Machine Learning-Based Approach to Identifying Fall Risk in Seafarers Using Wearable Sensors
Abstract
:1. Introduction
- To see whether an ML approach can be applied to identify fall risks with a wearable sensor;
- To identify the best gait features for the prediction of the fall risk level (high or low) during a ship’s rolling conditions;
- To examine which ML models perform best for fall risk classifications under a ship’s roll motions.
- To the best of our knowledge, this study marks the initial endeavor to detect fall risks in the maritime field using wearable sensors, as the majority of the previous studies used video cameras or radar sensors, often focusing on older adults in biomedical and healthcare fields;
- We comprehensively analyzed eight ML models for fall risk classification implemented with a synthetic minority oversampling technique (SMOTE) and hyperparameters tuning;
- The findings of this study can be applied to prevent seafarers or passengers from falls and MOBs by determining the risk of falls during a ship’s rolling motions.
2. Related Work
2.1. Traditional Sensor-Based Approaches to Fall Detection
2.2. Hidden Markov Model (HMM) for Fall Detection
3. Materials and Methods
3.1. Data Collection
- A major lower extremity injury or surgery;
- Known cardiovascular conditions that make it unsafe for them to exercise;
- A history of dizziness due to vestibular disorders, such as Meniere’s disease and vertigo;
- Any difficulty in walking in unstable, moving environments.
3.2. Data Preprocessing
3.3. Feature Selection Using LASSO
3.4. ML Classification Models
3.4.1. SMOTE Resampling
3.4.2. ML Algorithms and Hyperparameters Tuning
3.5. Evaluation Metrics
3.6. Software
4. Results
4.1. Feature Selection Results
4.2. Hyperparameter Tuning Results
4.3. Classification Results
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Örtlund, E.; Larsson, M. Man Overboard Detecting Systems Based on Wireless Technology; Chalmers University of Technology: Gothenburg, Sweden, 2018. [Google Scholar]
- Feraru, V.A.; Andersen, R.E.; Boukas, E. Towards an Autonomous UAV-Based System to Assist Search and Rescue Operations in Man Overboard Incidents. In Proceedings of the 2020 IEEE International Symposium on Safety, Security, and Rescue Robotics (SSRR), Abu Dhabi, United Arab Emirates, 4–6 November 2020; IEEE: Piscataway, NJ, USA; pp. 57–64. [Google Scholar]
- Sevin, A.; Bayilmiş, C.; Erturk, İ.; Ekiz, H.; Karaca, A. Design and Implementation of a Man-Overboard Emergency Discovery System Based on Wireless Sensor Networks. Turk. J. Electr. Eng. Comput. Sci. 2016, 24, 762–773. [Google Scholar] [CrossRef]
- Hunter, F.; Hunter, T. Autonomous Man Overboard Rescue Equipment (AMORE). Bachelor’s Thesis, Worcester Polytechnic Institute, Worcester, MA, USA, 2013. [Google Scholar]
- Podsiadlo, D.; Richardson, S. The Timed “Up & Go”: A Test of Basic Functional Mobility for Frail Elderly Persons. J. Am. Geriatr. Soc. 1991, 39, 142–148. [Google Scholar] [CrossRef] [PubMed]
- Berg, K.; Wood-Dauphine, S.; Williams, J.I.; Gayton, D. Measuring Balance in the Elderly: Preliminary Development of an Instrument. Physiother. Can. 1989, 41, 304–311. [Google Scholar] [CrossRef]
- Tinetti, M.E.; Franklin Williams, T.; Mayewski, R. Fall Risk Index for Elderly Patients Based on Number of Chronic Disabilities. Am. J. Med. 1986, 80, 429–434. [Google Scholar] [CrossRef] [PubMed]
- Duncan, P.W.; Weiner, D.K.; Chandler, J.; Studenski, S. Functional Reach: A New Clinical Measure of Balance. J. Gerontol. 1990, 45, M192–M197. [Google Scholar] [CrossRef] [PubMed]
- Yardley, L.; Beyer, N.; Hauer, K.; Kempen, G.; Piot-Ziegler, C.; Todd, C. Development and Initial Validation of the Falls Efficacy Scale-International (FES-I). Age Ageing 2005, 34, 614–619. [Google Scholar] [CrossRef] [PubMed]
- Nandy, S.; Parsons, S.; Cryer, C.; Underwood, M.; Rashbrook, E.; Carter, Y.; Eldridge, S.; Close, J.; Skelton, D.; Taylor, S.; et al. Development and Preliminary Examination of the Predictive Validity of the Falls Risk Assessment Tool (FRAT) for Use in Primary Care. J. Public Health 2004, 26, 138–143. [Google Scholar] [CrossRef] [PubMed]
- Thakur, N.; Han, C.Y. A Study of Fall Detection in Assisted Living: Identifying and Improving the Optimal Machine Learning Method. J. Sens. Actuator Netw. 2021, 10, 39. [Google Scholar] [CrossRef]
- Usmani, S.; Saboor, A.; Haris, M.; Khan, M.A.; Park, H. Latest Research Trends in Fall Detection and Prevention Using Machine Learning: A Systematic Review. Sensors 2021, 21, 5134. [Google Scholar] [CrossRef]
- Noh, B.; Youm, C.; Goh, E.; Lee, M.; Park, H.; Jeon, H.; Kim, O.Y. XGBoost Based Machine Learning Approach to Predict the Risk of Fall in Older Adults Using Gait Outcomes. Sci. Rep. 2021, 11, 12183. [Google Scholar] [CrossRef]
- Chakraborty, P.R.; Sorwar, G. A Machine Learning Approach to Identify Fall Risk for Older Adults. Smart Health 2022, 26, 100303. [Google Scholar] [CrossRef]
- Tsekenis, V.; Armeniakos, C.K.; Nikolaidis, V.; Bithas, P.S.; Kanatas, A.G. Machine Learning-Assisted Man Overboard Detection Using Radars. Electronics 2021, 10, 1345. [Google Scholar] [CrossRef]
- Bakalos, N.; Katsamenis, I.; Voulodimos, A. Man Overboard: Fall Detection Using Spatiotemporal Convolutional Autoencoders in Maritime Environments. In Proceedings of the 14th PErvasive Technologies Related to Assistive Environments Conference, Virtual, 29 June–2 July 2021; ACM: New York, NY, USA, 2021; pp. 420–425. [Google Scholar]
- Bakalos, N.; Katsamenis, I.; Karolou, E.E.; Doulamis, N. Unsupervised Man Overboard Detection Using Thermal Imagery and Spatiotemporal Autoencoders. In Novelties in Intelligent Digital Systems: Proceedings of the 1st International Conference (NIDS 2021), Athens, Greece, 30 September–1 October 2021; Frasson, C., Kabassi, K., Voulodimos, A., Eds.; IOS Press: Amsterdam, The Netherlands, 2021; Volume 338, p. 256. [Google Scholar]
- Armeniakos, C.K.; Nikolaidis, V.; Tsekenis, V.; Maliatsos, K.; Bithas, P.S.; Kanatas, A.G. Human Fall Detection Using MmWave Radars: A Cluster-Assisted Experimental Approach. J. Ambient. Intell. Humaniz. Comput. 2023, 14, 11657–11669. [Google Scholar] [CrossRef]
- Gürüler, H.; Altun, M.; Khan, F.; Whangbo, T. Man Overboard Detection System Using IoT for Navigation Model. Comput. Mater. Contin. 2022, 71, 4955–4969. [Google Scholar] [CrossRef]
- El Attaoui, A.; Largo, S.; Kaissari, S.; Benba, A.; Jilbab, A.; Bourouhou, A. Machine Learning-based Edge-computing on a Multi-level Architecture of WSN and IoT for Real-time Fall Detection. IET Wirel. Sens. Syst. 2020, 10, 320–332. [Google Scholar] [CrossRef]
- Lee, J.-S.; Tseng, H.-H. Development of an Enhanced Threshold-Based Fall Detection System Using Smartphones with Built-In Accelerometers. IEEE Sens. J. 2019, 19, 8293–8302. [Google Scholar] [CrossRef]
- Nho, Y.-H.; Ryu, S.; Kwon, D.-S. UI-GAN: Generative Adversarial Network-Based Anomaly Detection Using User Initial Information for Wearable Devices. IEEE Sens. J. 2021, 21, 9949–9958. [Google Scholar] [CrossRef]
- Howcroft, J.; Kofman, J.; Lemaire, E.D. Prospective Fall-Risk Prediction Models for Older Adults Based on Wearable Sensors. IEEE Trans. Neural Syst. Rehabil. Eng. 2017, 25, 1812–1820. [Google Scholar] [CrossRef]
- Patel, M.; Pavic, A.; Goodwin, V.A. Wearable Inertial Sensors to Measure Gait and Posture Characteristic Differences in Older Adult Fallers and Non-Fallers: A Scoping Review. Gait Posture 2020, 76, 110–121. [Google Scholar] [CrossRef]
- Drover, D.; Howcroft, J.; Kofman, J.; Lemaire, E.D. Faller Classification in Older Adults Using Wearable Sensors Based on Turn and Straight-Walking Accelerometer-Based Features. Sensors 2017, 17, 1321. [Google Scholar] [CrossRef]
- Tong, L.; Song, Q.; Ge, Y.; Liu, M. HMM-Based Human Fall Detection and Prediction Method Using Tri-Axial Accelerometer. IEEE Sens. J. 2013, 13, 1849–1856. [Google Scholar] [CrossRef]
- Shoaib, M.; Dragon, R.; Ostermann, J. View-Invariant Fall Detection for Elderly in Real Home Environment. In Proceedings of the 4th Pacific-Rim Symposium on Image and Video Technology, PSIVT 2010, Singapore, 14–17 November 2010; pp. 52–57. [Google Scholar] [CrossRef]
- Liu, H.; Hartmann, Y.; Schultz, T. Motion Units: Generalized Sequence Modeling of Human Activities for Sensor-Based Activity Recognition. In Proceedings of the 2021 29th European Signal Processing Conference (EUSIPCO), Dublin, Ireland, 23–27 August 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 1506–1510. [Google Scholar]
- Xue, T.; Liu, H. Hidden Markov Model and Its Application in Human Activity Recognition and Fall Detection: A Review. In International Conference in Communications, Signal Processing, and Systems; Springer: Singapore, 2022; pp. 863–869. [Google Scholar]
- Iloga, S.; Bordat, A.; Le Kernec, J.; Romain, O. Human Activity Recognition Based on Acceleration Data From Smartphones Using HMMs. IEEE Access 2021, 9, 139336–139351. [Google Scholar] [CrossRef]
- Liu, H.; Hartmann, Y.; Schultz, T. A Practical Wearable Sensor-Based Human Activity Recognition Research Pipeline. In Proceedings of the 15th International Joint Conference on Biomedical Engineering Systems and Technologies, SCITEPRESS-Science and Technology Publications. Virtual, 9–11 February 2022; pp. 847–856. [Google Scholar]
- Vicon Motion System Ltd. Plug-in Gait Reference Guide. Available online: https://docs.vicon.com/display/Nexus26/PDF+downloads+for+Vicon+Nexus?preview=/42696722/42697399/Plug-in%20Gait%20Reference%20Guide.pdf (accessed on 3 March 2022).
- Van Criekinge, T.; Saeys, W.; Hallemans, A.; Velghe, S.; Viskens, P.-J.; Vereeck, L.; De Hertogh, W.; Truijen, S. Trunk Biomechanics during Hemiplegic Gait after Stroke: A Systematic Review. Gait Posture 2017, 54, 133–143. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Liu, Z.; Wang, J.; Loughney, S.; Yang, Z.; Gao, X. Experimental Study on Individual Walking Speed during Emergency Evacuation with the Influence of Ship Motion. Phys. A Stat. Mech. Its Appl. 2021, 562, 125369. [Google Scholar] [CrossRef]
- Sun, J.; Guo, Y.; Li, C.; Lo, S.; Lu, S. An Experimental Study on Individual Walking Speed during Ship Evacuation with the Combined Effect of Heeling and Trim. Ocean Eng. 2018, 166, 396–403. [Google Scholar] [CrossRef]
- Lee, D.; Park, J.-H.; Kim, H. A Study on Experiment of Human Behavior for Evacuation Simulation. Ocean Eng. 2004, 31, 931–941. [Google Scholar] [CrossRef]
- Barrass, B. Ship Stability: Notes and Examples, 3rd ed.; Elsevier: Amsterdam, The Netherlands, 2000. [Google Scholar]
- Choi, J.; Knarr, B.A.; Youn, J.-H. The Effects of Ship’s Roll Motion on the Center of Mass and Margin of Stability During Walking: A Simulation Study. IEEE Access 2022, 10, 102432–102439. [Google Scholar] [CrossRef]
- Jansen, K.; De Groote, F.; Duysens, J.; Jonkers, I. How Gravity and Muscle Action Control Mediolateral Center of Mass Excursion during Slow Walking: A Simulation Study. Gait Posture 2014, 39, 91–97. [Google Scholar] [CrossRef] [PubMed]
- Kuo, A.D. Stabilization of Lateral Motion in Passive Dynamic Walking. Int. J. Rob. Res. 1999, 18, 917–930. [Google Scholar] [CrossRef]
- O’Connor, S.M.; Kuo, A.D. Direction-Dependent Control of Balance during Walking and Standing. J. Neurophysiol. 2009, 102, 1411–1419. [Google Scholar] [CrossRef]
- Bauby, C.E.; Kuo, A.D. Active Control of Lateral Balance in Human Walking. J. Biomech. 2000, 33, 1433–1440. [Google Scholar] [CrossRef]
- Dean, J.C.; Alexander, N.B.; Kuo, A.D. The Effect of Lateral Stabilization on Walking in Young and Old Adults. IEEE Trans. Biomed. Eng. 2007, 54, 1919–1926. [Google Scholar] [CrossRef]
- Sinitksi, E.H.; Terry, K.; Wilken, J.M.; Dingwell, J.B. Effects of Perturbation Magnitude on Dynamic Stability When Walking in Destabilizing Environments. J. Biomech. 2012, 45, 2084–2091. [Google Scholar] [CrossRef]
- Hof, A.L.; Gazendam, M.G.J.; Sinke, W.E. The Condition for Dynamic Stability. J. Biomech. 2005, 38, 1–8. [Google Scholar] [CrossRef]
- Hak, L.; Houdijk, H.; Steenbrink, F.; Mert, A.; van der Wurff, P.; Beek, P.J.; van Dieën, J.H. Stepping Strategies for Regulating Gait Adaptability and Stability. J. Biomech. 2013, 46, 905–911. [Google Scholar] [CrossRef]
- Hak, L.; Houdijk, H.; Steenbrink, F.; Mert, A.; van der Wurff, P.; Beek, P.J.; van Dieën, J.H. Speeding up or Slowing down?: Gait Adaptations to Preserve Gait Stability in Response to Balance Perturbations. Gait Posture 2012, 36, 260–264. [Google Scholar] [CrossRef] [PubMed]
- Choi, J.; Youn, J.-H.; Haas, C. Machine Learning Approach for Foot-Side Classification Using a Single Wearable Sensor. In Proceedings of the 40th International Conference on Information Systems, ICIS 2019, Munich, Germany, 15–18 December 2019; Association for Information Systems: Munich, Germany, 2019. [Google Scholar]
- Choi, J.; Parker, S.M.; Knarr, B.A.; Gwon, Y.; Youn, J.H. Wearable Sensor-Based Prediction Model of Timed up and Go Test in Older Adults. Sensors 2021, 21, 6831. [Google Scholar] [CrossRef] [PubMed]
- Choi, J.; Knarr, B.A.; Gwon, Y.; Youn, J.-H. Prediction of Stability during Walking at Simulated Ship’s Rolling Motion Using Accelerometers. Sensors 2022, 22, 5416. [Google Scholar] [CrossRef] [PubMed]
- Hartmann, Y.; Liu, H.; Lahrberg, S.; Schultz, T. Interpretable High-Level Features for Human Activity Recognition. In Proceedings of the 15th International Joint Conference on Biomedical Engineering Systems and Technologies—BIOSIGNALS, Online, 9–11 February 2022; INSTICC. SciTePress: Setubal, Portugal, 2022; pp. 40–49. [Google Scholar]
- Hartmann, Y.; Liu, H.; Schultz, T. Interactive and Interpretable Online Human Activity Recognition. In Proceedings of the 2022 IEEE International Conference on Pervasive Computing and Communications Workshops and other Affiliated Events (PerCom Workshops), Pisa, Italy, 21–25 March 2022; IEEE: Piscataway, NJ, USA, 2022; pp. 109–111. [Google Scholar]
- Hartmann, Y.; Liu, H.; Schultz, T. High-Level Features for Human Activity Recognition and Modeling. In International Joint Conference on Biomedical Engineering Systems and Technologies; Springer Nature: Cham, Switzerland, 2023; pp. 141–163. [Google Scholar]
- Tibshiranit, R. Regression Shrinkage and Selection via the Lasso. J. R. Stat. Soc. Ser. B (Methodol.) 1996, 58, 267–288. [Google Scholar] [CrossRef]
- Chawla, N.V.; Bowyer, K.W.; Hall, L.O.; Kegelmeyer, W.P. SMOTE: Synthetic Minority Over-Sampling Technique. J. Artif. Intell. Res. 2002, 16, 321–357. [Google Scholar] [CrossRef]
- Wright, R.E. Logistic Regression. In Reading and Understanding Multivariate Statistics; American Psychological Association: Washington, DC, USA, 1995; pp. 217–244. [Google Scholar]
- Rokach, L.; Maimon, O. Decision Trees. In Data Mining and Knowledge Discovery Handbook; Springer: New York, NY, USA, 2005; pp. 165–192. [Google Scholar]
- Cover, T.; Hart, P. Nearest Neighbor Pattern Classification. IEEE Trans. Inf. Theory 1967, 13, 21–27. [Google Scholar] [CrossRef]
- Ho, T.K. Random Decision Forests. In Proceedings of the 3rd International Conference on Document Analysis and Recognition, Montreal, QC, Canada, 14–16 August 1995; IEEE: Piscataway, NJ, USA, 1995; pp. 278–282. [Google Scholar]
- Chen, T.; Guestrin, C. XGBoost: A Scalable Tree Boosting System. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; ACM: New York, NY, USA, 2016; pp. 785–794. [Google Scholar]
- Cortes, C.; Vapnik, V. Support-Vector Networks. Mach. Learn. 1995, 20, 273–297. [Google Scholar] [CrossRef]
- Kuhn, M. Caret: Classification and Regression Training [R Package Caret Version 6.0-93]. Available online: https://CRAN.R-project.org/package=caret (accessed on 22 November 2022).
- Nusinovici, S.; Tham, Y.C.; Chak Yan, M.Y.; Wei Ting, D.S.; Li, J.; Sabanayagam, C.; Wong, T.Y.; Cheng, C.-Y. Logistic Regression Was as Good as Machine Learning for Predicting Major Chronic Diseases. J. Clin. Epidemiol. 2020, 122, 56–69. [Google Scholar] [CrossRef]
- Hastie, T.; Friedman, J.; Tibshirani, R. The Elements of Statistical Learning; Springer Series in Statistics; Springer: New York, NY, USA, 2001; ISBN 978-1-4899-0519-2. [Google Scholar]
- Gareth, J.; Daniela, W.; Trevor, H.; Robert, T. An Introduction to Statistical Learning: With Applications in R; Springer: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Cunningham, P.; Delany, S.J. K-Nearest Neighbour Classifiers—A Tutorial. ACM Comput. Surv. 2022, 54, 1–25. [Google Scholar] [CrossRef]
- Piryonesi, S.M.; El-Diraby, T.E. Using Machine Learning to Examine Impact of Type of Performance Indicator on Flexible Pavement Deterioration Modeling. J. Infrastruct. Syst. 2021, 27, 04021005. [Google Scholar] [CrossRef]
- Piryonesi, S.M.; El-Diraby, T.E. Role of Data Analytics in Infrastructure Asset Management: Overcoming Data Size and Quality Problems. J. Transp. Eng. Part B Pavements 2020, 146, 04020022. [Google Scholar] [CrossRef]
- Qu, Y.; Lin, Z.; Li, H.; Zhang, X. Feature Recognition of Urban Road Traffic Accidents Based on GA-XGBoost in the Context of Big Data. IEEE Access 2019, 7, 170106–170115. [Google Scholar] [CrossRef]
- Ben-Hur, A.; Horn, D.; Siegelmann, H.T.; Vapnik, V. Support Vector Clustering. J. Mach. Learn. Res. 2001, 2, 125–137. [Google Scholar] [CrossRef]
- Boser, B.E.; Guyon, I.M.; Vapnik, V.N. A Training Algorithm for Optimal Margin Classifiers. In Proceedings of the Fifth Annual Workshop on Computational Learning Theory—COLT ’92, Pittsburgh, PA, USA, 27–29 July 1992; ACM Press: New York, NY, USA, 1992; pp. 144–152. [Google Scholar]
- Schratz, P.; Muenchow, J.; Iturritxa, E.; Richter, J.; Brenning, A. Hyperparameter Tuning and Performance Assessment of Statistical and Machine-Learning Algorithms Using Spatial Data. Ecol. Modell. 2019, 406, 109–120. [Google Scholar] [CrossRef]
- Elgeldawi, E.; Sayed, A.; Galal, A.R.; Zaki, A.M. Hyperparameter Tuning for Machine Learning Algorithms Used for Arabic Sentiment Analysis. Informatics 2021, 8, 79. [Google Scholar] [CrossRef]
- Jeni, L.A.; Cohn, J.F.; De La Torre, F. Facing Imbalanced Data-Recommendations for the Use of Performance Metrics. In Proceedings of the 2013 Humaine Association Conference on Affective Computing and Intelligent Interaction, Geneva, Switzerland, 2–5 September 2013; IEEE: Piscataway, NJ, USA, 2013; pp. 245–251. [Google Scholar]
- Hastie, T.; Qian, J.; Tay, K. An Introduction to Glmnet. Available online: https://glmnet.stanford.edu/articles/glmnet.html (accessed on 10 March 2022).
- Tesio, L.; Rota, V. The Motion of Body Center of Mass during Walking: A Review Oriented to Clinical Applications. Front. Neurol. 2019, 10, 999. [Google Scholar] [CrossRef] [PubMed]
- Meyer, G.; Ayalon, M. Biomechanical Aspects of Dynamic Stability. Eur. Rev. Aging Phys. Act. 2006, 3, 29–33. [Google Scholar] [CrossRef]
Characteristics | Mean ± Standard Deviation |
---|---|
Gender (male/female) | 20/10 |
Age (years) | 30.3 ± 6.1 |
Height (cm) | 173.0 ± 9.4 |
Weight (kg) | 71.9 ± 14.5 |
Body Mass Index (BMI) (kg/m2) | 23.8 ± 3.4 |
Label of Fall Risk | Training Set | Test Set | Total |
---|---|---|---|
Low | 105 | 45 | 150 |
High | 84 | 36 | 120 |
Variable | Group | N | Mean | SD | t | p-Value |
---|---|---|---|---|---|---|
ML-COME | Low | 150 | −0.5378 | 0.7503 | −12.354 | 0.000 *** |
High | 120 | 0.6722 | 0.8576 | |||
AP-COME | Low | 150 | −0.1892 | 0.8710 | −3.461 | 0.001 *** |
High | 120 | 0.2365 | 1.0996 | |||
ML-vMOS | Low | 150 | −0.6667 | 0.6248 | −18.381 | 0.000 *** |
High | 120 | 0.8334 | 0.7149 | |||
AP-vMOS | Low | 150 | −0.4087 | 0.8463 | −8.430 | 0.000 *** |
High | 120 | 0.5109 | 0.9434 |
Feature | Description |
---|---|
M | Vector magnitude of the entire step |
M10 | Vector magnitude at initial 10% of the step |
LM | Lateral directional vector magnitude of the entire step |
VM | Vertical directional vector magnitude of the entire step |
AM | Anterior–posterior directional vector magnitude of the entire step |
MD | Vector magnitude at double limb support |
LMD | Lateral directional vector magnitude at double limb support |
VMD | Vertical directional vector magnitude at double limb support |
AMD | Anterior–posterior directional vector magnitude at double limb support |
M30 | Vector magnitude at single limb support |
LM30 | Lateral directional vector magnitude at single limb support |
VM30 | Vertical directional vector magnitude at single limb support |
AM30 | Anterior–posterior directional vector magnitude at single limb support |
LHM | Maximum value of lateral accelerations at heel-strike |
LHS | SD * of lateral accelerations at the initial 10% of the step |
VHM | Maximum value of vertical accelerations at heel-strike |
VHS | SD * of vertical accelerations at the initial 10% of the step |
AHM | Maximum value of anterior–posterior accelerations at heel-strike |
AHS | SD * of anterior–posterior accelerations at the initial 10% of the step |
ST | Time from heel-strike to heel-strike |
Model | Parameter | Description |
---|---|---|
DT | cp | Complexity parameter |
KNN | k | Number of neighbors |
RF | mtry | Number of randomly selected predictors |
XGB | nround | Number of boosting iterations |
max_depth | Max tree depth | |
eta | Shrinkage | |
SVM-L | C | Cost |
SVM-RBF | C | Cost |
sigma | Sigma | |
SVM-Poly | C | Cost |
scale | Scale | |
degree | Polynomial degree |
Rank | Feature | Frequency | Rank | Feature | Frequency |
---|---|---|---|---|---|
1 | aLHM | 100 | 6 | aAMD | 92 |
1 | sLHS | 100 | 7 | vAHS | 91 |
1 | sAHS | 100 | 8 | aLM30 | 86 |
4 | sAMD | 98 | 9 | vAM30 | 81 |
5 | aAHS | 94 | 10 | aVM30 | 74 |
DT | KNN | RF | XGB | SVM-L | SVM-RBF | SVM-Poly |
---|---|---|---|---|---|---|
cp = 0.0001 | k = 5 | mtry = 2 | nround = 90, max_depth = 3, eta = 0.1 | C = 0.1 | C = 1, sigma = 0.1 | C = 0.561, scale = 0.135, degree = 2 |
Model | Accuracy | Sensitivity | Specificity | AUC |
---|---|---|---|---|
LR | 0.8272 | 0.8667 | 0.7778 | 0.9204 |
DT | 0.7778 | 0.7778 | 0.7778 | 0.7673 |
KNN | 0.8148 | 0.8222 | 0.8056 | 0.8444 |
RF | 0.8148 | 0.8000 | 0.8333 | 0.9015 |
XGB | 0.8519 | 0.8444 | 0.8611 | 0.9173 |
SVM-L | 0.7901 | 0.7556 | 0.8333 | 0.9093 |
SVM-RBF | 0.8272 | 0.7778 | 0.8889 | 0.9068 |
SVM-Poly | 0.8519 | 0.8444 | 0.8611 | 0.9198 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Choi, J.; Knarr, B.A.; Youn, J.-H.; Song, K.Y. Machine Learning-Based Approach to Identifying Fall Risk in Seafarers Using Wearable Sensors. J. Mar. Sci. Eng. 2024, 12, 356. https://doi.org/10.3390/jmse12020356
Choi J, Knarr BA, Youn J-H, Song KY. Machine Learning-Based Approach to Identifying Fall Risk in Seafarers Using Wearable Sensors. Journal of Marine Science and Engineering. 2024; 12(2):356. https://doi.org/10.3390/jmse12020356
Chicago/Turabian StyleChoi, Jungyeon, Brian A. Knarr, Jong-Hoon Youn, and Kwang Yoon Song. 2024. "Machine Learning-Based Approach to Identifying Fall Risk in Seafarers Using Wearable Sensors" Journal of Marine Science and Engineering 12, no. 2: 356. https://doi.org/10.3390/jmse12020356
APA StyleChoi, J., Knarr, B. A., Youn, J. -H., & Song, K. Y. (2024). Machine Learning-Based Approach to Identifying Fall Risk in Seafarers Using Wearable Sensors. Journal of Marine Science and Engineering, 12(2), 356. https://doi.org/10.3390/jmse12020356