Structural Features and Phylogenetic Implications of Crinoid Echinoderms Based on Thirteen Novel Mitochondrial Genomes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection and Mitogenome Sequencing
2.2. Mitogenome Assembly and Annotation
2.3. Comparative Mitogenome Analyses
2.4. Phylogenetic Analysis
2.5. Selection Pressure Analysis
3. Results
3.1. Mitogenome Structure and Organization
3.2. Protein-Coding Genes
3.3. Phylogenetic Analyses
3.4. Relaxed Selective Constraint and Positive Selection on the Mitochondrial Genes
4. Discussion
4.1. Mitochondrial Genome Structural Characteristics
4.2. Phylogenetic Relationships
4.3. Positive Selection Site
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ausich, W.I.; Brett, C.E.; Hess, H.; Simms, M.J. Crinoid form and function. In Fossil Crinoids; Cambridge University Press: Cambridge, UK, 1999; Volume 1, pp. 3–30. [Google Scholar]
- Wada, H.; Satoh, N. Phylogenetic relationships among extant classes of echinoderms, as inferred from sequences of 18S rDNA, coincide with relationships deduced from the fossil record. J. Mol. Evol. 1994, 38, 41–43. [Google Scholar] [CrossRef] [PubMed]
- Roux, M.; Messing, C.G.; Améziane, N. Artificial keys to the genera of living stalked crinoids (Echinodermata). Bull. Mar. Sci. 2002, 70, 799–830. [Google Scholar]
- Messing, C.G. Living comatulids. Paleontol. Soc. Pap. 1997, 3, 3–30. [Google Scholar] [CrossRef]
- Summers, M.M.; Messing, C.G.; Rouse, G.W. The genera and species of Comatulidae (Comatulida: Crinoidea): Taxonomic revisions and a molecular and morphological guide. Zootaxa 2017, 4268, 151–190. [Google Scholar] [CrossRef] [PubMed]
- Rozhnov, S. The onset of the Ordovician evolutionary radiation of benthic animals in the Baltic Region: Explosive diversity of attachment structures of stalked echinoderms, substrate revolution and the role of cyanobacterial communities. Palaeoworld 2019, 28, 110–122. [Google Scholar] [CrossRef]
- Clark, A.H. A monograph of the existing crinoids; US Government Printing Office: Washington, DC, USA, 1967. [Google Scholar]
- Clark, A. Monograph of existing crinoids, part 2: Parasites and commensals. United States Natl. Mus. Bull. 1921, 82, 616–660. [Google Scholar]
- Cohen, B.L.; Améziane, N.; Eleaume, M.; de Forges, B.R. Crinoid phylogeny: A preliminary analysis (Echinodermata: Crinoidea). Mar. Biol. 2004, 144, 605–617. [Google Scholar] [CrossRef]
- Hemery, L.G.; Roux, M.; Ameziane, N.; Eleaume, M. High-resolution crinoid phyletic inter-relationships derived from molecular data. Cah. De Biol. Mar. 2013, 54, 511–523. [Google Scholar]
- Rouse, G.W.; Jermiin, L.S.; Wilson, N.G.; Eeckhaut, I.; Lanterbecq, D.; Oji, T.; Young, C.M.; Browning, T.; Cisternas, P.; Helgen, L.E. Fixed, free, and fixed: The fickle phylogeny of extant Crinoidea (Echinodermata) and their Permian–Triassic origin. Mol. Phylogenetics Evol. 2013, 66, 161–181. [Google Scholar] [CrossRef]
- Nakano, H.; Nakajima, Y.; Amemiya, S. Nervous system development of two crinoid species, the sea lily Metacrinus rotundus and the feather star Oxycomanthus japonicus. Dev. Genes Evol. 2009, 219, 565–576. [Google Scholar] [CrossRef]
- Mercurio, S.; Gattoni, G.; Messinetti, S.; Sugni, M.; Pennati, R. Nervous system characterization during the development of a basal echinoderm, the feather star Antedon mediterranea. J. Comp. Neurol. 2019, 527, 1127–1139. [Google Scholar] [CrossRef] [PubMed]
- Omori, A.; Shibata, T.F.; Akasaka, K. Gene expression analysis of three homeobox genes throughout early and late development of a feather star Anneissia japonica. Dev. Genes Evol. 2020, 230, 305–314. [Google Scholar] [CrossRef]
- Summers, M.M.; Messing, C.G.; Rouse, G.W. Phylogeny of Comatulidae (Echinodermata: Crinoidea: Comatulida): A new classification and an assessment of morphological characters for crinoid taxonomy. Mol. Phylogenetics Evol. 2014, 80, 319–339. [Google Scholar] [CrossRef]
- Wright, D.F.; Ausich, W.I.; Cole, S.R.; Peter, M.E.; Rhenberg, E.C. Phylogenetic taxonomy and classification of the Crinoidea (Echinodermata). J. Paleontol. 2017, 91, 829–846. [Google Scholar] [CrossRef]
- Huang, D. Phylogeny and morphology of Himerometroidea (Echinodermata: Crinoidea) feather stars in Singapore. Raffles Bull. Zool. 2023, 71, 92–105. [Google Scholar]
- Curole, J.P.; Kocher, T.D. Mitogenomics: Digging deeper with complete mitochondrial genomes. Trends Ecol. Evol. 1999, 14, 394–398. [Google Scholar] [CrossRef]
- Priyono, D.S.; Solihin, D.D.; Farajallah, A.; Purwantara, B. The first complete mitochondrial genome sequence of the endangered mountain anoa (Bubalus quarlesi) (Artiodactyla: Bovidae) and phylogenetic analysis. J. Asia-Pac. Biodivers. 2020, 13, 123–133. [Google Scholar] [CrossRef]
- Scouras, A.; Smith, M.J. The complete mitochondrial genomes of the sea lily Gymnocrinus richeri and the feather star Phanogenia gracilis: Signature nucleotide bias and unique nad4L gene rearrangement within crinoids. Mol. Phylogenetics Evol. 2006, 39, 323–334. [Google Scholar] [CrossRef] [PubMed]
- Scouras, A.; Smith, M.J. A novel mitochondrial gene order in the crinoid echinoderm Florometra serratissima. Mol. Biol. Evol. 2001, 18, 61–73. [Google Scholar] [CrossRef] [PubMed]
- Ma, S.; Zhang, H.; Wang, X.; Yin, J.; Shen, P.; Lin, Q. Characterization and phylogenetic analysis of the complete mitochondrial genome of Stephnometra indica (Pelmatozoa: Crinoidea). Mitochondrial DNA Part B 2019, 4, 2283–2284. [Google Scholar] [CrossRef]
- Lin, Q.; Zhang, R.; Wang, C. The mitochondrial genome of a 9-arm feather star Thaumatocrinus naresi (Crinoidea, Pentametrocrinidae). Mitochondrial DNA Part B 2023, 8, 368–370. [Google Scholar] [CrossRef]
- Bolger, A.M.; Lohse, M.; Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 2014, 30, 2114–2120. [Google Scholar] [CrossRef]
- Meng, G.; Li, Y.; Yang, C.; Liu, S. MitoZ: A toolkit for animal mitochondrial genome assembly, annotation and visualization. Nucleic Acids Res. 2019, 47, e63. [Google Scholar] [CrossRef] [PubMed]
- Bernt, M.; Donath, A.; Jühling, F.; Externbrink, F.; Florentz, C.; Fritzsch, G.; Pütz, J.; Middendorf, M.; Stadler, P.F. Mitos: Improved de novo metazoan mitochondrial genome annotation. Mol. Phylogenetics Evol. 2013, 69, 313–319. [Google Scholar] [CrossRef] [PubMed]
- Johnson, M.; Zaretskaya, I.; Raytselis, Y.; Merezhuk, Y.; McGinnis, S.; Madden, T.L. NCBI BLAST: A better web interface. Nucleic Acids Res. 2008, 36, W5–W9. [Google Scholar] [CrossRef]
- Kumar, S.; Stecher, G.; Li, M.; Knyaz, C.; Tamura, K. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 2018, 35, 1547. [Google Scholar] [CrossRef]
- Kwon, H.; Park, H.S.; Rhee, J.-S. Complete mitochondrial genome of the crinoid Poliometra prolixa (Crinoidea: Comatulida: Antedonidae). Mitochondrial DNA Part B 2023, 8, 927–931. [Google Scholar] [CrossRef] [PubMed]
- Chang, J.J.M.; Ip, Y.C.A.; Huang, D. Complete mitochondrial genome of the feather star Cenometra bella (Hartlaub, 1890)(Crinoidea: Colobometridae). Mitochondrial DNA Part B 2022, 7, 950–952. [Google Scholar] [CrossRef]
- Kim, P.; Lee, T.; Shin, S. The complete mitochondrial genome of Anneissia intermedia (Crinoidea: Comatulida: Comatulidae). Mitochondrial DNA Part B 2021, 6, 1777–1778. [Google Scholar] [CrossRef]
- Kim, P.; Shin, S. The complete mitochondrial genome of Anneissia pinguis (Crinoidea, Articulata, Comatulidae), from South Korea. Mitochondrial DNA Part B 2021, 6, 2337–2338. [Google Scholar] [CrossRef]
- Nam, S.-E.; Park, H.S.; Rhee, J.-S. Characterization and phylogenetic analysis of the complete mitochondrial genome of Florometra species (Echinodermata, Crinoidea). Mitochondrial DNA Part B 2020, 5, 2010–2011. [Google Scholar] [CrossRef]
- Perseke, M.; Bernhard, D.; Fritzsch, G.; Brümmer, F.; Stadler, P.F.; Schlegel, M. Mitochondrial genome evolution in Ophiuroidea, Echinoidea, and Holothuroidea: Insights in phylogenetic relationships of Echinodermata. Mol. Phylogenetics Evol. 2010, 56, 201–211. [Google Scholar] [CrossRef] [PubMed]
- Nam, S.-E.; Kim, S.A.; Park, T.-Y.S.; Rhee, J.-S. The first complete mitochondrial genome from the family Solasteridae, Crossaster papposus (Echinodermata, Asteroidea). Mitochondrial DNA Part B 2021, 6, 45–47. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Gao, F.; Jakovlić, I.; Zou, H.; Zhang, J.; Li, W.X.; Wang, G.T. PhyloSuite: An integrated and scalable desktop platform for streamlined molecular sequence data management and evolutionary phylogenetics studies. Mol. Ecol. Resour. 2020, 20, 348–355. [Google Scholar] [CrossRef] [PubMed]
- Duret, L. Evolution of synonymous codon usage in metazoans. Curr. Opin. Genet. Dev. 2002, 12, 640–649. [Google Scholar] [CrossRef] [PubMed]
- Parvathy, S.T.; Udayasuriyan, V.; Bhadana, V. Codon usage bias. Mol. Biol. Rep. 2022, 49, 539–565. [Google Scholar] [CrossRef] [PubMed]
- Perna, N.T.; Kocher, T.D. Patterns of nucleotide composition at fourfold degenerate sites of animal mitochondrial genomes. J. Mol. Evol. 1995, 41, 353–358. [Google Scholar] [CrossRef] [PubMed]
- Bernt, M.; Merkle, D.; Ramsch, K.; Fritzsch, G.; Perseke, M.; Bernhard, D.; Schlegel, M.; Stadler, P.F.; Middendorf, M. CREx: Inferring genomic rearrangements based on common intervals. Bioinformatics 2007, 23, 2957–2958. [Google Scholar] [CrossRef]
- Katoh, K.; Standley, D.M. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol. Biol. Evol. 2013, 30, 772–780. [Google Scholar] [CrossRef]
- Ranwez, V.; Douzery, E.J.; Cambon, C.; Chantret, N.; Delsuc, F. MACSE v2: Toolkit for the alignment of coding sequences accounting for frameshifts and stop codons. Mol. Biol. Evol. 2018, 35, 2582–2584. [Google Scholar] [CrossRef]
- Castresana, J. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol. Biol. Evol. 2000, 17, 540–552. [Google Scholar] [CrossRef]
- Talavera, G.; Castresana, J. Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. Syst. Biol. 2007, 56, 564–577. [Google Scholar] [CrossRef]
- Kalyaanamoorthy, S.; Minh, B.Q.; Wong, T.K.; Von Haeseler, A.; Jermiin, L.S. ModelFinder: Fast model selection for accurate phylogenetic estimates. Nat. Methods 2017, 14, 587–589. [Google Scholar] [CrossRef] [PubMed]
- Ronquist, F.; Teslenko, M.; Van Der Mark, P.; Ayres, D.L.; Darling, A.; Höhna, S.; Larget, B.; Liu, L.; Suchard, M.A.; Huelsenbeck, J.P. MrBayes 3.2: Efficient Bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 2012, 61, 539–542. [Google Scholar] [CrossRef] [PubMed]
- Minh, B.Q.; Schmidt, H.A.; Chernomor, O.; Schrempf, D.; Woodhams, M.D.; Von Haeseler, A.; Lanfear, R. IQ-TREE 2: New models and efficient methods for phylogenetic inference in the genomic era. Mol. Biol. Evol. 2020, 37, 1530–1534. [Google Scholar] [CrossRef] [PubMed]
- Letunic, I.; Bork, P. Interactive Tree Of Life (iTOL) v5: An online tool for phylogenetic tree display and annotation. Nucleic Acids Res. 2021, 49, W293–W296. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z. PAML 4: Phylogenetic analysis by maximum likelihood. Mol. Biol. Evol. 2007, 24, 1586–1591. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Bielawski, J.P. Statistical methods for detecting molecular adaptation. Trends Ecol. Evol. 2000, 15, 496–503. [Google Scholar] [CrossRef] [PubMed]
- Aylward, F. Introduction to Calculating dN/dS Ratios with Codeml V. 2; Virginia Tech: Blacksburg, VI, USA, 2018. [Google Scholar]
- Yang, Z.; Wong, W.S.; Nielsen, R. Bayes empirical Bayes inference of amino acid sites under positive selection. Mol. Biol. Evol. 2005, 22, 1107–1118. [Google Scholar] [CrossRef]
- Waterhouse, A.; Bertoni, M.; Bienert, S.; Studer, G.; Tauriello, G.; Gumienny, R.; Heer, F.T.; de Beer, T.A.P.; Rempfer, C.; Bordoli, L. SWISS-MODEL: Homology modelling of protein structures and complexes. Nucleic Acids Res. 2018, 46, W296–W303. [Google Scholar] [CrossRef]
- Kopp, J.; Schwede, T. The SWISS-MODEL Repository of annotated three-dimensional protein structure homology models. Nucleic Acids Res. 2004, 32, D230–D234. [Google Scholar] [CrossRef]
- Bienert, S.; Waterhouse, A.; De Beer, T.A.; Tauriello, G.; Studer, G.; Bordoli, L.; Schwede, T. The SWISS-MODEL Repository—New features and functionality. Nucleic Acids Res. 2017, 45, D313–D319. [Google Scholar] [CrossRef] [PubMed]
- Moberly, J.G.; Bernards, M.T.; Waynant, K.V. Key features and updates for origin 2018. J. Cheminformatics 2018, 10, 1–2. [Google Scholar] [CrossRef] [PubMed]
- Ballard, J.W.O.; Pichaud, N. Mitochondrial DNA: More than an evolutionary bystander. Funct. Ecol. 2014, 28, 218–231. [Google Scholar] [CrossRef]
- Frank, A.; Lobry, J. Asymmetric substitution patterns: A review of possible underlying mutational or selective mechanisms. Gene 1999, 238, 65–77. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, M.; Ozawa, T. Strand asymmetry in human mitochondrial DNA mutations. Genomics 1994, 22, 327–335. [Google Scholar] [CrossRef]
- Donath, A.; Jühling, F.; Al-Arab, M.; Bernhart, S.H.; Reinhardt, F.; Stadler, P.F.; Middendorf, M.; Bernt, M. Improved annotation of protein-coding genes boundaries in metazoan mitochondrial genomes. Nucleic Acids Res. 2019, 47, 10543–10552. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.-J.; Li, Q.; Kong, L.-F. Comparative mitochondrial genomics within sea cucumber (Apostichopus japonicus): Provide new insights into relationships among color variants. Aquaculture 2010, 309, 280–285. [Google Scholar] [CrossRef]
- Perseke, M.; Fritzsch, G.; Ramsch, K.; Bernt, M.; Merkle, D.; Middendorf, M.; Bernhard, D.; Stadler, P.F.; Schlegel, M. Evolution of mitochondrial gene orders in echinoderms. Mol. Phylogenetics Evol. 2008, 47, 855–864. [Google Scholar] [CrossRef]
- Jung, G.; Choi, H.-J.; Pae, S.; Lee, Y.-H. Complete mitochondrial genome of sea urchin: Mesocentrotus nudus (Strongylocentrotidae, Echinoida). Mitochondrial DNA 2013, 24, 466–468. [Google Scholar] [CrossRef]
- Dilly, G.; Gaitán-Espitia, J.; Hofmann, G. Characterization of the A ntarctic sea urchin (S terechinus neumayeri) transcriptome and mitogenome: A molecular resource for phylogenetics, ecophysiology and global change biology. Mol. Ecol. Resour. 2015, 15, 425–436. [Google Scholar] [CrossRef]
- Sharp, P.M.; Emery, L.R.; Zeng, K. Forces that influence the evolution of codon bias. Philos. Trans. R. Soc. B Biol. Sci. 2010, 365, 1203–1212. [Google Scholar] [CrossRef]
- Plotkin, J.B.; Kudla, G. Synonymous but not the same: The causes and consequences of codon bias. Nat. Rev. Genet. 2011, 12, 32–42. [Google Scholar] [CrossRef]
- Reyes, A.; Gissi, C.; Pesole, G.; Saccone, C. Asymmetrical directional mutation pressure in the mitochondrial genome of mammals. Mol. Biol. Evol. 1998, 15, 957–966. [Google Scholar] [CrossRef]
- Komar, A.A. The Yin and Yang of codon usage. Hum. Mol. Genet. 2016, 25, R77–R85. [Google Scholar] [CrossRef]
- Rodnina, M.V. The ribosome in action: Tuning of translational efficiency and protein folding. Protein Sci. 2016, 25, 1390–1406. [Google Scholar] [CrossRef]
- Dowton, M.; Campbell, N.J. Intramitochondrial recombination–is it why some mitochondrial genes sleep around? Trends Ecol. Evol. 2001, 16, 269–271. [Google Scholar] [CrossRef] [PubMed]
- Zhong, J.; Li, G.; Liu, Z.-Q.; Li, Q.-W.; Wang, Y.-Q. Gene rearrangement of mitochondrial genome in the vertebrate. Acta Genet. Sin. 2005, 32, 322–330. [Google Scholar] [PubMed]
- Scouras, A.; Beckenbach, K.; Arndt, A.; Smith, M.J. Complete mitochondrial genome DNA sequence for two ophiuroids and a holothuroid: The utility of protein gene sequence and gene maps in the analyses of deep deuterostome phylogeny. Mol. Phylogenetics Evol. 2004, 31, 50–65. [Google Scholar] [CrossRef] [PubMed]
- Lin, M.-F.; Kitahara, M.V.; Luo, H.; Tracey, D.; Geller, J.; Fukami, H.; Miller, D.J.; Chen, C.A. Mitochondrial genome rearrangements in the Scleractinia/Corallimorpharia complex: Implications for coral phylogeny. Genome Biol. Evol. 2014, 6, 1086–1095. [Google Scholar] [CrossRef]
- Quattrini, A.M.; Rodríguez, E.; Faircloth, B.C.; Cowman, P.F.; Brugler, M.R.; Farfan, G.A.; Hellberg, M.E.; Kitahara, M.V.; Morrison, C.L.; Paz-García, D.A. Palaeoclimate ocean conditions shaped the evolution of corals and their skeletons through deep time. Nat. Ecol. Evol. 2020, 4, 1531–1538. [Google Scholar] [CrossRef]
- Quek, Z.B.R.; Chang, J.J.M.; Ip, Y.C.A.; Chan, Y.K.S.; Huang, D. Mitogenomes reveal alternative initiation codons and lineage-specific gene order conservation in echinoderms. Mol. Biol. Evol. 2021, 38, 981–985. [Google Scholar] [CrossRef]
- Taylor, K.H.; Rouse, G.W.; Messing, C.G. Phylogeny and taxonomy of Himerometroidea (Echinodermata: Crinoidea). Zootaxa 2023, 5277, 149–164. [Google Scholar] [CrossRef] [PubMed]
- Padial, J.M.; Miralles, A.; De la Riva, I.; Vences, M. The integrative future of taxonomy. Front. Zool. 2010, 7, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Pante, E.; Schoelinck, C.; Puillandre, N. From integrative taxonomy to species description: One step beyond. Syst. Biol. 2015, 64, 152–160. [Google Scholar] [CrossRef] [PubMed]
- Rubinoff, D.; Cameron, S.; Will, K. A genomic perspective on the shortcomings of mitochondrial DNA for “barcoding” identification. J. Hered. 2006, 97, 581–594. [Google Scholar] [CrossRef] [PubMed]
- Nielsen, R. Molecular signatures of natural selection. Annu. Rev. Genet 2005, 39, 197–218. [Google Scholar] [CrossRef] [PubMed]
- Castellana, S.; Vicario, S.; Saccone, C. Evolutionary patterns of the mitochondrial genome in Metazoa: Exploring the role of mutation and selection in mitochondrial protein–coding genes. Genome Biol. Evol. 2011, 3, 1067–1079. [Google Scholar] [CrossRef]
- Bigham, A.W.; Mao, X.; Mei, R.; Brutsaert, T.; Wilson, M.J.; Julian, C.G.; Parra, E.J.; Akey, J.M.; Moore, L.G.; Shriver, M.D. Identifying positive selection candidate loci for high-altitude adaptation in Andean populations. Hum. Genom. 2009, 4, 1–12. [Google Scholar] [CrossRef]
- Yang, Z.; Nielsen, R.; Goldman, N.; Pedersen, A.-M.K. Codon-substitution models for heterogeneous selection pressure at amino acid sites. Genetics 2000, 155, 431–449. [Google Scholar] [CrossRef]
- Kimura, M. The Neutral Theory of Molecular Evolution; Cambridge University Press: Cambridge, UK, 1983. [Google Scholar]
- Gillespie, J.H. The Causes of Molecular Evolution; Oxford University Press: Oxford, UK, 1991. [Google Scholar]
- Ohta, T. The nearly neutral theory of molecular evolution. Annu. Rev. Ecol. Syst. 1992, 23, 263–286. [Google Scholar] [CrossRef]
- Oliveira, D.C.; Raychoudhury, R.; Lavrov, D.V.; Werren, J.H. Rapidly evolving mitochondrial genome and directional selection in mitochondrial genes in the parasitic wasp Nasonia (Hymenoptera: Pteromalidae). Mol. Biol. Evol. 2008, 25, 2167–2180. [Google Scholar] [CrossRef]
- Śmietanka, B.; Burzyński, A.; Wenne, R. Comparative genomics of marine mussels (Mytilus spp.) gender associated mtDNA: Rapidly evolving atp8. J. Mol. Evol. 2010, 71, 385–400. [Google Scholar] [CrossRef] [PubMed]
- Sibley, C. Phylogeny and Classification of the Birds: A Study in Molecular Evolution; Yale University Press: New Haven, CT, USA, 1991. [Google Scholar]
- Trumpower, B. The protonmotive Q cycle. Energy transduction by coupling of infarction: The BOOST randomised controlled clinical trial. Lancet 1990, 364, 9429. [Google Scholar]
- Wirth, C.; Brandt, U.; Hunte, C.; Zickermann, V. Structure and function of mitochondrial complex I. Biochim. Et Biophys. Acta (BBA)-Bioenerg. 2016, 1857, 902–914. [Google Scholar] [CrossRef] [PubMed]
- Mathiesen, C.; Hägerhäll, C. Transmembrane topology of the NuoL, M and N subunits of NADH: Quinone oxidoreductase and their homologues among membrane-bound hydrogenases and bona fide antiporters. Biochim. Et Biophys. Acta (BBA)-Bioenerg. 2002, 1556, 121–132. [Google Scholar] [CrossRef]
- Da Fonseca, R.R.; Johnson, W.E.; O’Brien, S.J.; Ramos, M.J.; Antunes, A. The adaptive evolution of the mammalian mitochondrial genome. BMC Genom. 2008, 9, 1–22. [Google Scholar] [CrossRef] [PubMed]
- Sanders, H.L.; Hessler, R.R. Ecology of the Deep-Sea Benthos: More detailed recent sampling has altered our concepts about the animals living on the deep-ocean floor. Science 1969, 163, 1419–1424. [Google Scholar] [CrossRef] [PubMed]
- Ramos, N.I.; DeLeo, D.M.; Horowitz, J.; McFadden, C.S.; Quattrini, A.M. Selection in coral mitogenomes, with insights into adaptations in the deep sea. Sci. Rep. 2023, 13, 6016. [Google Scholar] [CrossRef]
- Sha, Z.; Xiao, N. The first two complete mitogenomes of the order Apodida from deep-sea chemoautotrophic environments: New insights into the gene rearrangement, origin and evolution of the deep-sea sea cucumbers. Comp. Biochem. Physiol. Part D Genom. Proteom. 2021, 39, 100839. [Google Scholar]
- Zhang, K.; Sun, J.; Xu, T.; Qiu, J.-W.; Qian, P.-Y. Phylogenetic relationships and adaptation in deep-sea mussels: Insights from mitochondrial genomes. Int. J. Mol. Sci. 2021, 22, 1900. [Google Scholar] [CrossRef] [PubMed]
- Mu, W.; Liu, J.; Zhang, H. The first complete mitochondrial genome of the Mariana Trench Freyastera benthophila (Asteroidea: Brisingida: Brisingidae) allows insights into the deep-sea adaptive evolution of Brisingida. Ecol. Evol. 2018, 8, 10673–10686. [Google Scholar] [CrossRef] [PubMed]
Sampling Location | Collection Method | Species Name |
---|---|---|
Indian Ocean Ninety Degree Ridge | TV grab | Thaumatocrinus sp. |
Carlsberg Ridge Seamount | TV grab | Hyocrinidae sp. |
Wuzhizhou Island, Sanya, Hainan | Diving collection | Comanthus parvicirrus |
Wuzhizhou Island, Sanya, Hainan | Diving collection | Comanthus sp. |
Wuzhizhou Island, Sanya, Hainan | Diving collection | Comaster schlegelii |
Wuzhizhou Island, Sanya, Hainan | Diving collection | Comatella nigra |
East China Sea | Benthic trawl | Capillaster sp. |
East China Sea | Benthic trawl | Metacrinus rotundus |
East China Sea | Benthic trawl | Ptilometra sp. |
Weizhou Island, Beihai, Guangxi | Diving collection | Zygometra comata |
Hainan Xisha Ganquan Island | Diving collection | Anneissia bennetti |
The waters near Fuqing, Fujian | Benthic trawl | Tropiometra macrodiscus |
Hainan Xisha Yongxing Island | Diving collection | Comatella stelligera |
Order | Family | Species | Accession ID | Reference | |
---|---|---|---|---|---|
Ingroup | Comatulida | Comatulidae | Comaster schlegelii | MW526391 | this study |
Comatulida | Comatulidae | Comatella nigra | OM321037 | this study | |
Comatulida | Comatulidae | Comanthus parvicirrus | MW526392 | this study | |
Comatulida | Comatulidae | Comanthus sp. | OM272942 | this study | |
Comatulida | Charitometridae | Capillaster sp. | OP546034 | this study | |
Comatulida | Ptilometridae | Ptilometra sp. | OP546035 | this study | |
Comatulida | Zygometridae | Zygometra comata | ON585667 | this study | |
Comatulida | Comatulidae | Comatella stelligera | OM313186 | this study | |
Comatulida | Comatulidae | Anneissia bennetti | ON209196 | this study | |
Comatulida | Tropiometridae | Tropiometra macrodiscus | ON381167 | this study | |
Comatulida | Pentametrocrinidae | Thaumatocrinus sp. | OQ207656 | this study | |
Hyocrinida | Hyocrinidae | Hyocrinidae sp. | OQ721985 | this study | |
Isocrinida | Isselicrinidae | Metacrinus rotundus | OM964491 | this study | |
Cyrtocrinida | Sclerocrinidae | Neogymnocrinus richeri | DQ068951 | [20] | |
Comatulida | Antedonidae | Poliometra prolixa | OP177937 | [29] | |
Comatulida | Colobometridae | Cenometra bella | OK509084 | [30] | |
Comatulida | Comatulidae | Anneissia intermedia | MW376476 | [31] | |
Comatulida | Comatulidae | Anneissia pinguis | MW008594 | [32] | |
Comatulida | Antedonidae | Antedon mediterranea | NC_010692 | NCBI | |
Comatulida | Antedonidae | Florometra serratissima | AF049132 | [21] | |
Comatulida | Antedonidae | Florometra sp. | MT302206 | [33] | |
Comatulida | Pentametrocrinidae | Thaumatocrinus naresi | OP428702 | [23] | |
Comatulida | Colobometridae | Oligometra Serripinna | MW405444 | NCBI | |
Comatulida | Comatulidae | Phanogenia gracilis | DQ068952 | [20] | |
Comatulida | Mariametridae | Stephanometra indica | MF966246 | [22] | |
Outgroup | Amphilepidida | Amphiuridae | Amphipholis squamata | FN562578 | [34] |
Spatangoida | Loveniidae | Echinocardium cordatum | FN562581 | [34] | |
Valvatida | Solasteridae | Crossaster papposus | MW046047 | [35] |
Gene | Site |
---|---|
cytb | 1492 I 0.955 * |
nad2 | 2020 S 0.996 ** |
2044 R 0.954 * | |
2174 C 0.977 * | |
nad3 | 2344 S 0.995 ** |
nad4L | 2495 F 0.977 * |
nad4 | 2568 K 0.999 ** |
2691 S 0.987 * | |
nad5 | 3124 N 0.967 * |
3244 S 0.994 ** | |
3403 K 0.954 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, Q.; Lu, M.; Sun, Y.; Li, Z.; Li, Y.; Dong, Y.; Hu, X.; Zhang, Q.; Liu, B.; He, X. Structural Features and Phylogenetic Implications of Crinoid Echinoderms Based on Thirteen Novel Mitochondrial Genomes. J. Mar. Sci. Eng. 2024, 12, 361. https://doi.org/10.3390/jmse12030361
Xu Q, Lu M, Sun Y, Li Z, Li Y, Dong Y, Hu X, Zhang Q, Liu B, He X. Structural Features and Phylogenetic Implications of Crinoid Echinoderms Based on Thirteen Novel Mitochondrial Genomes. Journal of Marine Science and Engineering. 2024; 12(3):361. https://doi.org/10.3390/jmse12030361
Chicago/Turabian StyleXu, Qinzeng, Min Lu, Yuyao Sun, Zhong Li, Yixuan Li, Yue Dong, Xuying Hu, Qian Zhang, Bing Liu, and Xuebao He. 2024. "Structural Features and Phylogenetic Implications of Crinoid Echinoderms Based on Thirteen Novel Mitochondrial Genomes" Journal of Marine Science and Engineering 12, no. 3: 361. https://doi.org/10.3390/jmse12030361
APA StyleXu, Q., Lu, M., Sun, Y., Li, Z., Li, Y., Dong, Y., Hu, X., Zhang, Q., Liu, B., & He, X. (2024). Structural Features and Phylogenetic Implications of Crinoid Echinoderms Based on Thirteen Novel Mitochondrial Genomes. Journal of Marine Science and Engineering, 12(3), 361. https://doi.org/10.3390/jmse12030361