Advanced Underwater Measurement System for ROVs: Integrating Sonar and Stereo Vision for Enhanced Subsea Infrastructure Maintenance
Abstract
:1. Introduction
2. Related Work
2.1. Stereo Matching Methods
2.2. Optical–Acoustic Methods
3. Proposed Method
3.1. Sensor Model and Camera Model
3.2. Vision-Based Cost Calculation Term
3.3. Sonar-Based Cost Calculation Terms
3.4. Cost Aggregation with Vision and Sonar Terms
4. Experimental Comparisons
4.1. Experimental Environment and Equipment
4.2. Underwater Object Measurement Experiment
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Massot-Campos, M.; Oliver-Codina, G. Optical sensors and methods for underwater 3D reconstruction. Sensors 2015, 15, 31525–31557. [Google Scholar] [CrossRef] [PubMed]
- Henderson, J.; Pizarro, O.; Johnson-Roberson, M.; Mahon, I. Mapping submerged archaeological sites using stereo-vision photogrammetry. Int. J. Naut. Archaeol. 2013, 42, 243–256. [Google Scholar] [CrossRef]
- Sahoo, A.; Dwivedy, S.K.; Robi, P. Advancements in the field of autonomous underwater vehicle. Ocean. Eng. 2019, 181, 145–160. [Google Scholar] [CrossRef]
- Hirschmuller, H. Stereo processing by semiglobal matching and mutual information. IEEE Trans. Pattern Anal. Mach. Intell. 2007, 30, 328–341. [Google Scholar] [CrossRef] [PubMed]
- Rublee, E.; Rabaud, V.; Konolige, K.; Bradski, G. ORB: An efficient alternative to SIFT or SURF. In Proceedings of the 2011 International Conference on Computer Vision, Barcelona, Spain, 6–13 November 2011; pp. 2564–2571. [Google Scholar]
- Ng, P.C.; Henikoff, S. SIFT: Predicting amino acid changes that affect protein function. Nucleic Acids Res. 2003, 31, 3812–3814. [Google Scholar] [CrossRef] [PubMed]
- González-Sabbagh, S.P.; Robles-Kelly, A. A Survey on Underwater Computer Vision. ACM Comput. Surv. 2023, 55, 268. [Google Scholar] [CrossRef]
- Ferreira, F.; Machado, D.; Ferri, G.; Dugelay, S.; Potter, J. Underwater optical and acoustic imaging: A time for fusion? A brief overview of the state-of-the-art. In Proceedings of the OCEANS 2016 MTS/IEEE Monterey, Monterey, CA, USA, 19–23 September 2016; pp. 1–6. [Google Scholar]
- Cong, Y.; Gu, C.; Zhang, T.; Gao, Y. Underwater robot sensing technology: A survey. Fundam. Res. 2021, 1, 337–345. [Google Scholar] [CrossRef]
- Ubina, N.A.; Cheng, S.C.; Chang, C.C.; Cai, S.Y.; Lan, H.Y.; Lu, H.Y. Intelligent Underwater Stereo Camera Design for Fish Metric Estimation Using Reliable Object Matching. IEEE Access 2022, 10, 74605–74619. [Google Scholar] [CrossRef]
- Shi, C.; Wang, Q.; He, X.; Zhang, X.; Li, D. An automatic method of fish length estimation using underwater stereo system based on LabVIEW. Comput. Electron. Agric. 2020, 173, 105419. [Google Scholar] [CrossRef]
- Kim, M.; Lee, S.; Hong, J.W. Empirical estimation of the breaker index using a stereo camera system. Ocean. Eng. 2022, 265, 112522. [Google Scholar] [CrossRef]
- Aykin, M.D.; Negahdaripour, S. Forward-look 2-D sonar image formation and 3-D reconstruction. In Proceedings of the 2013 OCEANS-San Diego, San Diego, CA, USA, 23–27 September 2013; pp. 1–10. [Google Scholar]
- Chung, D.; Kim, J. Underwater visual mapping of curved ship hull surface using stereo vision. Auton. Robot. 2023, 47, 109–120. [Google Scholar] [CrossRef]
- Zhai, X.; Meng, Z.; Zhang, H.; Xu, X.; Qian, Z.; Xue, B.; Wu, H. Underwater distance measurement using frequency comb laser. Opt. Express 2019, 27, 6757–6769. [Google Scholar] [CrossRef]
- Xu, Y.; Yu, D.; Ma, Y.; Li, Q.; Zhou, Y. Underwater stereo-matching algorithm based on belief propagation. Signal Image Video Process. 2023, 17, 891–897. [Google Scholar] [CrossRef]
- Skinner, K.A.; Zhang, J.; Olson, E.A.; Johnson-Roberson, M. Uwstereonet: Unsupervised learning for depth estimation and color correction of underwater stereo imagery. In Proceedings of the 2019 International Conference on Robotics and Automation (ICRA), Montreal, QC, Canada, 20–24 May 2019; pp. 7947–7954. [Google Scholar]
- Huang, T.A.; Kaess, M. Towards acoustic structure from motion for imaging sonar. In Proceedings of the 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Hamburg, Germany, 28 September–2 October 2015; pp. 758–765. [Google Scholar]
- Karimanzira, D.; Renkewitz, H.; Shea, D.; Albiez, J. Object detection in sonar images. Electronics 2020, 9, 1180. [Google Scholar] [CrossRef]
- Purser, A.; Marcon, Y.; Dreutter, S.; Hoge, U.; Sablotny, B.; Hehemann, L.; Lemburg, J.; Dorschel, B.; Biebow, H.; Boetius, A. Ocean Floor Observation and Bathymetry System (OFOBS): A new towed camera/sonar system for deep-sea habitat surveys. IEEE J. Ocean. Eng. 2019, 44, 87–99. [Google Scholar] [CrossRef]
- McConnell, J.; Englot, B. Predictive 3D Sonar Mapping of Underwater Environments via Object-specific Bayesian Inference. In Proceedings of the 2021 IEEE International Conference on Robotics and Automation (ICRA), Xi’an, China, 30 May–5 June 2021; pp. 6761–6767. [Google Scholar] [CrossRef]
- Cho, H.; Kim, B.; Yu, S.C. AUV-Based Underwater 3-D Point Cloud Generation Using Acoustic Lens-Based Multibeam Sonar. IEEE J. Ocean. Eng. 2018, 43, 856–872. [Google Scholar] [CrossRef]
- Negahdaripour, S. Epipolar Geometry of Opti-Acoustic Stereo Imaging. IEEE Trans. Pattern Anal. Mach. Intell. 2007, 29, 1776–1788. [Google Scholar] [CrossRef] [PubMed]
- Pecheux, N.; Creuze, V.; Comby, F.; Tempier, O. Self Calibration of a Sonar–Vision System for Underwater Vehicles: A New Method and a Dataset. Sensors 2023, 23, 1700. [Google Scholar] [CrossRef] [PubMed]
- Terayama, K.; Shin, K.; Mizuno, K.; Tsuda, K. Integration of sonar and optical camera images using deep neural network for fish monitoring. Aquac. Eng. 2019, 86, 102000. [Google Scholar] [CrossRef]
- Raaj, Y.; John, A.; Jin, T. 3D Object Localization using Forward Looking Sonar (FLS) and Optical Camera via particle filter based calibration and fusion. In Proceedings of the OCEANS 2016 MTS/IEEE Monterey, Monterey, CA, USA, 19–23 September 2016; pp. 1–10. [Google Scholar]
- Rahman, S.; Li, A.Q.; Rekleitis, I. Sonar visual inertial slam of underwater structures. In Proceedings of the 2018 IEEE International Conference on Robotics and Automation (ICRA), Brisbane, QLD, Australia, 21–25 May 2018; pp. 5190–5196. [Google Scholar]
- Zhang, J.; Han, F.; Han, D.; Su, Z.; Li, H.; Zhao, W.; Yang, J. Object measurement in real underwater environments using improved stereo matching with semantic segmentation. Measurement 2023, 218, 113147. [Google Scholar] [CrossRef]
- Zhang, F.; Prisacariu, V.; Yang, R.; Torr, P.H. GA-Net: Guided Aggregation Net for End-to-end Stereo Matching. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 185–194. [Google Scholar]
- Xu, G.; Wang, X.; Ding, X.; Yang, X. Iterative Geometry Encoding Volume for Stereo Matching. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, BC, Canada, 18–22 June 2023. [Google Scholar]
Frame Structure | Pressure Tank | Platform Structure | Sphere Structure | ROV | |
---|---|---|---|---|---|
height (cm) | 165.4 | 134.5 | 66 | 64 | 40 |
width (cm) | 53 | 113 | 80 | 64 | 35 |
depth (cm) | 101.2 | 217 | 80 | 64 | 75 |
Parameters | Left Camera | Right Camera |
---|---|---|
() | (1542.96428, 1576.11235) | (1541.3057, 1571.6980) |
() | (635.42367, 451.18523) | (628.82976, 471.85445) |
(0.58524, −0.50156, 0.07526, −0.00169, 0) | (0.53044, −0.10992, 0.06693, −0.00207, 0) | |
R | (−0.01497, 0.00743, −0.00753) | |
T (mm) | (−58.11, 0, 1.4) | |
E (mm) | (−30, −70, −10) |
Methods | Shelf (mm) | Tank (mm) | Sphere (mm) | Platform (mm) | Error (%) |
---|---|---|---|---|---|
Ground Truth | 530 | 1130 | 640 | 800 | |
SGBM | 742 | 1576 | 831 | 1043 | 34.7 |
Ours (without sonar) | 562 | 1251 | 663 | 843 | 6.2 |
Ours (with sonar) | 542 | 1149 | 649 | 813 | 1.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, J.; Han, F.; Han, D.; Yang, J.; Zhao, W.; Li, H. Advanced Underwater Measurement System for ROVs: Integrating Sonar and Stereo Vision for Enhanced Subsea Infrastructure Maintenance. J. Mar. Sci. Eng. 2024, 12, 306. https://doi.org/10.3390/jmse12020306
Zhang J, Han F, Han D, Yang J, Zhao W, Li H. Advanced Underwater Measurement System for ROVs: Integrating Sonar and Stereo Vision for Enhanced Subsea Infrastructure Maintenance. Journal of Marine Science and Engineering. 2024; 12(2):306. https://doi.org/10.3390/jmse12020306
Chicago/Turabian StyleZhang, Jiawei, Fenglei Han, Duanfeng Han, Jianfeng Yang, Wangyuan Zhao, and Hansheng Li. 2024. "Advanced Underwater Measurement System for ROVs: Integrating Sonar and Stereo Vision for Enhanced Subsea Infrastructure Maintenance" Journal of Marine Science and Engineering 12, no. 2: 306. https://doi.org/10.3390/jmse12020306
APA StyleZhang, J., Han, F., Han, D., Yang, J., Zhao, W., & Li, H. (2024). Advanced Underwater Measurement System for ROVs: Integrating Sonar and Stereo Vision for Enhanced Subsea Infrastructure Maintenance. Journal of Marine Science and Engineering, 12(2), 306. https://doi.org/10.3390/jmse12020306