Super Resolution Mapping of Scatterometer Ocean Surface Wind Speed Using Generative Adversarial Network: Experiments in the Southern China Sea
Abstract
:1. Introduction
2. Data and Methods
2.1. Data
2.1.1. ASCAT L2B Data
2.1.2. WindRAD L1 Data
2.1.3. Sentinel-1 L2 IW OCN Data
2.1.4. ECMWF ERA-5 Reanalysis Wind Speed
2.2. Methods
2.2.1. GMF
2.2.2. The Proposed WSGAN
2.2.3. SRGAN Variants Used for Comparison
2.2.4. GAN Model Hyperparameter Setting
2.2.5. Accuracy Evaluation
3. Results and Discussions
3.1. Performance of WSGAN on Achieving High-Resolution Wind Speed
3.2. Evaluation of the Generalization Capability of WSGAN
3.3. Application Potential in Weak Storm Center Location
3.4. Advantages and Limitations of the Data and Method
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bentamy, A.; Mouche, A.; Grouazel, A.; Moujane, A.; Mohamed, A.A. Using Sentinel-1A SAR Wind Retrievals for Enhancing Scatterometer and Radiometer Regional Wind Analyses. Int. J. Remote Sens. 2019, 40, 1120–1147. [Google Scholar] [CrossRef]
- Cui, Z.; Pu, Z.; Tallapragada, V.; Atlas, R.; Ruf, C.S. A Preliminary Impact Study of CYGNSS Ocean Surface Wind Speeds on Numerical Simulations of Hurricanes. Geophys. Res. Lett. 2019, 46, 2984–2992. [Google Scholar] [CrossRef] [PubMed]
- Desbiolles, F.; Blanke, B.; Bentamy, A.; Roy, C. Response of the Southern Benguela Upwelling System to Fine-Scale Modifications of the Coastal Wind. J. Mar. Syst. 2016, 156, 46–55. [Google Scholar] [CrossRef]
- Guo, Q.; Xu, X.; Zhang, K.; Li, Z.; Huang, W.; Mansaray, L.R.; Liu, W.; Wang, X.; Gao, J.; Huang, J. Assessing Global Ocean Wind Energy Resources Using Multiple Satellite Data. Remote Sens. 2018, 10, 100. [Google Scholar] [CrossRef]
- Benassai, G.; Di Luccio, D.; Corcione, V.; Nunziata, F.; Migliaccio, M. Marine Spatial Planning Using High-Resolution Synthetic Aperture Radar Measurements. IEEE J. Ocean. Eng. 2018, 43, 586–594. [Google Scholar] [CrossRef]
- De Dominicis, M.; Bruciaferri, D.; Gerin, R.; Pinardi, N.; Poulain, P.M.; Garreau, P.; Zodiatis, G.; Perivoliotis, L.; Fazioli, L.; Sorgente, R.; et al. A Multi-Model Assessment of the Impact of Currents, Waves and Wind in Modelling Surface Drifters and Oil Spill. Deep. Res. Part II Top. Stud. Oceanogr. 2016, 133, 21–38. [Google Scholar] [CrossRef]
- Desbiolles, F.; Bentamy, A.; Blanke, B.; Roy, C.; Mestas-Nuñez, A.M.; Grodsky, S.A.; Herbette, S.; Cambon, G.; Maes, C. Two Decades [1992–2012] of Surface Wind Analyses Based on Satellite Scatterometer Observations. J. Mar. Syst. 2017, 168, 38–56. [Google Scholar] [CrossRef]
- Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y. Generative Adversarial Networks. Commun. ACM 2020, 63, 139–144. [Google Scholar] [CrossRef]
- Jozdani, S.; Chen, D.; Pouliot, D.; Alan Johnson, B. A Review and Meta-Analysis of Generative Adversarial Networks and Their Applications in Remote Sensing. Int. J. Appl. Earth Obs. Geoinf. 2022, 108, 102734. [Google Scholar] [CrossRef]
- Ledig, C.; Theis, L.; Huszár, F.; Caballero, J.; Cunningham, A.; Acosta, A.; Aitken, A.; Tejani, A.; Totz, J.; Wang, Z.; et al. Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network. In Proceedings of the 30th IEEE Conference on Computer Vision and Pattern Recognition CVPR, Honolulu, HI, USA, 21–26 July 2017; pp. 105–114. [Google Scholar]
- Wang, X.; Yu, K.; Wu, S.; Gu, J.; Liu, Y. ESRGAN: Enhanced Super-Resolution Generative Adversarial Networks. In Proceedings of the IEEE Conference on Computer Vision, Munich, Germany, 8–14 September 2018; pp. 63–79. [Google Scholar]
- Park, S.J.; Son, H.; Cho, S.; Hong, K.S.; Lee, S. SRFeat: Single Image Super-Resolution with Feature Discrimination. In Proceedings of the 15th European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; Volume 11220, pp. 439–455. [Google Scholar]
- Nguyen, T.; Hoang, H.; Yoo, C.D. GDCA: GAN-Based Single Image Super Resolution with Dual Discriminators and Channel Attention. arXiv 2021, arXiv:2111.05014. [Google Scholar]
- Salaudeen, H.; Çelebi, E. Pothole Detection Using Image Enhancement GAN and Object Detection Network. Electron 2022, 11, 1882. [Google Scholar] [CrossRef]
- Izumi, T.; Amagasaki, M.; Ishida, K.; Kiyama, M. Super-Resolution of Sea Surface Temperature with Convolutional Neural Network-and Generative Adversarial Network-Based Methods. J. Water Clim. Chang. 2022, 13, 1673–1683. [Google Scholar] [CrossRef]
- Pham, V.D.; Bui, Q.T. Spatial Resolution Enhancement Method for Landsat Imagery Using a Generative Adversarial Network. Remote Sens. Lett. 2021, 12, 654–665. [Google Scholar] [CrossRef]
- Zhang, L.; Liu, P.; Wang, L.; Liu, J.; Song, B.; Zhang, Y.; He, G.; Zhang, H. Improved 1-Km-Resolution Hourly Estimates of Aerosol Optical Depth Using Conditional Generative Adversarial Networks. Remote Sens. 2021, 13, 3834. [Google Scholar] [CrossRef]
- Zhu, D.; Cheng, X.; Zhang, F.; Yao, X.; Gao, Y.; Liu, Y. Spatial Interpolation Using Conditional Generative Adversarial Neural Networks. Int. J. Geogr. Inf. Sci. 2020, 34, 735–758. [Google Scholar] [CrossRef]
- Safonova, A.; Ghazaryan, G.; Stiller, S.; Main-Knorn, M.; Nendel, C.; Ryo, M. Ten Deep Learning Techniques to Address Small Data Problems with Remote Sensing. Int. J. Appl. Earth Obs. Geoinf. 2023, 125, 103569. [Google Scholar] [CrossRef]
- Lim, B.; Son, S.; Kim, H.; Nah, S.; Lee, K.M. Enhanced Deep Residual Networks for Single Image Super-Resolution. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 1132–1140. [Google Scholar]
- Zhang, Y.; Li, K.; Li, K.; Wang, L.; Zhong, B.; Fu, Y. Image Super-Resolution Using Very Deep Residual Channel Attention Networks. In Proceedings of the 15th European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; Volume 11211, pp. 286–301. [Google Scholar]
- Lai, W.S.; Huang, J.B.; Ahuja, N.; Yang, M.H. Deep Laplacian Pyramid Networks for Fast and Accurate Super-Resolution. In Proceedings of the 30th IEEE Conference on Computer Vision and Pattern Recognition CVPR, Honolulu, HI, USA, 21–26 July 2017; pp. 5835–5843. [Google Scholar]
- Feng, X.; Li, X.; Li, J. Multi-Scale Fractal Residual Network for Image Super-Resolution. Appl. Intell. 2021, 51, 1845–1856. [Google Scholar] [CrossRef]
- Jiang, B.; Wei, Y.; Ding, J.; Zhang, R.; Liu, Y.; Wang, X.; Fang, Y. Trends of Sea Surface Wind Energy over the South China Sea. J. Oceanol. Limnol. 2019, 37, 1510–1522. [Google Scholar] [CrossRef]
- Stoffelen, A.; Verspeek, J.A.; Vogelzang, J.; Verhoef, A. The CMOD7 Geophysical Model Function for ASCAT and ERS Wind Retrievals. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 10, 2123–2134. [Google Scholar] [CrossRef]
- Li, Z.; Stoffelen, A.; Verhoef, A.; Wang, Z.; Shang, J.; Yin, H. Higher-order calibration on WindRAD (Wind Radar) scatterometer winds. Atmos. Meas. Tech. 2023, 16, 4769–4783. [Google Scholar] [CrossRef]
- Li, Z.; Verhoef, A.; Stoffelen, A.; Shang, J.; Dou, F. First Results from the WindRAD Scatterometer on Board FY-3E: Data Analysis, Calibration and Wind Retrieval Evaluation. Remote Sens. 2023, 15, 2087. [Google Scholar] [CrossRef]
- De Montera, L.; Remmers, T.; O’Connell, R.; Desmond, C. Validation of Sentinel-1 Offshore Winds and Average Wind Power Estimation around Ireland. Wind Energy Sci. 2020, 5, 1023–1036. [Google Scholar] [CrossRef]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al. The ERA5 Global Reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Belmonte Rivas, M.; Stoffelen, A. Characterizing ERA-Interim and ERA5 Surface Wind Biases Using ASCAT. Ocean Sci. 2019, 15, 831–852. [Google Scholar] [CrossRef]
- Ni, W.; Stoffelen, A.; Ren, K.; Yang, X. Tropical Cyclone Intensity Estimation From Spaceborne Microwave Scatterometry and Parametric Wind Models. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2022, 15, 4719–4729. [Google Scholar] [CrossRef]
- Li, X.; Lin, W.; Liu, B.; Wang, Z.; Zhang, B.; He, Y. Sea Surface Wind Retrieval Using the Combined Scatterometer and Altimeter Backscatter Measurements of the HY-2B Satellite. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5101312. [Google Scholar] [CrossRef]
- Wan, Y.; Guo, S.; Li, L.; Qu, X.; Dai, Y. Data Quality Evaluation of Sentinel-1 and Gf-3 Sar for Wind Field Inversion. Remote Sens. 2021, 13, 3723. [Google Scholar] [CrossRef]
- Zhang, B.; Guo, J.; Li, Z.; Cheng, Y.; Zhao, Y.; Yao, F.; Boota, M.W. A Review for Retrieving Wind Fields by Spaceborne Synthetic Aperture Radar. J. Sens. 2022, 2022, 7773659. [Google Scholar] [CrossRef]
- Zhang, B.; Mouche, A.; Lu, Y.; Perrie, W.; Zhang, G.; Wang, H. A Geophysical Model Function for Wind Speed Retrieval from C-Band HH-Polarized Synthetic Aperture Radar. IEEE Geosci. Remote Sens. Lett. 2019, 16, 1521–1525. [Google Scholar] [CrossRef]
- Zheng, M.; Li, X.M.; Sha, J. Comparison of Sea Surface Wind Field Measured by HY-2A Scatterometer and WindSat in Global Oceans. J. Oceanol. Limnol. 2019, 37, 38–46. [Google Scholar] [CrossRef]
- Velo, R.; López, P.; Maseda, F. Wind Speed Estimation Using Multilayer Perceptron. Energy Convers. Manag. 2014, 81, 1–9. [Google Scholar] [CrossRef]
- Escobar, C.A.; Restrepo Alvarez, D. Estimation of Global Ocean Surface Winds Blending Reanalysis, Satellite and Buoy Datasets. Remote Sens. Appl. Soc. Environ. 2023, 32, 101012. [Google Scholar] [CrossRef]
- Flores, J.J.; Cedeño González, J.R.; Rodríguez, H.; Graff, M.; Lopez-Farias, R.; Calderon, F. Soft Computing Methods with Phase Space Reconstruction for Wind Speed Forecasting—A Performance Comparison. Energies 2019, 12, 3545. [Google Scholar] [CrossRef]
- Olaofe, Z.O. A 5-Day Wind Speed & Power Forecasts Using a Layer Recurrent Neural Network (LRNN). Sustain. Energy Technol. Assess. 2014, 6, 1–24. [Google Scholar]
- Watson, S.J.; Kritharas, P.; Hodgson, G.J. Wind speed variability across the UK between 1957 and 2011. Wind Energy 2013, 18, 21–42. [Google Scholar] [CrossRef]
Models | Pros | Cons |
---|---|---|
SRGAN [10] | Produces visually appealing images with fine textures by introducing GAN. | Prone to artifacts and overfitting during training. |
ESRGAN [11] | Improves feature extraction capability and perceptual loss for enhancing image quality | May generate artifacts and over-smoothing. |
GDCA [13] | Enhances super-resolution performance by using residual connections and channel attention modules. | Requires a significant amount of computational resources and time for training and inference. |
SRFeat [12] | Improves high-frequency information and structural information extraction capability. | Increases the complexity and computational load of the limited performance on complex image structures. |
EDSR [20] | Emphasizes deep networks with residual connections for effective feature learning. | Requires substantial computational resources during training |
RCAN [21] | Enhances the model’s ability to focus on essential features by incorporating attention mechanisms. | Training may still be resource-intensive. |
LapSRN [22] | Efficient use of the Laplacian pyramid to capture image details at different scales; Good at preserving fine details. | Limited in handling large upscaling factors. |
MSRN [23] | Utilizes multiple-scale residual blocks to capture both global and local features. | May struggle with extremely low-resolution inputs. |
Models | RMSE (m/s) | |||
---|---|---|---|---|
Overall | 0~5 m/s OSWS (3 Scenarios) | 5~10 m/s OSWS (8 Scenarios) | 10~15 m/s OSWS (2 Scenarios) | |
WSGAN | 0.81 | 0.93 | 0.84 | 0.54 |
ESRGAN | 0.86 | 1.11 | 0.85 | 0.57 |
SRGAN | 1.04 | 1.08 | 1.12 | 0.71 |
GDCA | 0.87 | 1.02 | 0.87 | 0.61 |
SRFeat | 0.85 | 1.09 | 0.83 | 0.54 |
EDSR | 0.92 | 1.15 | 0.94 | 0.54 |
RCAN | 0.84 | 0.99 | 0.87 | 0.47 |
MSRN | 0.82 | 0.95 | 0.87 | 0.45 |
LapSRN | 1.03 | 1.27 | 1.07 | 0.59 |
Bilinear | 1.13 | 1.32 | 1.16 | 0.72 |
Models | MAE (m/s) | |||
---|---|---|---|---|
Overall | 0~5 m/s OSWS (3 Scenarios) | 5~10 m/s OSWS (8 Scenarios) | 10~15 m/s OSWS (2 Scenarios) | |
WSGAN | 0.68 | 0.80 | 0.71 | 0.39 |
ESRGAN | 0.73 | 0.99 | 0.71 | 0.43 |
SRGAN | 0.89 | 0.95 | 0.95 | 0.56 |
GDCA | 0.73 | 0.90 | 0.74 | 0.45 |
SRFeat | 0.72 | 0.99 | 0.70 | 0.38 |
EDSR | 0.79 | 1.02 | 0.81 | 0.40 |
RCAN | 0.71 | 0.88 | 0.73 | 0.34 |
MSRN | 0.69 | 0.84 | 0.72 | 0.32 |
LapSRN | 0.90 | 1.13 | 0.92 | 0.45 |
Bilinear | 0.93 | 1.19 | 0.93 | 0.53 |
Models | SMAPE (%) | |||
---|---|---|---|---|
Overall | 0~5 m/s OSWS (3 Scenarios) | 5~10 m/s OSWS (8 Scenarios) | 10~15 m/s OSWS (2 Scenarios) | |
WSGAN | 18.36 | 43.50 | 12.63 | 3.58 |
ESRGAN | 19.97 | 50.18 | 12.67 | 3.89 |
SRGAN | 21.95 | 48.56 | 16.22 | 4.96 |
GDCA | 19.58 | 46.96 | 13.19 | 4.08 |
SRFeat | 19.83 | 50.46 | 12.44 | 3.46 |
EDSR | 20.95 | 51.11 | 13.95 | 3.68 |
RCAN | 19.11 | 46.35 | 12.88 | 3.12 |
MSRN | 18.56 | 44.58 | 12.70 | 2.94 |
LapSRN | 22.76 | 53.75 | 15.79 | 4.13 |
Bilinear | 24.09 | 55.70 | 17.08 | 4.71 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wan, X.; Liu, B.; Guo, Z.; Xia, Z.; Zhang, T.; Ji, R.; Wan, W. Super Resolution Mapping of Scatterometer Ocean Surface Wind Speed Using Generative Adversarial Network: Experiments in the Southern China Sea. J. Mar. Sci. Eng. 2024, 12, 228. https://doi.org/10.3390/jmse12020228
Wan X, Liu B, Guo Z, Xia Z, Zhang T, Ji R, Wan W. Super Resolution Mapping of Scatterometer Ocean Surface Wind Speed Using Generative Adversarial Network: Experiments in the Southern China Sea. Journal of Marine Science and Engineering. 2024; 12(2):228. https://doi.org/10.3390/jmse12020228
Chicago/Turabian StyleWan, Xianci, Baojian Liu, Zhizhou Guo, Zhenghuan Xia, Tao Zhang, Rui Ji, and Wei Wan. 2024. "Super Resolution Mapping of Scatterometer Ocean Surface Wind Speed Using Generative Adversarial Network: Experiments in the Southern China Sea" Journal of Marine Science and Engineering 12, no. 2: 228. https://doi.org/10.3390/jmse12020228
APA StyleWan, X., Liu, B., Guo, Z., Xia, Z., Zhang, T., Ji, R., & Wan, W. (2024). Super Resolution Mapping of Scatterometer Ocean Surface Wind Speed Using Generative Adversarial Network: Experiments in the Southern China Sea. Journal of Marine Science and Engineering, 12(2), 228. https://doi.org/10.3390/jmse12020228