A Baroclinic Fluid Model and Its Application in Investigating the Salinity Transport Process Within the Sediment–Water Interface in an Idealized Estuary
Abstract
:1. Introduction
2. Numerical Model Development
2.1. Model Development
2.1.1. The Momentum and Continuity Equations
2.1.2. Salt Transport Equation
2.2. Solution Methods
2.3. Numerical Model Application
2.3.1. Grid Partitioning
2.3.2. Boundary Conditions
3. Validation of Numerical Simulation Results
4. Results and Discussion
4.1. Variations of Salinity at the Sediment–Water Interface Layer
4.2. Salinity Flux at the Sediment–Water Interface
4.3. Characteristics of Turbulent Kinetic Energy Within the Sediment–Water Interface Layer
4.4. Broad Implications
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, L.; Wang, L.; Yin, K.D.; Lü, Y.; Zhang, D.; Yang, Y.; Huang, X. Pore water nutrient characteristics and the fluxes across the sediment in the Pearl estuary and adjacent waters, China. Estuar. Coast. Shelf Sci. 2013, 133, 182–192. [Google Scholar] [CrossRef]
- Oehler, T.; Martinez, R.; Schückel, U.; Winter, C.; Kröncke, I.; Schlüter, M. Seasonal and spatial variations of benthic oxygen and nitrogen fluxes in the Helgoland Mud Area (southern North Sea). Cont. Shelf Res. 2015, 106, 118–129. [Google Scholar] [CrossRef]
- Manta, D.S.; Bonsignore, M.; Oliveri, E.; Barra, M.; Tranchida, G.; Giaramita, L.; Mazzola, S.; Sprovieri, M. Fluxes and the mass balance of mercury in Augusta Bay (Sicily, southern Italy). Estuar. Coast. Shelf Sci. 2016, 181, 134–143. [Google Scholar]
- Li, W.; Wang, J.; Chen, Z.; Yang, Y.; Liu, R.; Zhuo, Y.; Yang, D. Numerical Simulation Study on Salt Release Across the Sediment–Water Interface at Low-Permeability Area. Water 2019, 11, 2503. [Google Scholar] [CrossRef]
- Fu, T.; Zhang, Y.; Guo, X.; Xing, C.; Xiao, X.; Lei, B.; Sun, Z.; Li, M. Salt transport dynamics across the sediment-underground brine interface driven by tidal hydrology and benthic crab burrowing in muddy tidal flats. Estuar. Coast. Shelf Sci. 2024, 296, 108586. [Google Scholar] [CrossRef]
- Zaghmouri, I.; Michotey, V.D.; Armougom, F.; Guasco, S.; Bonin, P.C. Salinity shifts in marine sediment: Importance of number of fluctuation rather than their intensities on bacterial denitrifying community. Mar. Pollut. Bull. 2018, 130, 76–83. [Google Scholar] [CrossRef]
- Niu, Q.; Xia, M.; Ludsin, S.A.; Chu, P.Y.; Mason, D.M.; Rutherford, E.S. High-turbidity events in Western Lake Erie during ice-free cycles: Contributions of river-loaded vs. resuspended sediments. Limnol. Oceanogr. 2018, 63, 2545–2562. [Google Scholar] [CrossRef]
- Niu, Q.; Xia, M. The behaviors of two limnetic river plumes discharging into the semi-enclosed western basin of Lake Erie during ice-free seasons. Estuar. Coast. Shelf Sci. 2021, 258, 107408. [Google Scholar] [CrossRef]
- Voermans, J.J.; Ghisalberti, M.; Ivey, G.N. A model for mass transport across the sediment-water interface. Water Resour. Res. 2018, 54, 2799–2812. [Google Scholar] [CrossRef]
- Loeke, A.; Muller, B.; Maerki, M.; Wüest, A. Breathing sediments: The control of diffusive transport across the sediment-water interface by periodic boundary-layer turbulence. Limnol. Oceanogr. 2003, 48, 2077–2085. [Google Scholar]
- Zhu, H.W.; Cheng, P.D.; Zhong, B.C.; Wang, D.Z. Hydrodynamic effects on contaminants release due to resuspension and diffusion from sediments. J. Hydrodyn. 2013, 25, 731–736. [Google Scholar] [CrossRef]
- Fan, J.Y.; Wang, D.Z. Experimental investigation on diffusive contaminant release from permeable sediment layer under unidirectional unsteady flow. J. Hydrodyn. 2014, 26, 965–970. [Google Scholar] [CrossRef]
- Boano, F.; Revelli, R.; Ridolfi, L. Bedform-induced hyporheic exchange with unsteady flows. Adv. Water Resour. 2007, 30, 148–156. [Google Scholar] [CrossRef]
- Lee, D.H.; Kim, Y.J.; Lee, S. Numerical modeling of bed form induced hyporheic exchange. Paddy Water Environ. 2012, 12, 89–97. [Google Scholar] [CrossRef]
- Chen, X.B.; Cardenas, M.B.; Chen, L. Three-dimensional versus two-dimensional bed form-induced hyporheic exchange: 3D vs 2D bedform-induced hyporheic exchange. Water Resour. Res. 2015, 51, 2923–2936. [Google Scholar] [CrossRef]
- Li, J.H.; Zhu, L.S.; Zhang, S.J. Numerical calculation of hydrodynamic characteristics of tidal current for submarine excavation engineering in coastal area. Water Sci. Eng. 2016, 9, 155–164. [Google Scholar] [CrossRef]
- De Lemos, M.J.S.; Silva, R.A. Turbulent flow over a layer of a highly permeable medium simulated with a diffusion-jump model for the interface. Int. J. Heat Mass Transf. 2006, 49, 546–556. [Google Scholar] [CrossRef]
- Hu, C.; Luo, J. Analysis of Hydrogeological Characteristics of Island Tunnel Engineering of Hong Kong-Zhuhai-Macao Bridge. Port and Waterway Eng. 2013, 7, 65–68. (In Chinese) [Google Scholar]
- ERGUN, S. Fluid flow through packed columns. Chem. Eng. Prog. 1952, 48, 89–94. [Google Scholar]
- Launder, B.E.; Spalding, D.B. The numerical computation of turbulent flows. Comput. Methods Appl. Mech. Eng. 1974, 3, 269–289. [Google Scholar] [CrossRef]
- El Tahry, S.H. k-epsilon equation for compressible reciprocating engine flows. J. Energy 1983, 7, 345–353. [Google Scholar] [CrossRef]
- Fofonoff, N.P.; Millard, R.C.J. Algorithms for the Computation of Fundamental Properties of Seawater; UNESCO: Pairs, France, 1983. [Google Scholar]
- Pan, J.; Zhou, H.; Hu, C.; Liu, X.; Dong, L.; Zhang, M. Distribution of Nutrient Salt Profiles and Interface Exchange Flux in the Sediments of the Pearl River Estuary in Summer. Acta Oceanol. Sin. (Chin. Version) 2002, 3, 52–59. (In Chinese) [Google Scholar]
- Minale, M. Modelling the flow of a second order fluid through and over a porous medium using the volume averages. II. The stress boundary condition. Phys. Fluids 2016, 28, 023103. [Google Scholar] [CrossRef]
- Graminho, D.R.; De Lemos, M.J.S. Simulation of turbulent impinging jet into a cylindrical chamber with and without a porous layer at the bottom. Int. J. Heat Mass Transf. 2009, 52, 680–693. [Google Scholar] [CrossRef]
- Ye, J.H.; Jeng, D.S. Response of porous seabed to nature loadings: Waves and currents. J. Eng. Mech. 2011, 138, 601–613. [Google Scholar] [CrossRef]
- Zhao, J.; Zhu, L.; Li, J. Numerical Experiment on Salt Transport Mechanism of Salt Intrusion in Estuarine Area. Water 2022, 14, 770. [Google Scholar] [CrossRef]
- Li, J.H.; Zhu, L.S.; Zhang, S.J. Numerical model on the flow dynamics around the sediment-water interface in the tidal coastal area. Estuar. Coast. Shelf Sci. 2017, 194, 57–65. [Google Scholar] [CrossRef]
- Zhang, P.; Yin, X.; Zhao, X.; Jiang, L.; Ceng, Y. Experimental Study on the Relationship and Variation of Saltwater Intrusion Distance with Upstream Runoff and Downstream Tides in Estuaries. Water Resour. Power 2016, 34, 60–64. (In Chinese) [Google Scholar]
- Zhang, D.; Chen, F.; Yang, Y.; Zhang, L.; Lv, Y. Exchange Fluxes of Nutrients across Sediment-Water Interface in the Nearshore Area of the Pearl River Estuary in Summer. J. Trop. Oceanogr. 2005, 6, 53–60. (In Chinese) [Google Scholar]
- Zhu, A.; Chen, J.; Jiang, T.; Li, K.; Gao, Q.; Chen, Y.; Zhong, J. Temporal and Spatial Distribution Characteristics of Nutrients in the Maoyou River Estuary in Shenzhen. Trop. Geogr. 2015, 35, 298–305. [Google Scholar] [CrossRef]
- Wang, J. The Influence of Sediment Salinity Release on Reservoir Salinization in Estuarine Bays and Countermeasures. Msater’s Thesis, Qingdao University, Qingdao, China, 2011. (In Chinese). [Google Scholar]
- Chriss, T.M.; Caldwell, D.R. Universal similarity and the thickness of the viscous sublayer at the ocean floor. J. Geophys. Res. 1984, 89, 6403–6414. [Google Scholar] [CrossRef]
- Ni, Z.H.; Song, Z.Y.; Wu, L.C. Study on the double-logarithmic profile of tidal flow velocity in the near-bed layers. Acta Oceanol. Sin. 2009, 28, 84–92. [Google Scholar]
- Rippeth, T.P.; Simpson, J.H.; Williams, E.; Inall, M.E. Measurement of the rates of production and dissipation of turbulent kinetic energy in an energetic tidal flow: Red Wharf Bay revisited. J. Phys. Oceanogr. 2003, 33, 1889–1901. [Google Scholar] [CrossRef]
- Liu, Y.; Reible, D.; Hussain, F. Roles of tidal cycling, hyporheic exchange and bioirrigation on metal release from estuary sediments. Water Resour. Res. 2022, 58, e2021WR030790. [Google Scholar] [CrossRef]
Direction | (1/m2) | (1/m2) |
---|---|---|
7 × 1015 | 280,000 | |
7 × 1015 | 280,000 | |
9 × 1015 | 280,000 |
Time (Flood Tide) | 19:00 | 20:00 | 21:00 | 22:00 | 23:00 | 00:00 |
---|---|---|---|---|---|---|
F ) | 0 | −2.673 | −6.237 | −6.459 | −6.548 | −6.593 |
Time (Ebb Tide) | 01:00 | 02:00 | 03:00 | 04:00 | 05:00 | 06:00 |
F ) | −6.637 | −1.782 | 0.7128 | 1.381 | 0.668 | 0.0267 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, J.; Zhu, L.; Hong, B.; Li, J. A Baroclinic Fluid Model and Its Application in Investigating the Salinity Transport Process Within the Sediment–Water Interface in an Idealized Estuary. J. Mar. Sci. Eng. 2024, 12, 2107. https://doi.org/10.3390/jmse12112107
Zhao J, Zhu L, Hong B, Li J. A Baroclinic Fluid Model and Its Application in Investigating the Salinity Transport Process Within the Sediment–Water Interface in an Idealized Estuary. Journal of Marine Science and Engineering. 2024; 12(11):2107. https://doi.org/10.3390/jmse12112107
Chicago/Turabian StyleZhao, Jun, Liangsheng Zhu, Bo Hong, and Jianhua Li. 2024. "A Baroclinic Fluid Model and Its Application in Investigating the Salinity Transport Process Within the Sediment–Water Interface in an Idealized Estuary" Journal of Marine Science and Engineering 12, no. 11: 2107. https://doi.org/10.3390/jmse12112107
APA StyleZhao, J., Zhu, L., Hong, B., & Li, J. (2024). A Baroclinic Fluid Model and Its Application in Investigating the Salinity Transport Process Within the Sediment–Water Interface in an Idealized Estuary. Journal of Marine Science and Engineering, 12(11), 2107. https://doi.org/10.3390/jmse12112107