Optimal Control of Nonlinear, Nonautonomous, Energy Harvesting Systems Applied to Point Absorber Wave Energy Converters
Abstract
:1. Introduction
2. General Optimal Control Law
2.1. Control Law Derivation
2.2. Second-Order Optimality Condition
3. Application to Point Absorber Wave Energy Converters (WEC)
3.1. Dynamic Model
3.2. Optimal Control Law
3.3. Linear Point Absorber WEC
3.4. Nonlinear Point Absorber WEC
4. Numerical Simulations and Discussion
4.1. Linear WEC
4.2. Nonlinear WEC
5. Conclusions and Future Work
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bryson, A.E. Applied Optimal Control: Optimization, Estimation and Control; CRC Press: Boca Raton, FL, USA, 1975. [Google Scholar]
- Johnson, C.; Gibson, J. Singular solutions in problems of optimal control. IEEE Trans. Autom. Control 1963, 8, 4–15. [Google Scholar] [CrossRef]
- Gros, S.; Srinivasan, B.; Chachuat, B.; Bonvin, D. Neighbouring-extremal control for singular dynamic optimisation problems. Part I: Single-input systems. Int. J. Control 2009, 82, 1099–1112. [Google Scholar] [CrossRef]
- Willems, J.; Kitapci, A.; Silverman, L. Singular optimal control: A geometric approach. SIAM J. Control Optim. 1986, 24, 323–337. [Google Scholar] [CrossRef]
- Lamnabhi-Lagarrigue, F. Singular optimal control problems: On the order of a singular arc. Syst. Control Lett. 1987, 9, 173–182. [Google Scholar] [CrossRef]
- Pontryagin, L.S. Mathematical Theory of Optimal Processes; Routledge: London, UK, 2018. [Google Scholar]
- Athans, M.; Falb, P.L. Optimal Control: An Introduction to the Theory and Its Applications; Courier Corporation: North Chelmsford, MA, USA, 2013. [Google Scholar]
- Scardina, J.A. An Investigation of Singular Optimal Control PROBLEMS. Ph.D. Thesis, Georgia Institute of Technology, Atlanta, GA, USA, 1968. [Google Scholar]
- Kelley, H.J. A second variation test for singular extremals. AIAA J. 1964, 2, 1380–1382. [Google Scholar] [CrossRef]
- Kelley, H.J.; Kopp, R.E.; Moyer, H. Singular Extremals, Topics in Optimization; Leitmann, G., Ed.; Academic Press: Cambridge, MA, USA, 1967. [Google Scholar]
- Robbins, H. A generalized Legendre-Clebsch condition for the singular cases of optimal control. IBM J. Res. Dev. 1967, 11, 361–372. [Google Scholar] [CrossRef]
- Bell, D.J.; Jacobson, D.H. Singular Optimal Control Problems; Elsevier: Amsterdam, The Netherlands, 1975. [Google Scholar]
- Speyer, J.L.; Jacobson, D.H. Primer on Optimal Control Theory; Society for Industrial and Applied Mathematics: Philadelphia, PA, USA, 2010. [Google Scholar]
- Robinett, R.D., III; Wilson, D.G. What is a limit cycle? Int. J. Control 2008, 81, 1886–1900. [Google Scholar] [CrossRef]
- Khalil, H.K. Nonlinear Systems; Prentice Hall: Upper Saddle River, NJ, USA, 2002. [Google Scholar]
- Falcão, A.F.d.O. Wave energy utilization: A review of the technologies. Renew. Sustain. Energy Rev. 2010, 14, 899–918. [Google Scholar] [CrossRef]
- Cummins, W. The Impulse Response Function and Ship Motions. Schiffstechnik 1962, 47, 101–109. [Google Scholar]
- Falnes, J.; Kurniawan, A. Ocean Waves and Oscillating Systems: Linear Interactions Including Wave-Energy Extraction; Cambridge University Press: Cambridge, UK, 2020; Volume 8. [Google Scholar]
- Giorgi, G.; Penalba, M.; Ringwood, J.V. Nonlinear Hydrodynamic Force Relevance for Heaving Point Absorbers and Oscillating Surge Converters. In Proceedings of the Asian Wave and Tidal Energy Conference (AWTEC 2016), Singapore, 24–28 October 2016. [Google Scholar]
- Guo, B.; Ringwood, J.V. Geometric optimisation of wave energy conversion devices: A survey. Appl. Energy 2021, 297, 117100. [Google Scholar] [CrossRef]
- Garcia-Teruel, A.; DuPont, B.; Forehand, D.I. Hull geometry optimisation of wave energy converters: On the choice of the optimisation algorithm and the geometry definition. Appl. Energy 2020, 280, 115952. [Google Scholar] [CrossRef]
- Garcia-Teruel, A.; DuPont, B.; Forehand, D.I. Hull geometry optimisation of wave energy converters: On the choice of the objective functions and the optimisation formulation. Appl. Energy 2021, 298, 117153. [Google Scholar] [CrossRef]
- Shadmani, A.; Nikoo, M.R.; Etri, T.; Gandomi, A.H. A multi-objective approach for location and layout optimization of wave energy converters. Appl. Energy 2023, 347, 121397. [Google Scholar] [CrossRef]
- Demonte Gonzalez, T.; Parker, G.G.; Anderlini, E.; Weaver, W.W. Sliding mode control of a nonlinear wave energy converter model. J. Mar. Sci. Eng. 2021, 9, 951. [Google Scholar] [CrossRef]
- Zou, S.; Song, J.; Abdelkhalik, O. A sliding mode control for wave energy converters in presence of unknown noise and nonlinearities. Renew. Energy 2023, 202, 432–441. [Google Scholar] [CrossRef]
- Son, D.; Yeung, R.W. Optimizing ocean-wave energy extraction of a dual coaxial-cylinder WEC using nonlinear model predictive control. Appl. Energy 2017, 187, 746–757. [Google Scholar] [CrossRef]
- Karthikeyan, A.; Previsic, M.; Scruggs, J.; Chertok, A. Non-linear model predictive control of wave energy converters with realistic power take-off configurations and loss model. In Proceedings of the 2019 IEEE Conference on Control Technology and Applications (CCTA), Hong Kong, China, 19–21 August 2019; pp. 270–277. [Google Scholar]
- Gonzalez, T.D.; Anderlini, E.; Yassin, H.; Parker, G. Nonlinear Model Predictive Control of Heaving Wave Energy Converter with Nonlinear Froude–Krylov Forces. Energies 2024, 17, 5112. [Google Scholar] [CrossRef]
- Babarit, A.; Clément, A.H. Optimal latching control of a wave energy device in regular and irregular waves. Appl. Ocean Res. 2006, 28, 77–91. [Google Scholar] [CrossRef]
- Sheng, W.; Alcorn, R.; Lewis, A. On improving wave energy conversion, part II: Development of latching control technologies. Renew. Energy 2015, 75, 935–944. [Google Scholar] [CrossRef]
- Roh, C. Maximum power control algorithm for power take-off system based on hydraulic system for floating wave energy converters. J. Mar. Sci. Eng. 2022, 10, 603. [Google Scholar] [CrossRef]
- Giorgi, G.; Bonfanti, M. Optimization and Energy Maximizing Control Systems for Wave Energy Converters II. J. Mar. Sci. Eng. 2024, 12, 1297. [Google Scholar] [CrossRef]
- Na, J.; Li, G.; Wang, B.; Herrmann, G.; Zhan, S. Robust optimal control of wave energy converters based on adaptive dynamic programming. IEEE Trans. Sustain. Energy 2018, 10, 961–970. [Google Scholar] [CrossRef]
- Fusco, F.; Ringwood, J.V. A simple and effective real-time controller for wave energy converters. IEEE Trans. Sustain. Energy 2012, 4, 21–30. [Google Scholar] [CrossRef]
- Salter, S.H. Power conversion systems for ducks. In Proceedings of the International Conference on Future Energy Concepts, London, UK, 30 January–1 February 1979; pp. 100–108. [Google Scholar]
- Karakash, J.J. Transmission Lines and Filter Networks; Macmillan: New York, NJ, USA, 1950. [Google Scholar]
- Hartog, J.P.D. Mechanical Vibrations; Courier Corporation: North Chelmsford, MA, USA, 1985. [Google Scholar]
- Piersol, A.G.; Paez, T.L. Mechanical Impedance and Mobility, Chaper 9. In Harris’ Shock and Vibration Handbook; McGraw Hill Professional: New York, NY, USA, 2009. [Google Scholar]
- Yassin, H.; Demonte Gonzalez, T.; Parker, G.; Wilson, D. Effect of the Dynamic Froude–Krylov Force on Energy Extraction from a Point Absorber Wave Energy Converter with an Hourglass-Shaped Buoy. Appl. Sci. 2023, 13, 4316. [Google Scholar] [CrossRef]
- Wilson, D.G.; Robinett III, R.D.; Bacelli, G.; Abdelkhalik, O.; Coe, R.G. Extending complex conjugate control to nonlinear wave energy converters. J. Mar. Sci. Eng. 2020, 8, 84. [Google Scholar] [CrossRef]
- Zou, S.; Abdelkhalik, O.; Robinett, R.; Bacelli, G.; Wilson, D. Optimal control of wave energy converters. Renew. Energy 2017, 103, 217–225. [Google Scholar] [CrossRef]
- Kasturi, P.; Dupont, P. Constrained Optimal Control of Vibration Dampers. J. Sound Vib. 1998, 215, 499–509. [Google Scholar] [CrossRef]
- Giorgi, G.; Ringwood, J.V. Computationally efficient nonlinear Froude–Krylov force calculations for heaving axisymmetric wave energy point absorbers. J. Ocean Eng. Mar. Energy 2017, 3, 21–33. [Google Scholar] [CrossRef]
- Nebel, P. Maximizing the efficiency of wave-energy plant using complex-conjugate control. Proc. Inst. Mech. Eng. Part I J. Syst. Control Eng. 1992, 206, 225–236. [Google Scholar] [CrossRef]
- Ringwood, J.V.; Bacelli, G.; Fusco, F. Control, forecasting and optimisation for wave energy conversion. IFAC Proc. Vol. 2014, 47, 7678–7689. [Google Scholar] [CrossRef]
- Van Wieren, M.; Gonzalez, T.D.; Yassin, H.; Jeanetta-Wark, N.; Kumpula, T.; Naglak, J.; Parker, G. Development of a Low-Friction Testbed for Model Scale Wave Energy Converter Control System Studies. In Proceedings of the OCEANS 2023-MTS/IEEE US Gulf Coast, Biloxi, MI, USA, 25–28 September 2023; IEEE: Piscataway, NJ, USA, 2023; pp. 1–7. [Google Scholar]
Feature | Symbol | Value | Units |
---|---|---|---|
Mass | M | 109,626 | kg |
Radiation Damping | b | 20,000 | N/(m/s) |
Hydrostatic Stiffness | k | 30,819 | N/m |
Wave Amplitude | A | m | |
Wave Frequency | rad | ||
Wave Period | T | 1 | s |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yassin, H.; Demonte Gonzalez, T.; Nelson, K.; Parker, G.; Weaver, W. Optimal Control of Nonlinear, Nonautonomous, Energy Harvesting Systems Applied to Point Absorber Wave Energy Converters. J. Mar. Sci. Eng. 2024, 12, 2078. https://doi.org/10.3390/jmse12112078
Yassin H, Demonte Gonzalez T, Nelson K, Parker G, Weaver W. Optimal Control of Nonlinear, Nonautonomous, Energy Harvesting Systems Applied to Point Absorber Wave Energy Converters. Journal of Marine Science and Engineering. 2024; 12(11):2078. https://doi.org/10.3390/jmse12112078
Chicago/Turabian StyleYassin, Houssein, Tania Demonte Gonzalez, Kevin Nelson, Gordon Parker, and Wayne Weaver. 2024. "Optimal Control of Nonlinear, Nonautonomous, Energy Harvesting Systems Applied to Point Absorber Wave Energy Converters" Journal of Marine Science and Engineering 12, no. 11: 2078. https://doi.org/10.3390/jmse12112078
APA StyleYassin, H., Demonte Gonzalez, T., Nelson, K., Parker, G., & Weaver, W. (2024). Optimal Control of Nonlinear, Nonautonomous, Energy Harvesting Systems Applied to Point Absorber Wave Energy Converters. Journal of Marine Science and Engineering, 12(11), 2078. https://doi.org/10.3390/jmse12112078