Coral Tissue Regeneration and Growth Is Associated with the Presence of Stem-like Cells
Abstract
:1. Introduction
2. Experimental Design and Methods
2.1. Collection and Maintenance
2.2. Fragmentation and Lateral Growth
2.3. Regeneration Assays
2.4. Histology
2.5. Immunohistochemistry—Phosphorylated Histone H3, Piwi
2.6. Quantitative PCR
3. Results
3.1. Morphological Outcomes
3.2. Histological Observations
3.3. Immunohistochemistry
3.3.1. Phospho-Histone H3 Labelling
3.3.2. PIWI Labelling
3.4. qPCR Analyses
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Technau, U.; Steele, R.E. Evolutionary Crossroads in Developmental Biology: Cnidaria. Development 2011, 138, 1447–1458. [Google Scholar] [CrossRef]
- Fujita, S.; Kuranaga, E.; Nakajima, Y. Regeneration Potential of Jellyfish: Cellular Mechanisms and Molecular Insights. Genes 2021, 12, 758. [Google Scholar] [CrossRef]
- Henry, L.-A.; Hart, M. Regeneration from Injury and Resource Allocation in Sponges and Corals–a Review. Int. Rev. Hydrobiol. J. Cover. All Asp. Limnol. Mar. Biol. 2005, 90, 125–158. [Google Scholar] [CrossRef]
- Lirman, D. Lesion Regeneration in the Branching Coral Acropora palmata: Effects of Colonization, Colony Size, Lesion Size, and Lesion Shape. Mar. Ecol. Prog. Ser. 2000, 197, 209–215. [Google Scholar] [CrossRef]
- Meesters, E.H.; Pauchli, W.; Bak, R.P. Predicting Regeneration of Physical Damage on a Reef-Building Coral by Regeneration Capacity and Lesion Shape. Mar. Ecol. Prog. Ser. 1997, 146, 91–99. [Google Scholar] [CrossRef]
- Luz, B.L.P.; Capel, K.C.C.; Zilberberg, C.; Flores, A.A.V.; Migotto, A.E.; Kitahara, M.V. A Polyp from Nothing: The Extreme Regeneration Capacity of the Atlantic Invasive Sun Corals Tubastraea coccinea and T. tagusensis (Anthozoa, Scleractinia). J. Exp. Mar. Biol. Ecol. 2018, 503, 60–65. [Google Scholar] [CrossRef]
- Luz, B.L.P.; Miller, D.J.; Kitahara, M.V. High Regenerative Capacity Is a General Feature within Colonial Dendrophylliid Corals (Anthozoa, Scleractinia). J. Exp. Zool. Part B Mol. Dev. Evol. 2021, 336, 281–292. [Google Scholar] [CrossRef] [PubMed]
- Cole, A.J.; Pratchett, M.S.; Jones, G.P. Diversity and Functional Importance of Coral-Feeding Fishes on Tropical Coral Reefs. Fish Fish. 2008, 9, 286–307. [Google Scholar] [CrossRef]
- Baums, I.B.; Miller, M.W.; Szmant, A.M. Ecology of a Corallivorous Gastropod, Coralliophila abbreviata, on Two Scleractinian Hosts. I: Population Structure of Snails and Corals. Mar. Biol. 2003, 142, 1083–1091. [Google Scholar] [CrossRef]
- Harmelin-Vivien, M.L. The Effects of Storms and Cyclones on Coral Reefs: A Review. J. Coast. Res. 1994, 211–231. [Google Scholar]
- Dollar, S.J.; Tribble, G.W. Recurrent Storm Disturbance and Recovery: A Long-Term Study of Coral Communities in Hawaii. Coral Reefs 1993, 12, 223–233. [Google Scholar] [CrossRef]
- Rogers, C.S.; Gilnack, M.; Fitz III, H.C. Monitoring of Coral Reefs with Linear Transects: A Study of Storm Damage. J. Exp. Mar. Biol. Ecol. 1983, 66, 285–300. [Google Scholar] [CrossRef]
- Meesters, E.H.; Wesseling, I.; Bak, R.P. Partial Mortality in Three Species of Reef-Building Corals and the Relation with Colony Morphology. Bull. Mar. Sci. 1996, 58, 838–852. [Google Scholar]
- Rinkevich, B. Do Reproduction and Regeneration in Damaged Corals Compete for Energy Allocation? Mar. Ecol. Prog. Ser. 1996, 143, 297–302. [Google Scholar] [CrossRef]
- Oren, U.; Rinkevich, B.; Loya, Y. Oriented Intra-Colonial Transport of 14C Labeled Materials during Coral Regeneration. Mar. Ecol. Prog. Ser. 1997, 161, 117–122. [Google Scholar] [CrossRef]
- Shaish, L.; Abelson, A.; Rinkevich, B. Branch to Colony Trajectory in a Modular Organism: Pattern Formation in the Indo-Pacific Coral Stylophora pistillata. Dev. Dyn. 2006, 235, 2111–2121. [Google Scholar] [CrossRef]
- Guerrini, G.; Shefy, D.; Shashar, N.; Shafir, S.; Rinkevich, B. Morphometric and Allometric Rules of Polyp’s Landscape in Regular and Chimeric Coral Colonies of the Branching Species Stylophora pistillata. Dev. Dyn. 2021, 250, 652–668. [Google Scholar] [CrossRef]
- Mullen, K.M.; Peters, E.C.; Harvell, C.D. Coral Resistance to Disease. In Coral Health and Disease; Springer: Berlin/Heidelberg, Germany, 2004; pp. 377–399. [Google Scholar]
- Rodríguez, S.; Croquer, A.; Guzmán, H.M.; Bastidas, C. A Mechanism of Transmission and Factors Affecting Coral Susceptibility to Halofolliculina Sp. Infection. Coral Reefs 2009, 28, 67–77. [Google Scholar] [CrossRef]
- Voss, J.D.; Richardson, L.L. Nutrient Enrichment Enhances Black Band Disease Progression in Corals. Coral Reefs 2006, 25, 569–576. [Google Scholar] [CrossRef]
- Diaz-Pulido, G.; McCook, L.J.; Dove, S.; Berkelmans, R.; Roff, G.; Kline, D.I.; Weeks, S.; Evans, R.D.; Williamson, D.H.; Hoegh-Guldberg, O. Doom and Boom on a Resilient Reef: Climate Change, Algal Overgrowth and Coral Recovery. PLoS ONE 2009, 4, e5239. [Google Scholar] [CrossRef] [PubMed]
- Child, C.M. Form Regulation in Cerianthus: I. The Typical Course of Regeneration. Biol. Bull. 1903, 5, 239–260. [Google Scholar] [CrossRef]
- Cróquer, A.; Villamizar, E.; Noriega, N. Environmental factors affecting tissue regeneration of the reef-building coral Montastraea annularis (Faviidae) at Los Roques National Park, Venezuela. Rev. Biol. Trop. 2002, 50(3-4), 1055–1065. [Google Scholar]
- Hall, V.R. Interspecific Differences in the Regeneration of Artificial Injuries on Scleractinian Corals. J. Exp. Mar. Biol. Ecol. 1997, 212, 9–23. [Google Scholar] [CrossRef]
- Meesters, E.H.; Noordeloos, M.; Bak, R.P. Damage and Regeneration: Links to Growth in the Reef-Building Coral Montastrea annularis. Mar. Ecol. Prog. Ser. 1994, 112, 119–128. [Google Scholar] [CrossRef]
- Meesters, E.H.; Wesseling, I.; Bak, R.P. Coral Colony Tissue Damage in Six Species of Reef-Building Corals: Partial Mortality in Relation with Depth and Surface Area. J. Sea Res. 1997, 37, 131–144. [Google Scholar] [CrossRef]
- Meesters, E.H.; Bak, R.P. Effects of Coral Bleaching on Tissue Regeneration Potential and Colony Survival. Mar. Ecol. Prog. Ser. 1993, 96, 189–198. [Google Scholar] [CrossRef]
- Meesters, E.H.; Bak, R.P. Age-Related Deterioration of a Physiological Function in the Branching Coral Acropora palmata. Mar. Ecol. Prog. Ser. 1995, 121, 203–209. [Google Scholar] [CrossRef]
- Titlyanov, E.A.; Titlyanova, T.V.; Yakovleva, I.M.; Nakano, Y.; Bhagooli, R. Regeneration of Artificial Injuries on Scleractinian Corals and Coral/Algal Competition for Newly Formed Substrate. J. Exp. Mar. Biol. Ecol. 2005, 323, 27–42. [Google Scholar] [CrossRef]
- Bonesso, J.L.; Leggat, W.; Ainsworth, T.D. Exposure to Elevated Sea-Surface Temperatures below the Bleaching Threshold Impairs Coral Recovery and Regeneration Following Injury. PeerJ 2017, 5, e3719. [Google Scholar] [CrossRef]
- Counsell, C.W.; Johnston, E.C.; Sale, T.L. Colony Size and Depth Affect Wound Repair in a Branching Coral. Mar. Biol. 2019, 166, 148. [Google Scholar] [CrossRef]
- Kaufman, M.L.; Watkins, E.; van Hooidonk, R.; Baker, A.C.; Lirman, D. Thermal History Influences Lesion Recovery of the Threatened Caribbean Staghorn Coral Acropora cervicornis under Heat Stress. Coral Reefs 2021, 40, 289–293. [Google Scholar] [CrossRef]
- Horricks, R.A.; Herbinger, C.M.; Lillie, B.N.; Taylor, P.; Lumsden, J.S. Differential Protein Abundance during the First Month of Regeneration of the Caribbean Star Coral Montastraea cavernosa. Coral Reefs 2019, 38, 45–61. [Google Scholar] [CrossRef]
- Horricks, R.A.; Herbinger, C.M.; Vickaryous, M.K.; Taylor, P.; Lumsden, J.S. Differential Protein Abundance Associated with Delayed Regeneration of the Scleractinian Coral Montastraea cavernosa. Coral Reefs 2020, 39, 1175–1186. [Google Scholar] [CrossRef]
- Bode, H.R. Head Regeneration in Hydra. Dev. Dyn. Off. Publ. Am. Assoc. Anat. 2003, 226, 225–236. [Google Scholar] [CrossRef] [PubMed]
- Bosch, T.C.G. Hydra and the Evolution of Stem Cells. BioEssays 2009, 31, 478–486. [Google Scholar] [CrossRef]
- Gierer, A.; Berking, S.; Bode, H.; David, C.N.; Flick, K.; Hansmann, G.; Schaller, H.; Trenkner, E. Regeneration of Hydra from Reaggregated Cells. Nat. New Biol. 1972, 239, 98–101. [Google Scholar] [CrossRef] [PubMed]
- Gold, D.A.; Jacobs, D.K. Stem Cell Dynamics in Cnidaria: Are There Unifying Principles? Dev. Genes Evol. 2013, 223, 53–66. [Google Scholar] [CrossRef] [PubMed]
- Vogg, M.C.; Galliot, B.; Tsiairis, C.D. Model Systems for Regeneration: Hydra. Development 2019, 146, dev177212. [Google Scholar] [CrossRef]
- Lesh-Laurie, G.E.; Hujer, A.; Suchy, P. Polyp Regeneration from Isolated Tentacles of Aurelia scyphistomae: A Role for Gating Mechanisms and Cell Division. In Coelenterate Biology: Recent Research on Cnidaria and Ctenophora; Springer: Berlin/Heidelberg, Germany, 1991; pp. 91–97. [Google Scholar]
- Nakanishi, N.; Yuan, D.; Jacobs, D.K.; Hartenstein, V. Early Development, Pattern, and Reorganization of the Planula Nervous System in Aurelia (Cnidaria, Scyphozoa). Dev. Genes Evol. 2008, 218, 511–524. [Google Scholar] [CrossRef]
- Steinberg, S.N. The Regeneration of Whole Polyps from Ectodermal Fragments of Scyphistoma Larvae of Aurelia aurita. Biol. Bull. 1963, 124, 337–343. [Google Scholar] [CrossRef]
- Yuan, D.; Nakanishi, N.; Jacobs, D.K.; Hartenstein, V. Embryonic Development and Metamorphosis of the Scyphozoan Aurelia. Dev. Genes Evol. 2008, 218, 525–539. [Google Scholar] [CrossRef] [PubMed]
- Hutton, D.M.; Smith, V.J. Antibacterial Properties of Isolated Amoebocytes from the Sea Anemone Actinia equina. Biol. Bull. 1996, 191, 441–451. [Google Scholar] [CrossRef] [PubMed]
- Meszaros, A.; Bigger, C. Qualitative and Quantitative Study of Wound Healing Processes in the Coelenterate, Plexaurella fusifera: Spatial, Temporal, and Environmental (Light Attenuation) Influences. J. Invertebr. Pathol. 1999, 73, 321–331. [Google Scholar] [CrossRef]
- Mydlarz, L.D.; Holthouse, S.F.; Peters, E.C.; Harvell, C.D. Cellular Responses in Sea Fan Corals: Granular Amoebocytes React to Pathogen and Climate Stressors. PLoS ONE 2008, 3, e1811. [Google Scholar] [CrossRef] [PubMed]
- Olano, C.T.; Bigger, C.H. Phagocytic Activities of the Gorgonian Coral Swiftia exserta. J. Invertebr. Pathol. 2000, 76, 176–184. [Google Scholar] [CrossRef]
- Palmer, C.V.; Traylor-Knowles, N.G.; Willis, B.L.; Bythell, J.C. Corals Use Similar Immune Cells and Wound-Healing Processes as Those of Higher Organisms. PLoS ONE 2011, 6, e23992. [Google Scholar] [CrossRef]
- Patterson, M.J.; Landolt, M.L. Cellular Reaction to Injury in the Anthozoan Anthopleura elegantissima. J. Invertebr. Pathol. 1979, 33, 189–196. [Google Scholar] [CrossRef]
- Vargas-Ángel, B.; Peters, E.C.; Kramarsky-Winter, E.; Gilliam, D.S.; Dodge, R.E. Cellular Reactions to Sedimentation and Temperature Stress in the Caribbean Coral Montastraea cavernosa. J. Invertebr. Pathol. 2007, 95, 140–145. [Google Scholar] [CrossRef] [PubMed]
- Raz-Bahat, M.; Erez, J.; Rinkevich, B. In Vivo Light-Microscopic Documentation for Primary Calcification Processes in the Hermatypic Coral Stylophora pistillata. Cell Tissue Res. 2006, 325, 361–368. [Google Scholar] [CrossRef] [PubMed]
- Shefy, D.; Rinkevich, B. Stylophora pistillata—A Model Colonial Species in Basic and Applied Studies. In Handbook of Marine Model Organisms in Experimental Biology—Established and Emerging; Boutet, A., Schierwater, B., Eds.; CRC Press: Boca Raton, FL, USA, 2021; pp. 195–216. [Google Scholar]
- Bockel, T.; Rinkevich, B. Rapid Recruitment of Symbiotic Algae into Developing Scleractinian Coral Tissues. J. Mar. Sci. Eng. 2019, 7, 306. [Google Scholar] [CrossRef]
- Shafir, S.; Van Rijn, J.; Rinkevich, B. Nubbing of Coral Colonies: A Novel Approach for the Development of Inland Broodstocks. Aquar. Sci. Conserv. 2001, 3, 183–190. [Google Scholar] [CrossRef]
- Rinkevich, B.; Loya, Y. The Reproduction of the Red Sea Coral Stylophora Pistillata. I. Gonads and Planulae. Mar. Ecol. Prog. Ser. 1979, 1, 133–144. [Google Scholar] [CrossRef]
- Rinkevich, Y.; Rosner, A.; Rabinowitz, C.; Lapidot, Z.; Moiseeva, E.; Rinkevich, B. Piwi Positive Cells That Line the Vasculature Epithelium, Underlie Whole Body Regeneration in a Basal Chordate. Dev. Biol. 2010, 345, 94–104. [Google Scholar] [CrossRef]
- Pfaffl, M.W. A New Mathematical Model for Relative Quantification in Real-Time RT–PCR. Nucleic Acids Res. 2001, 29, e45. [Google Scholar] [CrossRef]
- Juliano, C.E.; Reich, A.; Liu, N.; Götzfried, J.; Zhong, M.; Uman, S.; Reenan, R.A.; Wessel, G.M.; Steele, R.E.; Lin, H. PIWI Proteins and PIWI-Interacting RNAs Function in Hydra Somatic Stem Cells. Proc. Natl. Acad. Sci. USA 2014, 111, 337–342. [Google Scholar] [CrossRef] [PubMed]
- Fierro-Constaín, L.; Schenkelaars, Q.; Gazave, E.; Haguenauer, A.; Rocher, C.; Ereskovsky, A.; Borchiellini, C.; Renard, E. The Conservation of the Germline Multipotency Program, from Sponges to Vertebrates: A Stepping Stone to Understanding the Somatic and Germline Origins. Genome Biol. Evol. 2017, 9, 474–488. [Google Scholar] [CrossRef] [PubMed]
- Cervello, I.; Simon, C. Somatic Stem Cells in the Endometrium. Reprod. Sci. 2009, 16, 200–205. [Google Scholar] [CrossRef] [PubMed]
- Shibata, N.; Umesono, Y.; Orii, H.; Sakurai, T.; Watanabe, K.; Agata, K. Expression Ofvasa (Vas)-Related Genes in Germline Cells and Totipotent Somatic Stem Cells of Planarians. Dev. Biol. 1999, 206, 73–87. [Google Scholar] [CrossRef] [PubMed]
- Shukalyuk, A.I.; Golovnina, K.A.; Baiborodin, S.I.; Gunbin, K.V.; Blinov, A.G.; Isaeva, V.V. Vasa-Related Genes and Their Expression in Stem Cells of Colonial Parasitic Rhizocephalan Barnacle Polyascus polygenea (Arthropoda: Crustacea: Cirripedia: Rhizocephala). Cell Biol. Int. 2007, 31, 97–108. [Google Scholar] [CrossRef] [PubMed]
- Rink, J.C. Stem Cell Systems and Regeneration in Planaria. Dev. Genes Evol. 2013, 223, 67–84. [Google Scholar] [CrossRef] [PubMed]
- Rinkevich, B.; Ballarin, L.; Martinez, P.; Somorjai, I.; Ben-Hamo, O.; Borisenko, I.; Berezikov, E.; Ereskovsky, A.; Gazave, E.; Khnykin, D.; et al. A pan-metazoan concept for adult stem cells: The wobbling Penrose landscape. Biol. Rev. 2022, 97, 299–325. [Google Scholar] [CrossRef]
- Varley, Á.; Horkan, H.R.; McMahon, E.T.; Krasovec, G.; Frank, U. Pluripotent, germ cell competent adult stem cells underlie cnidarian regenerative ability and clonal growth. Curr. Biol. 2023, 33, 1883–1892. [Google Scholar] [CrossRef] [PubMed]
- Collins, A. Recent Insights into Cnidarian Phylogeny. Smithson. Contrib. Mar. Sci. 2009, 38, 140–149. [Google Scholar]
- Reyes-Bermudez, A.; Miller, D.J. In Vitro Culture of Cells Derived from Larvae of the Staghorn Coral Acropora millepora. Coral Reefs 2009, 28, 859–864. [Google Scholar] [CrossRef]
- Martinez Serra, P.; Ballarin, L.; Ereskovsky, A.V.; Gazave, E.; Hobmayer, B.; Manni, L.; Rottinger, E.; Sprecher, S.G.; Tiozzo, S.; Varela-Coelho, A.; et al. Articulating the “stem cell niche” paradigm through the lens of non-model aquatic invertebrates. BMC Biol. 2022, 20, 23. [Google Scholar] [CrossRef] [PubMed]
- Fernando, W.A.; Leininger, E.; Simkin, J.; Li, N.; Malcom, C.A.; Sathyamoorthi, S.; Han, M.; Muneoka, K. Wound Healing and Blastema Formation in Regenerating Digit Tips of Adult Mice. Dev. Biol. 2011, 350, 301–310. [Google Scholar] [CrossRef] [PubMed]
- McCusker, C.; Bryant, S.V.; Gardiner, D.M. The Axolotl Limb Blastema: Cellular and Molecular Mechanisms Driving Blastema Formation and Limb Regeneration in Tetrapods. Regeneration 2015, 2, 54–71. [Google Scholar] [CrossRef]
- Saló, E.; Baguna, J. Regeneration and Pattern Formation in Planarians. II. and Role of Cell Movements in Blastema Formation. Development 1989, 107, 69–76. [Google Scholar] [CrossRef]
- Santos-Ruiz, L.; Santamaría, J.A.; Ruiz-Sánchez, J.; Becerra, J. Cell Proliferation during Blastema Formation in the Regenerating Teleost Fin. Dev. Dyn. Off. Publ. Am. Assoc. Anat. 2002, 223, 262–272. [Google Scholar] [CrossRef]
- Tamura, K.; Ohgo, S.; Yokoyama, H. Limb Blastema Cell: A Stem Cell for Morphological Regeneration. Dev. Growth Differ. 2010, 52, 89–99. [Google Scholar] [CrossRef]
- Tsonis, P.A. Stem Cells and Blastema Cells. Curr. Stem Cell Res. Ther. 2008, 3, 53–54. [Google Scholar] [CrossRef] [PubMed]
- Moghaddam Matin, M.; Saeinasab, M.; Nakhaei-Rad, S.; Mirahmadi, M.; Mahdavi Shahri, N.; Mahmoudi, M.; Bahrami, A.R. Blastema Cells Derived from Rabbit Ear Show Stem Cell Characteristics. J. Cell Mol. Res. 2011, 3, 25–30. [Google Scholar]
- Guo, T.; Peters, A.H.F.M.; Newmark, P.A. A Bruno-like Gene Is Required for Stem Cell Maintenance in Planarians. Dev. Cell 2006, 11, 159–169. [Google Scholar] [CrossRef] [PubMed]
- Bayascas, J.R.; Castillo, E.; Salo, E. Platyhelminthes Have a Hox Code Differentially Activated during Regeneration, with Genes Closely Related to Those of Spiralian Protostomes. Dev. Genes Evol. 1998, 208, 467–473. [Google Scholar] [CrossRef]
- Orii, H.; Kato, K.; Umesono, Y.; Sakurai, T.; Agata, K.; Watanabe, K. The Planarian HOM/HOX Homeobox Genes (Plox) Expressed along the Anteroposterior Axis. Dev. Biol. 1999, 210, 456–468. [Google Scholar] [CrossRef]
- Nogi, T.; Watanabe, K. Position-Specific and Non-Colinear Expression of the Planarian Posterior (Abdominal-B-like) Gene. Dev. Growth Differ. 2001, 43, 177–184. [Google Scholar] [CrossRef] [PubMed]
- Poss, K.D.; Nechiporuk, A.; Hillam, A.M.; Johnson, S.L.; Keating, M.T. Mps1 Defines a Proximal Blastemal Proliferative Compartment Essential for Zebrafish Fin Regeneration. Development 2002, 129, 5141–5149. [Google Scholar] [CrossRef]
- Reyes-Bermudez, A.; Hidaka, M.; Mikheyev, A. Transcription Profiling of Cultured Acropora digitifera Adult Cells Reveals the Existence of Ancestral Genome Regulatory Modules Underlying Pluripotency and Cell Differentiation in Cnidaria. Genome Biol. Evol. 2021, 13, evab008. [Google Scholar] [CrossRef]
- Levy, S.; Elek, A.; Grau-Bové, X.; Menéndez-Bravo, S.; Iglesias, M.; Tanay, A.; Mass, T.; Sebé-Pedrós, A. A Stony Coral Cell Atlas Illuminates the Molecular and Cellular Basis of Coral Symbiosis, Calcification, and Immunity. Cell 2021, 184, 2973–2987.e18. [Google Scholar] [CrossRef]
Source Colon | Assays (n) | Regeneration Not Completed (n) | Regeneration Completed | |
---|---|---|---|---|
n | % | |||
1 | 18 | 2 | 16 | 88.89 |
2 | 27 | 1 | 26 | 96.29 |
3 | 30 | 8 | 22 | 73.33 |
total | 75 | 11 | 64 | 84.51 |
Number of Polyps\Source Colony | 1 | 2 | 3 | Total |
---|---|---|---|---|
0 | 13 | 9 | 16 | 38 |
1 | 3 | 13 | 6 | 22 |
2 | 0 | 3 | 0 | 3 |
3 | 0 | 1 | 0 | 1 |
Total | 16 | 26 | 22 | 64 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Levanoni, J.; Rosner, A.; Lapidot, Z.; Paz, G.; Rinkevich, B. Coral Tissue Regeneration and Growth Is Associated with the Presence of Stem-like Cells. J. Mar. Sci. Eng. 2024, 12, 343. https://doi.org/10.3390/jmse12020343
Levanoni J, Rosner A, Lapidot Z, Paz G, Rinkevich B. Coral Tissue Regeneration and Growth Is Associated with the Presence of Stem-like Cells. Journal of Marine Science and Engineering. 2024; 12(2):343. https://doi.org/10.3390/jmse12020343
Chicago/Turabian StyleLevanoni, Jonathan, Amalia Rosner, Ziva Lapidot, Guy Paz, and Baruch Rinkevich. 2024. "Coral Tissue Regeneration and Growth Is Associated with the Presence of Stem-like Cells" Journal of Marine Science and Engineering 12, no. 2: 343. https://doi.org/10.3390/jmse12020343
APA StyleLevanoni, J., Rosner, A., Lapidot, Z., Paz, G., & Rinkevich, B. (2024). Coral Tissue Regeneration and Growth Is Associated with the Presence of Stem-like Cells. Journal of Marine Science and Engineering, 12(2), 343. https://doi.org/10.3390/jmse12020343