X.; Liu, C.P.; Kirby, R.; Chu, C.M.; Huang, C.H. An Actinobacterial Isolate, Streptomyces sp. YX44, produces broad-spectrum antibiotics that strongly inhibit Staphylococcus aureus. Microorganisms 2021, 9, 630. [Google Scholar] [CrossRef]
- Quinn, G.A.; Banat, A.M.; Abdelhameed, A.M.; Banat, I.M. Streptomyces from traditional medicine: Sources of new innovations in antibiotic discovery. J. Med. Microbiol. 2020, 69, 1040–1048. [Google Scholar] [CrossRef]
- Beck, M.L.; Song, S.; Shuster, I.E.; Miharia, A.; Walker, A.S. Diversity and taxonomic distribution of bacterial biosynthetic gene clusters predicted to produce compounds with therapeutically relevant bioactivities. J. Ind. Microbiol. Biotechnol. 2023, 50, kuad02. [Google Scholar] [CrossRef]
- Alam, K.; Mazumder, A.; Sikdar, S.; Zhao, Y.M.; Hao, J.; Song, C.; Wang, Y.; Sarkar, R.; Islam, S.; Zhang, Y.; et al. Streptomyces: The biofactory of secondary metabolites. Front. Microbiol. 2022, 13, 968053. [Google Scholar] [CrossRef]
- Bruce, S.A.; Aytur, S.A.; Andam, C.P.; Bucci, J.P. Metagenomics to characterize sediment microbial biodiversity associated with fishing exposure within the Stellwagen Bank National Marine Sanctuary. Sci. Rep. 2022, 12, 9499. [Google Scholar] [CrossRef]
- Fenical, W. Marine microbial natural products: The evolution of a new field of science. J. Antibiot. 2020, 73, 481–487. [Google Scholar] [CrossRef]
- Jensen, P.R.; Moore, B.S.; Fenical, W. The marine Actinomycete genus Salinispora: A model organism for secondary metabolite discovery. Nat. Prod. Rep. 2015, 5, 738–751. [Google Scholar] [CrossRef]
- Montaser, R.; Luesch, H. Marine natural products: A new wave of drugs? Future Med. Chem. 2011, 3, 1475–1489. [Google Scholar] [CrossRef] [PubMed]
- Bech, P.K.; Lysdal, K.L.; Gram, L.; Bentzon-Tilia, M.; Strube, M.L. Marine sediments hold an untapped potential for novel taxonomic and bioactive bacterial diversity. Systems 2020, 5, e00782-20. [Google Scholar] [CrossRef] [PubMed]
- Tracanna, V.; de Jong, A.; Medema, M.H.; Kuipers, O.P. Mining prokaryotes for antimicrobial compounds: From diversity to function. FEMS Microbiol. Rev. 2017, 41, 417–429. [Google Scholar] [CrossRef] [PubMed]
- Bogdanov, A.; Salib, M.N.; Chase, A.B.; Hammerlindl, H.; Muskat, M.N.; Luedtke, S.; da Silva, E.B.; O’Donoghue, A.J.; Wu, L.F.; Altschuler, S.J.; et al. Small molecule in situ resin capture provides a compound first approach to natural product discovery. Nat. Commun. 2024, 15, 5230. [Google Scholar] [CrossRef]
- Pinjari, A.B.; Bramhachari, P.V. Detection and expression of biosynthetic gene clusters in actinobacteria. In New and Future Developments in Microbial Biotechnology and Bioengineering; Singh, B.P., Gupta, V.K., Passari, A.K., Eds.; Elsevier: Amsterdam, The Netherlands, 2018; Chapter 17; pp. 245–255. ISBN 9780444639943. [Google Scholar]
- Bauman, K.D.; Shende, V.V.; Chen, P.Y.T.; Trivella, D.B.; Gulder, T.A.; Vellalath, S.; Romo, D.; Moore, B.S. Enzymatic assembly of the salinosporamide γ-lactam-β-lactone anticancer warhead. Nat. Chem. Biol. 2022, 18, 538–546. [Google Scholar] [CrossRef] [PubMed]
- Siro, G.; Donald, L.; Pipite, A. The diversity of deep-sea actinobacteria and their natural products: An epitome of curiosity and drug discovery. Diversity 2023, 15, 30. [Google Scholar] [CrossRef]
- Munn, C. Marine Microbiology: Ecology & Applications, 3rd ed.; CRC Press: Boca Raton, FL, USA, 2020; pp. 300–550. [Google Scholar]
- Belotserkovskii, B.P.; Tornaletti, S.; D’Souza, A.D.; Hanawalt, P.C. R-loop generation during transcription: Formation, processing and cellular outcomes. DNA Repair 2018, 71, 69–81. [Google Scholar] [CrossRef]
- Falkinham, J.O.; Wall, T.E.; Tanner, J.R.; Tawaha, K.; Alali, F.Q.; Li, C.; Oberlies, N.H. Proliferation of antibiotic-producing bacteria and concomitant antibiotic production as the basis for the antibiotic activity of Jordan’s red soils. Appl. Environ. Microbiol. 2009, 75, 2735–2741. [Google Scholar] [CrossRef]
- Cook, R.; Auster, P.J. Developing Alternatives for Optimal Representation of Seafoor Habitats and Associated Communities in Stellwagen Bank National Marine Sanctuary; Marine Sanctuaries Conservation Series ONMS-06–02; U.S. Department of Commerce, National Oceanic and Atmospheric Administration, Office of National Marine Sanctuaries: Silver Spring, MD, USA, 2006.
- Valentine, P.C.; Middleton, T.J.; Fuller, S.J. Sun-Illuminated Topography, and Backscatter Intensity of the Stellwagen Bank National Marine Sanctuary Region off Boston, Massachusetts; United States Geological Survey Open-File Report; United States Geological Survey: Reston, VA, USA, 2001.
- Barth, H.G.; Sun, S.T. Particle size analysis. Anal. Chem. 1985, 57, 151–175. [Google Scholar] [CrossRef]
- Shepherd, M.D.; Kharel, M.K.; Bosserman, M.A.; Rohr, J. Laboratory maintenance of Streptomyces species. Curr. Protoc. Microbiol. 2010, 10, 10E.1. [Google Scholar] [CrossRef] [PubMed]
- Kieser, T.; Bibb, M.J.; Buttner, M.J.; Chater, K.F.; Hopwood, D.A. Practical Streptomyces Genetics, 2nd ed.; John Innes Foundation: Norwich, UK, 2000. [Google Scholar]
- Dalisay, D.S.; Williams, D.E.; Wang, X.L.; Centko, R.; Chen, J.; Andersen, R.J. Marine sediment-derived Streptomyces bacteria from British Columbia, Canada are a promising microbiota resource for the discovery of antimicrobial natural products. PLoS ONE 2013, 8, e77078. [Google Scholar] [CrossRef] [PubMed]
- The UniProt Consortium. UniProt: The Universal Protein Knowledgebase in 2023. Nucleic Acids Res. 2023, 51, D523–D531. [Google Scholar] [CrossRef] [PubMed]
- Flaherty, H.R. Identification of Novel Biosynthetic Gene Clusters Encoding for Polyketide/NRPs Producing Chemotherapeutic Compounds from Marine-Derived Streptomyces hygroscopicus from a Marine Sanctuary. Bachelor’s Thesis, University of New Hampshire, Durham, NH, USA, 2023. Honors Theses and Capstones. 765. Available online: https://scholars.unh.edu/honors/765 (accessed on 11 November 2024).
- Blin, K.; Shaw, S.; Augustijn, H.E.; Reitz, Z.L.; Biermann, F.; Alanjary, M.; Fetter, A.; Terlouw, B.R.; Metcalf, W.M.; Helfrich, E.J.; et al. antiSMASH 7.0: New and improved predictions for detection, regulation, chemical structures, and visualization. Nucleic Acids Res. 2023, 51, W46–W50. [Google Scholar] [CrossRef]
- SAS/STAT User’s Guide. Poisson Regression. Available online: https://documentation.sas.com/doc/en/pgmsascdc/9.4_3.4/statug/statug_genmod_gettingstarted01.htm (accessed on 11 November 2024).
- Watson, J.D.; Laskowski, R.A.; Thornton, J.M. Predicting protein function from sequence and structural data. Curr. Opin. Struct. Biol. 2005, 15, 275–284. [Google Scholar] [CrossRef] [PubMed]
- Kihara, D.; Yang, Y.D.; Hawkins, T. Bioinformatics resources for cancer research with an emphasis on gene function and structure prediction tools. Cancer Inform. 2007, 2, 25–35. [Google Scholar] [CrossRef]
- Benson, D.A.; Cavanaugh, M.; Clark, K.; Karsch-Mizrachi, I.; Lipman, D.J.; Ostell, J.; Sayers, E.W. GenBank. Nucleic Acids Res. 2013, 41, D36–D42. [Google Scholar] [CrossRef]
- Rokem, J.S.; Lantz, A.E.; Nielsen, J. Systems biology of antibiotic production by microorganisms. Nat. Prod. Rep. 2007, 24, 1262. [Google Scholar] [CrossRef]
- Jin, J.; Byun, J.K.; Choi, Y.K.; Park, K.G. Targeting glutamine metabolism as a therapeutic strategy for cancer. Exp. Mol. Med. 2023, 55, 706–715. [Google Scholar] [CrossRef] [PubMed]
- Jain, A.K.; Jain, S.; Rana, A.C. Metabolic enzyme considerations in cancer therapy. Malays. J. Med. Sci. 2007, 14, 10–17. [Google Scholar] [PubMed]
- Awakawa, T.; Fujioka, T.; Zhang, L.H.; Hoshino, S.; Hu, Z.J.; Hashimoto, J.; Kozone, I.; Ikeda, H.; Shin-Ya, K.; Liu, W. Reprogramming of the antimycin NRPS-PKS assembly lines inspired by gene evolution. Nat. Commun. 2018, 9, 3534. [Google Scholar] [CrossRef] [PubMed]
- Mazibuko-Mbeje, S.E.; Mthembu, S.X.H.; Dludla, P.V.; Madoroba, E.; Chellan, N.; Kappo, A.P.; Muller, C.J.F. Antimycin A-induced mitochondrial dysfunction is consistent with impaired insulin signaling in cultured skeletal muscle cells. Toxicol. In Vitro 2021, 76, 105224. [Google Scholar] [CrossRef]
- Coudert, E.; Gehant, S.; de Castro, E.; Pozzato, M.; Baratin, D.; Neto, T.; Sigrist, C.J.A.; Redaschi, N.; Bridge, A. UniProt Consortium. Annotation of biologically relevant ligands in UniProtKB using ChEBI. Bioinformatics 2023, 39, btac793. [Google Scholar] [CrossRef]
- Hertweck, C.; Luzhetskyy, A.; Rebets, Y.; Bechthold, A. Type II polyketide synthases: Gaining a deeper insight into enzymatic teamwork. Nat. Prod. Rep. 2007, 24, 162–190. [Google Scholar] [CrossRef]
- Zhang, H.; Sun, G.Z.; Li, X.; Pan, H.Y.; Zhang, Y.S. A new geldanamycin analogue from Streptomyces hygroscopicus. Molecules 2010, 15, 1161–1167. [Google Scholar] [CrossRef]
- Lima, S.M.; Melo, J.G.; Militao, G.C.; Lima, G.M.; do Carmo, A.L.M.; Aguiar, J.S.; Araujo, R.M.; Braz-Filho, R.; Marchand, P.; Araujo, J.M.; et al. Characterization of the biochemical, physiological, and medicinal properties of Streptomyces hygroscopicus ACTMS-9H isolated from the Amazon (Brazil). Appl. Microbiol. Biotechnol. 2017, 101, 711–723. [Google Scholar] [CrossRef]
- Trinidad-Calderón, P.A.; Varela-Chinchilla, C.D.; García-Lara, S. Natural peptides inducing cancer cell death: Mechanisms and properties of specific candidates for cancer therapeutics molecules. Molecules 2021, 26, 7453. [Google Scholar] [CrossRef]
- Bhunia, D.; Mondal, P.; Das, G.; Saha, A.; Sengupta, P.; Jana, J.; Mohapatra, S.; Chatterjee, S.; Ghosh, S. Spatial position regulates power of tryptophan: Discovery of a major-groove-specific nuclear-localizing, cell-penetrating tetrapeptide. J. Am. Chem. Soc. 2018, 140, 1697–1714. [Google Scholar] [CrossRef] [PubMed]
- Atanasov, A.G.; Zotchev, S.B.; Dirsch, V.M.; the International Natural Product Sciences Taskforce; Supuran, C.T. Natural products in drug discovery: Advances and opportunities. Nat. Rev. Drug Discov. 2021, 20, 200–216. [Google Scholar] [CrossRef] [PubMed]
- Fuchs, B.C.; Bode, B.P. Stressing out over survival: Glutamine as an apoptotic modulator. J. Surg. Res. 2006, 131, 26–40. [Google Scholar] [CrossRef]
- Chen, L.; Cui, H. Targeting Glutamine Induces Apoptosis: A Cancer Therapy Approach. Int. J. Mol. Sci. 2015, 22, 22830–22855. [Google Scholar] [CrossRef]
- Smith, A.F.; Rihtman, B.; Stirrup, R.; Silvano, E.; Mausz, M.A.; Scanlan, D.J.; Chen, Y. Elucidation of glutamine lipid biosynthesis in marine bacteria reveals its importance under phosphorus deplete growth in Rhodobacteraceae. ISME J. 2019, 13, 39–49. [Google Scholar] [CrossRef] [PubMed]
- Tacar, O.; Sriamornsak, P.; Dass, C.R. Doxorubicin: An update on anticancer molecular action, toxicity and novel drug delivery systems. J. Pharm. Pharmacol. 2013, 65, 157–170. [Google Scholar] [CrossRef]
- Garcia-Princival, I.M.R.; Princival, J.L.; da Silva, E.D.; de Arruda Lima, S.M.; Carregosa, J.C.; Wisniewski, A., Jr.; de Lucena, C.C.O.; Halwass, F.; Franca, J.A.A.; Ferreira, L.F.G.R.; et al. Streptomyces hygroscopicus UFPEDA 3370: A valuable source of the potent cytotoxic agent nigericin and its evaluation against human colorectal cancer cells. Chem.-Biol. Interact. 2021, 333, 109316. [Google Scholar] [CrossRef] [PubMed]
- Risdian, C.; Mozef, T.; Wink, J. Biosynthesis of Polyketides in Streptomyces. Microorganisms 2019, 7, 124. [Google Scholar] [CrossRef]
- Cragg, G.M.; Pezzuto, J.M. Natural Products as a Vital Source for the Discovery of Cancer Chemotherapeutic and Chemopreventive Agents. Med. Princ. Pract. 2016, 25, 41–59. [Google Scholar] [CrossRef]
- Fuchs, D.; Heinold, A.; Opelz, G.; Daniel, V.; Naujokat, C. Salinomycin induces apoptosis and overcomes apoptosis resistance in human cancer cells. Biochem. Biophys. Res. Commun. 2009, 390, 743–749. [Google Scholar] [CrossRef]
- Liu, Z.; Zhao, Y.; Huang, C.; Luo, Y. Recent advances in silent gene cluster activation in Streptomyces. Front. Bioeng. Biotechnol. 2021, 9, 632230. [Google Scholar] [CrossRef] [PubMed]
Year Collected | Site ID | Fishing Status | Latitude N | Longitude W |
---|---|---|---|---|
2017 | 1 | Open | 42°34′00.8″ | 70°29′10.4″ |
2017 | 2 | Open | 42°33′01.3″ | 70°29′01.3″ |
2017 | 3 | Open | 42°32′01.2″ | 70°28′03.5″ |
2019 | 1 | Open | 42°34′00.8″ | 70°29′10.4″ |
2019 | 3 | Open | 42°32′01.2″ | 70°28′03.5″ |
2019 | 4 | Closed | 42°31′32.3″ | 70°13′11.0″ |
2019 | 6 | Closed | 42°35′00.0″ | 70°14′25.0″ |
2019 | 7 | Closed | 42°31′08.0″ | 70°13′09.0″ |
2022 | 3 | Open | 42°32′01.2″ | 70°28′03.5″ |
2022 | 8 | Open | 42°22′41.3″ | 70°26′17.2″ |
2022 | 9 | Closed | 42°31′21.5″ | 70°14′36.6″ |
Fishing Activity | Year | Site | S. hygroscopicus | S. rapamycinicus |
---|---|---|---|---|
open | 2017 | 1 | 45 | 25 |
open | 2017 | 2 | 31 | 0 |
open | 2017 | 3 | 25 | 37 |
open | 2019 | 1 | 21 | 6 |
open | 2019 | 3 | 18 | 9 |
closed | 2019 | 4 | 10 | 9 |
closed | 2019 | 6 | 8 | 3 |
closed | 2019 | 7 | 29 | 13 |
open | 2022 | 3 | 10 | 6 |
open | 2022 | 8 | 9 | 0 |
closed | 2022 | 9 | 16 | 6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Flaherty, H.R.; Aytur, S.A.; Bucci, J.P. Streptomyces hygroscopicus and rapamycinicus Evaluated from a U.S. Marine Sanctuary: Biosynthetic Gene Clusters Encode Antibiotic and Chemotherapeutic Secondary Metabolites. J. Mar. Sci. Eng. 2024, 12, 2076. https://doi.org/10.3390/jmse12112076
Flaherty HR, Aytur SA, Bucci JP. Streptomyces hygroscopicus and rapamycinicus Evaluated from a U.S. Marine Sanctuary: Biosynthetic Gene Clusters Encode Antibiotic and Chemotherapeutic Secondary Metabolites. Journal of Marine Science and Engineering. 2024; 12(11):2076. https://doi.org/10.3390/jmse12112076
Chicago/Turabian StyleFlaherty, Hannah R., Semra A. Aytur, and John P. Bucci. 2024. "Streptomyces hygroscopicus and rapamycinicus Evaluated from a U.S. Marine Sanctuary: Biosynthetic Gene Clusters Encode Antibiotic and Chemotherapeutic Secondary Metabolites" Journal of Marine Science and Engineering 12, no. 11: 2076. https://doi.org/10.3390/jmse12112076
APA StyleFlaherty, H. R., Aytur, S. A., & Bucci, J. P. (2024). Streptomyces hygroscopicus and rapamycinicus Evaluated from a U.S. Marine Sanctuary: Biosynthetic Gene Clusters Encode Antibiotic and Chemotherapeutic Secondary Metabolites. Journal of Marine Science and Engineering, 12(11), 2076. https://doi.org/10.3390/jmse12112076