Model Sensitivity Analysis for Coastal Morphodynamics: Investigating Sediment Parameters and Bed Composition in Delft3D
Abstract
:1. Introduction
2. Materials and Methods
2.1. Model Formulation
2.2. Benchmark Model
2.3. Suite of Sensitivity Tests
2.4. Development of Sediment Classes
2.5. Application of Sediment Classes to Delft3D
2.6. Data Analysis Methodologies
3. Results
3.1. Bed Level and Volume Change
3.2. Modeled and Historical Trends in Shoreline Change Rates
3.3. Landform Change
4. Discussion
4.1. Decadal Morphology, Shoreline Position, and Landform Change
4.2. Controlling Processes: Short-Term, Deterministic P-J Model
5. Conclusions
- Applying a single sediment class may be permissible for studies interested in describing general or net sediment transport patterns and resultant morphology thereof.
- Including multiple sediment classes may be useful for resolving long-term shoreline change, particularly along features like spits and shoals, and to examine their influence on suspended transport of cohesive and non-cohesive sediments, especially within inlets and on ebb tidal deltas.
- Applying an underlayer configuration versus a single fully mixed layer can provide an “armoring” affect over long simulation times, localized to regions where multiple sediment classes are present initially.
- Only if fine, cohesive sediments are included in a superficial, thin transport layer in an underlayer bed configuration that limits the activity of non-periodic sediment transport processes through armoring will the results be accurate and consistent.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Appendix B
References
- Hooke, J.M.; Bray, M.J.; Carter, D.J. Sediment Transport Analysis as a Component of Coastal Management—A UK Example. Environ. Geol. 1996, 27, 347–357. [Google Scholar] [CrossRef]
- Yu, X.W. Sediment Transport Processes and Coastal Management of Mixed Sand and Gravel Beaches. Ph.D. Thesis, University of Brighton, Brighton, UK, 2009. [Google Scholar]
- Morang, A.; Rosati, J.D.; King, D.B. Regional Sediment Processes, Sediment Supply, and Their Impact on the Louisiana Coast. J. Coast. Res. 2013, 63, 141–165. [Google Scholar] [CrossRef]
- Ganju, N.K. Marshes Are the New Beaches: Integrating Sediment Transport into Restoration Planning. Estuaries Coasts 2019, 42, 917–926. [Google Scholar] [CrossRef]
- Jenkins, R.L.; Passeri, D.L.; Smith, C.G.; Thompson, D.M.; Smith, K.E.L. Modeling the Effects of Interior Headland Restoration on Estuarine Sediment Transport Processes in a Marine-Dominant Estuary. Front. Mar. Sci. 2023, 10, 1217830. [Google Scholar] [CrossRef]
- Reine, K.J.; Dickerson, D.D.; Clarke, D.G. Environmental Windows Associated with Dredging Operations; US Army Engineer Research and Development Center [Environmental Laboratory]: Vicksburg, MS, USA, 1998. [Google Scholar]
- Sun, C.; Shimizu, K.; Symonds, G. Numerical Modelling of Dredge Plumes: A Review; Western Australian Marine Science Institution: Perth, Australia, 2016; Volume 45. [Google Scholar]
- Field, C.R.; Bayard, T.S.; Gjerdrum, C.; Hill, J.M.; Meiman, S.; Elphick, C.S. High-Resolution Tide Projections Reveal Extinction Threshold in Response to Sea-Level Rise. Glob. Change Biol. 2017, 23, 2058–2070. [Google Scholar] [CrossRef] [PubMed]
- Wilber, D.H.; Clarke, D.G. Biological Effects of Suspended Sediments: A Review of Suspended Sediment Impacts on Fish and Shellfish with Relation to Dredging Activities in Estuaries. N. Am. J. Fish. Manag. 2001, 21, 855–875. [Google Scholar] [CrossRef]
- Wilber, D.; Clarke, D. Dredging Activities and the Potential Impacts of Sediment Resuspension and Sedimentation on Oyster Reefs. In Proceedings of the Western Dredging Association Thirtieth Technical Conference, San Juan, Puerto Rico, 6–9 June 2010. [Google Scholar]
- Lawson, S.E.; Wiberg, P.L.; McGlathery, K.J.; Fugate, D.C. Wind-Driven Sediment Suspension Controls Light Availability in a Shallow Coastal Lagoon. Estuaries Coasts 2007, 30, 102–112. [Google Scholar] [CrossRef]
- Edwards, K.L.; Veeramony, J.; Wang, D.; Holland, K.T.; Hsu, Y.L. Sensitivity of Delft3D to Input Conditions. In Proceedings of the Oceans Conference, Biloxi, MS, USA, 26–29 October 2009; pp. 1–8. [Google Scholar]
- Vermeulen, T. Sensitivity Analysis of Fine Sediment Transport in the Humber Estuary. Master’s Thesis, Delft University of Technology, Delft, The Netherlands, 2004. [Google Scholar]
- Zoga, P.; Bode, A.; Balla, R.; Kodhelaj, N.; Kucaj, S. Water Resources Systems Planning and Management. In Proceedings of the University for Business and Technology International Conference, Prishtina, Kosovo, 2–3 November 2012. [Google Scholar]
- Cao, Z.; Hu, P.; Pender, G.; Liu, H. Non-Capacity Transport of Non-Uniform Bed Load Sediment in Alluvial Rivers. J. Mt. Sci. 2016, 13, 377–396. [Google Scholar] [CrossRef]
- Lesser, G.R.; Roelvink, J.A.; van Kester, J.A.T.M.; Stelling, G.S. Development and Validation of a Three-Dimensional Morphological Model. Coast. Morphodynamic Model 2004, 51, 883–915. [Google Scholar] [CrossRef]
- Hydraulics, D. Delft3D Users’ Manual; Deltares: Delft, The Netherlands, 1999. [Google Scholar]
- Hu, P.; Cao, Z.; Pender, G.; Liu, H. Numerical Modelling of Riverbed Grain Size Stratigraphic Evolution. Int. J. Sediment Res. 2014, 29, 329–343. [Google Scholar] [CrossRef]
- Hu, P.; Lei, Y.; Han, J.; Cao, Z.; Liu, H.; He, Z. Computationally Efficient Modeling of Hydro-Sediment-Morphodynamic Processes Using a Hybrid Local Time Step/Global Maximum Time Step. Adv. Water Resour. 2019, 127, 26–38. [Google Scholar] [CrossRef]
- Roelvink, J.A. Coastal Morphodynamic Evolution Techniques. Coast. Hydrodyn. Morphodynamics 2006, 53, 277–287. [Google Scholar] [CrossRef]
- Carraro, F.; Vanzo, D.; Caleffi, V.; Valiani, A.; Siviglia, A. Mathematical Study of Linear Morphodynamic Acceleration and Derivation of the MASSPEED Approach. Adv. Water Resour. 2018, 117, 40–52. [Google Scholar] [CrossRef]
- Welsch, C.A. Assessment of Delft3d Morphodynamic Model during Duck94. Ph.D. Thesis, Naval Postgraduate School, Monterey, CA, USA, 2002. [Google Scholar]
- van der Wegen, M.; Dastgheib, A.; Jaffe, B.E.; Roelvink, D. Bed Composition Generation for Morphodynamic Modeling: Case Study of San Pablo Bay in California, USA. Ocean Dyn. 2011, 61, 173–186. [Google Scholar] [CrossRef]
- Plüß, A.; Kösters, F. Morphodynamic Modelling for the Entire German Bight: An Initial Study on Model Sensitivity and Uncertainty. Adv. Geosci. 2014, 39, 61–68. [Google Scholar] [CrossRef]
- Schuurman, F.; Marra, W.A.; Kleinhans, M.G. Physics-Based Modeling of Large Braided Sand-Bed Rivers: Bar Pattern Formation, Dynamics, and Sensitivity. J. Geophys. Res. Earth Surf. 2013, 118, 2509–2527. [Google Scholar] [CrossRef]
- Jiao, J. Morphodynamics of Ameland Inlet: Medium-Term Delft3d Modelling. Master’s Thesis, Delft University of Technology, Delft, The Netherlands, 2014. [Google Scholar]
- Boechat Albernaz, M.; Ruessink, G.; Jagers, H.R.A.; Kleinhans, M.G. Effects of Wave Orbital Velocity Parameterization on Nearshore Sediment Transport and Decadal Morphodynamics. J. Mar. Sci. Eng. 2019, 7, 188. [Google Scholar] [CrossRef]
- McFall, B.C. The Relationship between Beach Grain Size and Intertidal Beach Face Slope. J. Coast. Res. 2019, 35, 1080–1086. [Google Scholar] [CrossRef]
- Cabezas-Rabadán, C.; Pardo-Pascual, J.E.; Palomar-Vázquez, J. Characterizing the Relationship between the Sediment Grain Size and the Shoreline Variability Defined from Sentinel-2 Derived Shorelines. Remote Sens. 2021, 13, 2829. [Google Scholar] [CrossRef]
- Roelvink, D.; Reniers, A.; van Dongeren, A.; van Thiel de Vries, J.; McCall, R.; Lescinski, J. Modelling Storm Impacts on Beaches, Dunes and Barrier Islands. Coast. Eng. 2009, 56, 1133–1152. [Google Scholar] [CrossRef]
- Koktas, M. The Effect of Variable Grain Size Distribution on Beach’s Morphological Response. Master’s Thesis, Lund University, Lund, Sweden, 2017. [Google Scholar]
- Beckman, J.N.; Long, J.W.; Hawkes, A.D.; Leonard, L.A.; Ghoneim, E. Investigating Controls on Barrier Island Overwash and Evolution during Extreme Storms. Water 2021, 13, 2829. [Google Scholar] [CrossRef]
- Mickey, R.C.; Dalyander, P.S.; McCall, R.; Passeri, D.L. Sensitivity of Storm Response to Antecedent Topography in the XBeach Model. J. Mar. Sci. Eng. 2020, 8, 829. [Google Scholar] [CrossRef]
- Reeves, I.R.B.; Moore, L.J.; Murray, A.B.; Anarde, K.A.; Goldstein, E.B. Dune Dynamics Drive Discontinuous Barrier Retreat. Geophys. Res. Lett. 2021, 48, e2021GL092958. [Google Scholar] [CrossRef]
- Galiforni-Silva, F.; Wijnberg, K.M.; Mulder, J.P.M. Beach-Dune Development Prior to a Shoal Attachment: A Case Study on Texel Island (NL). Mar. Geol. 2022, 453, 106907. [Google Scholar] [CrossRef]
- Passeri, D.L.; Bilskie, M.V.; Plant, N.G.; Long, J.W.; Hagen, S.C. Dynamic Modeling of Barrier Island Response to Hurricane Storm Surge under Future Sea Level Rise. Clim. Change 2018, 149, 413–425. [Google Scholar] [CrossRef]
- Miselis, J.L.; Lorenzo-Trueba, J. Natural and Human-Induced Variability in Barrier-Island Response to Sea Level Rise. Geophys. Res. Lett. 2017, 44, 922–931. [Google Scholar] [CrossRef]
- Mickey, R.C.; Long, J.W.; Dalyander, P.S.; Jenkins, R.; Thompson, D.M.; Passeri, D.L.; Plant, N.G. Development of a Modeling Framework for Predicting Decadal Barrier Island Evolution; US Geological Survey: Reston, VA, USA, 2020. [Google Scholar]
- Pruis, K.W. Modelling Decadal Barrier Island Behavior. Master’s Thesis, Delft University of Technology, Delft, The Netherlands, 2011. [Google Scholar]
- Passeri, D.; Long, J.W.; Jenkins III, R.L.; Thompson, D.M. Effects of Proposed Navigation Channel Improvements on Sediment Transport in Mobile Harbor, Alabama; US Geological Survey: Reston, VA, USA, 2018. [Google Scholar]
- Jenkins III, R.L.; Long, J.W.; Dalyander, P.S.; Thompson, D.M.; Mickey, R.C. Development of a Process-Based Littoral Sediment Transport Model for Dauphin Island, Alabama; US Geological Survey: Reston, VA, USA, 2020. [Google Scholar]
- Flocks, J.G.; DeWitt, N.T.; Stalk, C.A. Analysis of Seafloor Change around Dauphin Island, Alabama, 1987–2015; US Geological Survey: Reston, VA, USA, 2017; p. 26. [Google Scholar]
- Hummel, R. Main Pass and the Ebb-Tidal Delta of Mobile Bay. Geol. Surv. Ala. Circ. 1990, 146, 45. [Google Scholar]
- Bates, R.; Jackson, J. Glossary of Geology; American Geological Institute: Alexandria, VA, USA, 2003; pp. 557–576. [Google Scholar]
- Hayes, M.O.; FitzGerald, D.M. Origin, Evolution, and Classification of Tidal Inlets. J. Coast. Res. 2013, 69, 14–33. [Google Scholar] [CrossRef]
- Robinson, A.H.W. Cyclical Changes in Shoreline Development at the Entrance to Teignmouth Harbour, Devon, England. In Nearshore Sediment Dynamics and Sedimentation; John and Wiley and Sons: Hoboken, NJ, USA, 1975; pp. 181–198. [Google Scholar]
- O’Connor, M.C.; Cooper, J.A.G.; Jackson, D.W.T. Decadal Behavior of Tidal Inlet–Associated Beach Systems, Northwest Ireland, in Relation to Climate Forcing. J. Sediment. Res. 2011, 81, 38–51. [Google Scholar] [CrossRef]
- Byrnes, M.R.; Rosati, J.D.; Griffee, S.F.; Berlinghoff, J.L. Historical Sediment Transport Pathways and Quantities for Determining an Operational Sediment Budget: Mississippi Sound Barrier Islands. J. Coast. Res. 2013, 63, 166–183. [Google Scholar] [CrossRef]
- Cipriani, L.E.; Stone, G.W. Net Longshore Sediment Transport and Textural Changes in Beach Sediments along the Southwest Alabama and Mississippi Barrier Islands, USA. J. Coast. Res. 2001, 17, 443–458. [Google Scholar]
- Scott, L. Douglass Beach Erosion and Deposition on Dauphin Island, Alabama, USA. J. Coast. Res. 1994, 10, 306–328. [Google Scholar]
- Smith, C.G.; Long, J.W.; Henderson, R.E.; Nelson, P.R. Assessing the Impact of Open-Ocean and Back-Barrier Shoreline Change on Dauphin Island, Alabama, at Multiple Time Scales over the Last 75 Years; US Geological Survey: Reston, VA, USA, 2018. [Google Scholar]
- Shabica, S.V.; Dolan, R.; May, S.; May, P. Shoreline Erosion Rates along Barrier Islands of the North Central Gulf of Mexico. Environ. Geol. 1983, 5, 115–126. [Google Scholar] [CrossRef]
- Partheniades, E. Erosion and Deposition of Cohesive Soils. J. Hydraul. Div. 1965, 91, 105–139. [Google Scholar] [CrossRef]
- Van Rijn, L.C.; Nieuwjaar, M.W.; van der Kaay, T.; Nap, E.; van Kampen, A. Transport of Fine Sands by Currents and Waves. J. Waterw. Port Coast. Ocean Eng. 1993, 119, 123–143. [Google Scholar] [CrossRef]
- Ellis, A.M.; Marot, M.E.; Smith, C.G.; Wheaton, C.J. The Physical Characteristics of the Sediments on and Surrounding Dauphin Island, Alabama; US Geological Survey: Reston, VA, USA, 2017. [Google Scholar]
- Paterson, G.A.; Heslop, D. New Methods for Unmixing Sediment Grain Size Data. Geochem. Geophys. Geosys. 2015, 16, 4494–4506. [Google Scholar] [CrossRef]
- Dalyander, P.S.; Butman, B.; Sherwood, C.R.; Signell, R.P. Documentation of the U.S. Geological Survey Sea Floor Stress and Sediment Mobility Database; US Geological Survey: Reston, VA, USA, 2012. [Google Scholar]
- Soulsby, R.L.; Whitehouse, R.J. Threshold of Sediment Motion in Coastal Environments. In Proceedings of the 13th Australasian Coastal and Ocean Engineering Conference and the 6th Australasian Port and Harbour Conference, Christchurch, New Zealand, 7–11 September 1997; Centre for Advanced Engineering, University of Canterbury: Canterbury, UK, 1997; Volume 1, pp. 145–150. [Google Scholar]
- Ferguson, R.I.; Church, M. A Simple Universal Equation for Grain Settling Velocity. J. Sediment. Res. 2004, 74, 933–937. [Google Scholar] [CrossRef]
- ITTC Specialist Committee. ITTC–Recommended Procedures Fresh Water and Seawater Properties; WTO: Geneva, Switzerland, 2011. [Google Scholar]
- Thieler, E.R.; Himmelstoss, E.A.; Zichichi, J.L.; Miller, T.L. The Digital Shoreline Analysis System (DSAS) Version 3.0, an ArcGIS Extension for Calculating Historic Shoreline Cange; US Geological Survey: Reston, VA, USA, 2005. [Google Scholar]
- Henderson, R.; Nelson, P.R.; Long, J.W.; Smith, C.G. Vector Shorelines and Associated Shoreline Change Rates Derived from Lidar and Aerial Imagery for Dauphin Island, Alabama: 1940–2015; US Geological Survey: Reston, VA, USA, 2017. [Google Scholar]
- Ridderinkhof, W.; de Swart, H.E.; van der Vegt, M.; Hoekstra, P. Modeling the Growth and Migration of Sandy Shoals on Ebb-Tidal Deltas. J. Geophys. Res. Earth Surf. 2016, 121, 1351–1372. [Google Scholar] [CrossRef]
- Froede, C.R., Jr. Changes to Dauphin Island, Alabama, Brought about by Hurricane Katrina (August 29, 2005). J. Coast. Res. 2008, 4, 110–117. [Google Scholar] [CrossRef]
- Dalyander, P.S.; Mickey, R.C.; Passeri, D.L.; Plant, N.G. Development and Application of an Empirical Dune Growth Model for Evaluating Barrier Island Recovery from Storms. J. Mar. Sci. Eng. 2020, 8, 977. [Google Scholar] [CrossRef]
- Bregman, M.; Georgiou, I.Y.; Miner, M.; Swarts, J.; Khalil, S.; Raynie, R. Assessing the Impact of In-Bay Borrow Pits on Estuarine Sediment Dynamics, Barataria Bay, Louisiana; The Water Institute: Baton Rouge, LA, USA, 2023. [Google Scholar]
- Georgiou, I.Y.; Bregman, M.; Messina, F.; Di Leonardo, D.; Wang, Y.; Zou, S.; Khalil, S.; Raynie, R.; Swartz, J.; Miner, M. Sediment Infilling Rate of Lowermost Mississippi River Borrow Pits and Impacts on Downstream Dredging; The Water Institute: Baton Rouge, LA, USA, 2023. [Google Scholar]
- Lesser, G.R. An Approach to Medium-Term Coastal Morphological Modelling. Master’s Thesis, Delft University of Technology, Delft, The Netherlands, 2009. [Google Scholar]
- Benedet, L.; Dobrochinski, J.P.F.; Walstra, D.J.R.; Klein, A.H.F.; Ranasinghe, R. A morphological modeling study to compare different methods of wave climate schematization and evaluate strategies to reduce erosion losses from a beach nourishment project. Coast. Eng. 2016, 112, 69–86. [Google Scholar] [CrossRef]
- Dee, D.P.; Uppala, S.M.; Simmons, A.J.; Berrisford, P.; Poli, P.; Kobayashi, S.; Andrae, U.; Balmaseda, M.A.; Balsamo, G.; Bauer, P.; et al. The ERA-Interim Reanalysis: Configuration and Performance of the Data Assimilation System. Q. J. R. Meteorol. Soc. 2011, 137, 553–597. [Google Scholar] [CrossRef]
Sediment Class Name | Type | D50 (μm) | (kg/m3) | (kg/m3) | (m/s) 1 |
---|---|---|---|---|---|
EM1 | Cohesive | 6 | 2500 | 700 | 4.35 × 10−5 |
EM2 | Non-cohesive | 200 | 2500 | 1500 | - |
EM3 | Non-cohesive | 350 | 2500 | 1500 | - |
EM4 | Non-cohesive | 570 | 2500 | 1500 | - |
Model Case | RMSE (1997–2015) (m/yr) | RMSE (1985–2006) (m/yr) |
---|---|---|
Benchmark | 3.31 | 3.34 |
SL4C | 3.29 | 3.21 |
UL4C | 3.21 | 3.09 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jenkins, R.L., III; Smith, C.G.; Passeri, D.L.; Ellis, A.M. Model Sensitivity Analysis for Coastal Morphodynamics: Investigating Sediment Parameters and Bed Composition in Delft3D. J. Mar. Sci. Eng. 2024, 12, 2108. https://doi.org/10.3390/jmse12112108
Jenkins RL III, Smith CG, Passeri DL, Ellis AM. Model Sensitivity Analysis for Coastal Morphodynamics: Investigating Sediment Parameters and Bed Composition in Delft3D. Journal of Marine Science and Engineering. 2024; 12(11):2108. https://doi.org/10.3390/jmse12112108
Chicago/Turabian StyleJenkins, Robert L., III, Christopher G. Smith, Davina L. Passeri, and Alisha M. Ellis. 2024. "Model Sensitivity Analysis for Coastal Morphodynamics: Investigating Sediment Parameters and Bed Composition in Delft3D" Journal of Marine Science and Engineering 12, no. 11: 2108. https://doi.org/10.3390/jmse12112108
APA StyleJenkins, R. L., III, Smith, C. G., Passeri, D. L., & Ellis, A. M. (2024). Model Sensitivity Analysis for Coastal Morphodynamics: Investigating Sediment Parameters and Bed Composition in Delft3D. Journal of Marine Science and Engineering, 12(11), 2108. https://doi.org/10.3390/jmse12112108