Wind-Powered Desalination on Islands: A Review of Energy–Water Pathways
Abstract
:1. Introduction
Aim, Novelty, and Key Contributions of This Paper
2. Methods
2.1. Search Procedure Followed
2.1.1. Journal Identification
2.1.2. Classification and Quantitative and Qualitative Analysis of the Articles Found
- (a)
- systems where the entire energy generated by wind turbines is directly injected into the electrical grid, with the desalination plant serving as an additional load on the conventional electrical system;
- (b)
- interconnected microgrids where wind turbines are connected in parallel to the conventional grid but primarily utilize their generated energy to directly power the desalination plant. Any surplus energy is fed into the conventional grid, while any shortfall is supplemented by the conventional grid.
- (a)
- standalone microgrids where the desalination plant is directly connected to the wind power generation system and an energy storage system is employed;
- (b)
- standalone microgrids where the desalination plant is directly connected to the wind power generation system and no energy storage system is employed;
- (c)
- standalone microgrids where the desalination plant is powered by a hybrid energy system.
3. Results and Discussion
3.1. Identification of Scientific Journals Selected for the Study
3.1.1. Article Identification
3.1.2. Classification of the Identified Works
3.2. Quantitative Analysis of the Results
3.3. Qualitative Analysis and Discussion of Results
- -
- The exploration of different energy storage systems to manage the intrinsic variability and intermittency of wind power [212].
- -
- The development of energy management strategies that propose the adaptation of the production (or part of it) of the desalination plant to the available wind power [213].
- -
- -
- -
- The approach of smart energy planning concepts to support the design of the entire energy–water system on the islands, taking into account the synergies between the different desalination and wind power sectors [26].
4. Conclusions
- -
- Scientific interest in studies dealing with wind-powered water desalination has been growing steadily since the first reviewed publication in 1979.
- -
- The pairing of wind power and reverse osmosis desalination systems has emerged as a noteworthy solution for mitigating emissions in the desalination industry and bolstering resilience in water supply systems on islands.
- -
- On-grid wind energy systems are the preferred choice for large-scale desalination. In these systems, the energy generated by wind turbines is fed into the grid, allowing desalination plants to operate under stable conditions similar to traditional methods. Properly designed wind farms can achieve a zero net energy exchange between the wind farms and desalination plants.
- -
- In smaller isolated grids with limited capacity, adding more wind farms can destabilize the system. To overcome this, there is a shift towards large wind-powered desalination systems connected to the main grid, offering advantages of stability for weaker grids. These systems enable direct harnessing of most wind energy by desalination plants while maintaining flexibility to interact with the main grid.
- -
- Despite the construction of medium-scale and standalone wind-powered desalination projects for research, many were deactivated after demonstrating technical viability. However, ongoing interest has prompted exploration of off-grid hybrid power systems to tackle energy and water challenges in remote regions.
- -
- Exploring various energy storage systems to manage the inherent variability and intermittency of wind power.
- -
- Developing energy management strategies suggesting the adaptation of desalination plant production to the available wind power.
- -
- Utilizing artificial intelligence to handle operating setpoints for desalination plants and optimize the design of integrated renewable desalination subsystems.
- -
- Implementing dynamic energy regulation systems based on flywheel or supercapacitor systems to handle the variability and intermittency of wind power.
- -
- Applying smart energy planning concepts to design entire energy–water systems on islands, considering synergies between different desalination and wind power sectors.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kang, J.N.; Wei, Y.M.; Liu, L.C.; Han, R.; Yu, B.Y.; Wang, J.W. Energy systems for climate change mitigation: A systematic review. Appl. Energy 2020, 263, 114602. [Google Scholar] [CrossRef]
- Triantafyllou, P.; Koroneos, C.; Kondili, E.; Kollas, P.; Zafirakis, D.; Ktenidis, P.; Kaldellis, J.K. Optimum green energy solution to address the remote islands’ water-energy nexus: The case study of Nisyros island. Heliyon 2021, 7, e07838. [Google Scholar] [CrossRef]
- Visser-Quinn, A.; Beevers, L.; Lau, T.; Gosling, R. Mapping future water scarcity in a water abundant nation: Near-term projections for Scotland. Clim. Risk Manag. 2021, 32, 100302. [Google Scholar] [CrossRef]
- Alameddine, I.; El-Fadel, M. Stack emissions from desalination plants: A parametric sensitivity analysis for exposure assessment. Desalination 2005, 177, 15–29. [Google Scholar] [CrossRef]
- Eke, J.; Yusuf, A.; Giwa, A.; Sodiq, A. The global status of desalination: An assessment of current desalination technologies, plants and capacity. Desalination 2020, 495, 114633. [Google Scholar] [CrossRef]
- Cabrera, P.; Carta, J.A.; Matos, C.; Rosales-Asensio, E.; Lund, H. Reduced desalination carbon footprint on islands with weak electricity grids. The case of Gran Canaria. Appl. Energy 2024, 358, 122564. [Google Scholar] [CrossRef]
- Urrea, S.A.; Reyes, F.D.; Suárez, B.P.; de la Fuente Bencomo, J.A. Technical review, evaluation and efficiency of energy recovery devices installed in the Canary Islands desalination plants. Desalination 2019, 450, 54–63. [Google Scholar] [CrossRef]
- Rachman, R.M.; Li, S.; Missimer, T.M. SWRO feed water quality improvement using subsurface intakes in Oman, Spain, Turks and Caicos Islands, and Saudi Arabia. Desalination 2014, 351, 88–100. [Google Scholar] [CrossRef]
- Carta, J.A.; Cabrera, P.; González, J. 2.20—Wind Power Integration. In Comprehensive Renewable Energy, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2022; Volumes 1–9, pp. 644–720. [Google Scholar] [CrossRef]
- Abdelkareem, M.A.; Al Radi, M.; Mahmoud, M.; Sayed, E.T.; Salameh, T.; Alqadi, R.; Kais, E.C.A.; Olabi, A.G. Recent progress in wind energy-powered desalination. Therm. Sci. Eng. Prog. 2024, 47, 102286. [Google Scholar] [CrossRef]
- Okura, S.S.; Ponte, M.C.A.; Palombella, F.O.; da Silva, L.S.; Dias, S.V.; Almeida, J.R.F.; Matos, F.F.S. Evaluation of direct coupling between conventional windmills and reverse osmosis desalination systems at low wind speeds. Energy Convers. Manag. 2023, 295, 117654. [Google Scholar] [CrossRef]
- Wang, Z.; Lin, X.; Tong, N.; Li, Z.; Sun, S.; Liu, C. Optimal planning of a 100% renewable energy island supply system based on the integration of a concentrating solar power plant and desalination units. Int. J. Electr. Power Energy Syst. 2020, 117, 105707. [Google Scholar] [CrossRef]
- Carta, J.A.; González, J.; Subiela, V. The SDAWES project: An ambitious R&D prototype for wind-powered desalination. Desalination 2004, 161, 33–48. [Google Scholar] [CrossRef]
- Gómez-Gotor, A.; Del Río-Gamero, B.; Prado, I.P.; Casañas, A. The history of desalination in the Canary Islands. Desalination 2018, 428, 86–107. [Google Scholar] [CrossRef]
- Khawaji, A.; Kutubkhanah, I.; Wie, J. Advances in seawater desalination technologies. Desalination 2008, 109, 195–209. [Google Scholar] [CrossRef]
- The Canary Islands Government. Annual Energy Report for the Canary Islands. 2018. Available online: https://www.gobiernodecanarias.org/energia/descargas/sita/Anuario2014.pdf (accessed on 10 April 2017).
- Calero, R.; Carta, J.A. Action plan for wind energy development in the Canary Islands. Energy Policy 2004, 32, 1185–1197. [Google Scholar] [CrossRef]
- Sadhwani, J.; Veza, J. Desalination and energy consumption in Canary Islands. Desalination 2008, 168, 39–47. [Google Scholar] [CrossRef]
- BOC—2015/029. Jueves 12 de Febrero de 2015—Anuncio 605. 2015. Available online: https://www.gobiernodecanarias.org/boc/2015/029/index.html (accessed on 6 March 2024).
- BOC—2003/084. Lunes 5 de Mayo de 2003—720. 2003. Available online: https://www.gobiernodecanarias.org/boc/2003/084/ (accessed on 6 March 2024).
- Jiménez, A.; Cabrera, P.; Medina, J.F.; Østergaard, P.A.; Lund, H. Smart energy system approach validated by electrical analysis for electric vehicle integration in islands. Energy Convers. Manag. 2024, 302, 118121. [Google Scholar] [CrossRef]
- Piernavieja, G.; Veza, J.M.; Padrón, J.M. Experience in desalination training and know-how in the Canary Islands. Desalination 2001, 141, 205–208. [Google Scholar] [CrossRef]
- Borge-Diez, D.; García-Moya, F.J.; Cabrera-Santana, P.; Rosales-Asensio, E. Feasibility analysis of wind and solar powered desalination plants: An application to islands. Sci. Total Environ. 2021, 764, 142878. [Google Scholar] [CrossRef]
- Mallek, M.; Elleuch, M.A.; Euchi, J.; Jerbi, Y. Optimum design of on-grid PV/wind hybrid system for desalination plant: A case study in Sfax, Tunisia. Desalination 2024, 576, 117358. [Google Scholar] [CrossRef]
- Carta, J.A.; Cabrera, P. Optimal sizing of stand-alone wind-powered seawater reverse osmosis plants without use of massive energy storage. Appl. Energy 2021, 304, 117888. [Google Scholar] [CrossRef]
- Cabrera, P.; Carta, J.A.; Lund, H.; Thellufsen, J.Z. Large-scale optimal integration of wind and solar photovoltaic power in water-energy systems on islands. Energy Convers. Manag. 2021, 235, 113982. [Google Scholar] [CrossRef]
- Cabrera, P.; Carta, J.A.; González, J.; Melián, G. Artificial neural networks applied to manage the variable operation of a simple seawater reverse osmosis plant. Desalination 2017, 416, 140–156. [Google Scholar] [CrossRef]
- Cabrera, P.; Carta, J.A.; González, J.; Melián, G. Wind-driven SWRO desalination prototype with and without batteries: A performance simulation using machine learning models. Desalination 2018, 435, 77–96. [Google Scholar] [CrossRef]
- Østergaard, P.A.; Lund, H.; Thellufsen, J.Z.; Sorknæs, P.; Mathiesen, B.V. Review and validation of EnergyPLAN. Renew. Sustain. Energy Rev. 2022, 168, 112724. [Google Scholar] [CrossRef]
- Kucera, J. Introduction to Desalination. In Desalination: Water from Water; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2019; pp. 1–49. [Google Scholar] [CrossRef]
- Voivontas, D.; Yannopoulos, K.; Rados, K.; Zervos, A.; Assimacopoulos, D. Market potential of renewable energy powered desalination systems in Greece. Desalination 1999, 121, 159–172. [Google Scholar] [CrossRef]
- Kabouris, J.; Zouros, N.D.; Manos, G.A.; Contaxis, G.C.; Vournas, C.D. Computational environment to investigate wind integration into small autonomous systems. Renew. Energy 1999, 18, 61–75. [Google Scholar] [CrossRef]
- Hopkins, W. Small to medium size wind turbines: Local use of a local resource: Paper prepared for the World Renewable Energy Congress-V Florence, 20–25 September 1998. Renew. Energy 1999, 16, 944–947. [Google Scholar] [CrossRef]
- Afgan, N.H.; Carvalho, M.G.; Hovanov, N.V. Energy system assessment with sustainability indicators. Energy Policy 2000, 28, 603–612. [Google Scholar] [CrossRef]
- Vujčić, R.; Krneta, M. Wind-driven seawater desalination plant for agricultural development on the islands of the County of Split and Dalmatia. Renew. Energy 2000, 19, 173–183. [Google Scholar] [CrossRef]
- García-Rodríguez, L.; Romero-Ternero, V.; Gómez-Camacho, C. Economic analysis of wind-powered desalination. Desalination 2001, 137, 259–265. [Google Scholar] [CrossRef]
- Voivontas, D.; Misirlis, K.; Manoli, E.; Arampatzis, G.; Assimacopoulos, D. A tool for the design of desalination plants powered by renewable energies. Desalination 2001, 133, 175–198. [Google Scholar] [CrossRef]
- Assimacopoulos, D.; El-Nashar, A.M. RE powers desalination. Filtr. Sep. 2001, 38, 30–31. [Google Scholar] [CrossRef]
- Kaldellis, J.K.; Kavadias, K.A. Optimal wind-hydro solution for Aegean Sea islands’ electricity-demand fulfilment. Appl. Energy 2001, 70, 333–354. [Google Scholar] [CrossRef]
- Kaldellis, J.K.; Kavadias, K.; Christinakis, E. Evaluation of the wind–hydro energy solution for remote islands. Energy Convers. Manag. 2001, 42, 1105–1120. [Google Scholar] [CrossRef]
- Manolakos, D.; Papadakis, G.; Papantonis, D.; Kyritsis, S. A simulation-optimisation programme for designing hybrid energy systems for supplying electricity and fresh water through desalination to remote areas: Case study: The Merssini village, Donoussa island, Aegean Sea, Greece. Energy 2001, 26, 679–704. [Google Scholar] [CrossRef]
- García-Rodríguez, L. Seawater desalination driven by renewable energies: A review. Desalination 2002, 143, 103–113. [Google Scholar] [CrossRef]
- Papadopoulos, D.P.; Dermentzoglou, J.C. Economic viability analysis of planned WEC system installations for electrical power production. Renew. Energy 2002, 25, 199–217. [Google Scholar] [CrossRef]
- Bakos, G.C. Feasibility study of a hybrid wind/hydro power-system for low-cost electricity production. Appl. Energy 2002, 72, 599–608. [Google Scholar] [CrossRef]
- Kaldellis, J.K. Parametrical investigation of the wind–hydro electricity production solution for Aegean Archipelago. Energy Convers. Manag. 2002, 43, 2097–2113. [Google Scholar] [CrossRef]
- Avlonitis, S.A.; Poulios, I.; Vlachakis, N.; Tsitmidelis, S.; Kouroumbas, K.; Avlonitis, D.; Pavlou, M. Water resources management for the prefecture of Dodekanisa of Greece. Desalination 2003, 152, 41–50. [Google Scholar] [CrossRef]
- Witte, T.; Siegfriedsen, S.; El-Allawy, M. WindDeSalter® Technology Direct use of wind energy for seawater desalination by vapour compression or reverse osmosis. Desalination 2003, 156, 275–279. [Google Scholar] [CrossRef]
- Bode, S.; Hapke, J.; Zisler, S. Need and options for a regenerative energy supply in holiday facilities. Tour. Manag. 2003, 24, 257–266. [Google Scholar] [CrossRef]
- Kaldellis, J.K.; Kavadias, K.A.; Kondili, E. Renewable energy desalination plants for the Greek islands—Technical and economic considerations. Desalination 2004, 170, 187–203. [Google Scholar] [CrossRef]
- Manoli, E.; Assimacopoulos, D.; Karavitis, C.A. Water supply management approaches using US on the island of Rhodes, Greece. Desalination 2004, 161, 179–189. [Google Scholar] [CrossRef]
- Mohamed, E.S.; Papadakis, G. Design, simulation and economic analysis of a stand-alone reverse osmosis desalination unit powered by wind turbines and photovoltaics. Desalination 2004, 164, 87–97. [Google Scholar] [CrossRef]
- Romero-Ternero, V.; García-Rodríguez, L.; Gómez-Camacho, C. Thermoeconomic analysis of wind powered seawater reverse osmosis desalination in the Canary Islands. Desalination 2005, 186, 291–298. [Google Scholar] [CrossRef]
- Bueno, C.; Carta, J.A. Technical–economic analysis of wind-powered pumped hydrostorage systems. Part I: Model development. Sol. Energy 2005, 78, 382–395. [Google Scholar] [CrossRef]
- Koklas, P.A.; Papathanassiou, S.A. Component sizing for an autonomous wind-driven desalination plant. Renew. Energy 2006, 31, 2122–2139. [Google Scholar] [CrossRef]
- Kaldellis, J.K.; Vlachos, G.T. Optimum sizing of an autonomous wind–diesel hybrid system for various representative wind-potential cases. Appl. Energy 2006, 83, 113–132. [Google Scholar] [CrossRef]
- Garcia, R.S.; Weisser, D. A wind-diesel system with hydrogen storage: Joint optimisation of design and dispatch. Renew. Energy 2006, 31, 2296–2320. [Google Scholar] [CrossRef]
- Mathioulakis, E.; Belessiotis, V.; Delyannis, E. Desalination by using alternative energy: Review and state-of-the-art. Desalination 2007, 203, 346–365. [Google Scholar] [CrossRef]
- von Medeazza, G.M.; Moreau, V. Modelling of water–energy systems. The case of desalination. Energy 2007, 32, 1024–1031. [Google Scholar] [CrossRef]
- Forstmeier, M.; Mannerheim, F.; D’Amato, F.; Shah, M.; Liu, Y.; Baldea, M.; Stella, A. Feasibility study on wind-powered desalination. Desalination 2007, 203, 463–470. [Google Scholar] [CrossRef]
- Kaldellis, J.K.; Kavadias, K.A.; Koronakis, P.S. Comparing wind and photovoltaic stand-alone power systems used for the electrification of remote consumers. Renew. Sustain. Energy Rev. 2007, 11, 57–77. [Google Scholar] [CrossRef]
- Tzen, E.; Theofilloyianakos, D.; Kologios, Z. Autonomous reverse osmosis units driven by RE sources experiences and lessons learned. Desalination 2008, 221, 29–36. [Google Scholar] [CrossRef]
- Fadigas, E.A.F.A.; Dias, J.R. Desalination of water by reverse osmosis using gravitational potential energy and wind energy. Desalination 2009, 237, 140–146. [Google Scholar] [CrossRef]
- Henderson, C.R.; Manwell, J.F.; McGowan, J.G. A wind/diesel hybrid system with desalination for Star Island, NH: Feasibility study results. Desalination 2009, 237, 318–329. [Google Scholar] [CrossRef]
- Qi, W.; Liu, J.; Christofides, P.D. Supervisory Predictive Control of an Integrated Wind/Solar Energy Generation and Water Desalination System. IFAC Proc. Vol. 2010, 43, 829–834. [Google Scholar] [CrossRef]
- Spyrou, I.D.; Anagnostopoulos, J.S. Design study of a stand-alone desalination system powered by renewable energy sources and a pumped storage unit. Desalination 2010, 257, 137–149. [Google Scholar] [CrossRef]
- Segurado, R.; Krajačić, G.; Duić, N.; Alves, L. Increasing the penetration of renewable energy resources in S. Vicente, Cape Verde. Appl. Energy 2011, 88, 466–472. [Google Scholar] [CrossRef]
- Kyriakarakos, G.; Dounis, A.I.; Rozakis, S.; Arvanitis, K.G.; Papadakis, G. Polygeneration microgrids: A viable solution in remote areas for supplying power, potable water and hydrogen as transportation fuel. Appl. Energy 2011, 88, 4517–4526. [Google Scholar] [CrossRef]
- Cherif, H.; Belhadj, J. Large-scale time evaluation for energy estimation of stand-alone hybrid photovoltaic–wind system feeding a reverse osmosis desalination unit. Energy 2011, 36, 6058–6067. [Google Scholar] [CrossRef]
- Zejli, D.; Ouammi, A.; Sacile, R.; Dagdougui, H.; Elmidaoui, A. An optimization model for a mechanical vapor compression desalination plant driven by a wind/PV hybrid system. Appl. Energy 2011, 88, 4042–4054. [Google Scholar] [CrossRef]
- Stocker, L.; Burke, G.; Kennedy, D.; Wood, D. Sustainability and climate adaptation: Using Google Earth to engage stakeholders. Ecol. Econ. 2012, 80, 15–24. [Google Scholar] [CrossRef]
- Kyriakarakos, G.; Dounis, A.I.; Arvanitis, K.G.; Papadakis, G. A fuzzy cognitive maps–petri nets energy management system for autonomous polygeneration microgrids. Appl. Soft Comput. 2012, 12, 3785–3797. [Google Scholar] [CrossRef]
- Kyriakarakos, G.; Dounis, A.I.; Arvanitis, K.G.; Papadakis, G. A fuzzy logic energy management system for polygeneration microgrids. Renew. Energy 2012, 41, 315–327. [Google Scholar] [CrossRef]
- Kaldellis, J.K.; Gkikaki, A.; Kaldelli, E.; Kapsali, M. Investigating the energy autonomy of very small non-interconnected islands. Energy Sustain. Dev. 2012, 16, 476–485. [Google Scholar] [CrossRef]
- Peñate, B.; García-Rodríguez, L. Current trends and future prospects in the design of seawater reverse osmosis desalination technology. Desalination 2012, 284, 1–8. [Google Scholar] [CrossRef]
- Segurado, R.; Costa, M.; Duić, N.; Carvalho, M.G. Integrated analysis of energy and water supply in islands. Case study of S. Vicente, Cape Verde. Energy 2015, 92, 639–648. [Google Scholar] [CrossRef]
- Georgiou, D.; Mohammed, E.S.; Rozakis, S. Multi-criteria decision making on the energy supply configuration of autonomous desalination units. Renew. Energy 2015, 75, 459–467. [Google Scholar] [CrossRef]
- Smaoui, M.; Abdelkafi, A.; Krichen, L. Optimal sizing of stand-alone photovoltaic/wind/hydrogen hybrid system supplying a desalination unit. Sol. Energy 2015, 120, 263–276. [Google Scholar] [CrossRef]
- Segurado, R.; Madeira, J.F.A.; Costa, M.; Duić, N.; Carvalho, M.G. Optimization of a wind powered desalination and pumped hydro storage system. Appl. Energy 2016, 177, 487–499. [Google Scholar] [CrossRef]
- Mentis, D.; Karalis, G.; Zervos, A.; Howells, M.; Taliotis, C.; Bazilian, M.; Rogner, H. Desalination using renewable energy sources on the arid islands of South Aegean Sea. Energy 2016, 94, 262–272. [Google Scholar] [CrossRef]
- Gökçek, M.; Gökçek, Ö.B. Technical and economic evaluation of freshwater production from a wind-powered small-scale seawater reverse osmosis system (WP-SWRO). Desalination 2016, 381, 47–57. [Google Scholar] [CrossRef]
- Salazar, J.; Tadeo, F.; de Prada, C. Predictive Control of Microgrids with Mixed Sources for Desalination in Remote Areas. IFAC-PapersOnLine 2016, 49, 244–249. [Google Scholar] [CrossRef]
- Nagaraj, R.; Thirugnanamurthy, D.; Rajput, M.M.; Panigrahi, B.K. Techno-economic analysis of hybrid power system sizing applied to small desalination plants for sustainable operation. Int. J. Sustain. Built Environ. 2016, 5, 269–276. [Google Scholar] [CrossRef]
- Caldera, U.; Bogdanov, D.; Breyer, C. Local cost of seawater RO desalination based on solar PV and wind energy: A global estimate. Desalination 2016, 385, 207–216. [Google Scholar] [CrossRef]
- Tsai, Y.C.; Chan, Y.K.; Ko, F.K.; Yang, J.T. Integrated operation of renewable energy sources and water resources. Energy Convers. Manag. 2018, 160, 439–454. [Google Scholar] [CrossRef]
- Fang, X.; Yang, Q.; Dong, W. Fuzzy decision based energy dispatch in offshore industrial microgrid with desalination process and multi-type DGs. Energy 2018, 148, 744–755. [Google Scholar] [CrossRef]
- Bertsiou, M.; Feloni, E.; Karpouzos, D.; Baltas, E. Water management and electricity output of a Hybrid Renewable Energy System (HRES) in Fournoi Island in Aegean Sea. Renew. Energy 2018, 118, 790–798. [Google Scholar] [CrossRef]
- Gökçek, M. Integration of hybrid power (wind-photovoltaic-diesel-battery) and seawater reverse osmosis systems for small-scale desalination applications. Desalination 2018, 435, 210–220. [Google Scholar] [CrossRef]
- Ali, I.B.; Turki, M.; Belhadj, J.; Roboam, X. Optimized fuzzy rule-based energy management for a battery-less PV/wind-BWRO desalination system. Energy 2018, 159, 216–228. [Google Scholar] [CrossRef]
- Prieto-Prado, I.; Del Río-Gamero, B.; Gómez-Gotor, A.; Pérez-Báez, S.O. Water and Energy Self-Supply in Isolated Areas through Renewable Energies Using Hydrogen and Water as a Double Storage System. Desalination 2018, 430, 1–14. Available online: https://www.sciencedirect.com/science/article/pii/S0011916417313875 (accessed on 21 May 2018). [CrossRef]
- Chen, P.; Lan, Y.; Wang, D.; Wang, W.; Liu, W.; Chong, Z.; Wang, X. Optimal Planning and Operation of CCHP System Considering Renewable Energy Integration and Seawater Desalination. Energy Procedia 2019, 158, 6490–6495. [Google Scholar] [CrossRef]
- Rosales-Asensio, E.; Borge-Diez, D.; Pérez-Hoyos, A.; Colmenar-Santos, A. Reduction of water cost for an existing wind-energy-based desalination scheme: A preliminary configuration. Energy 2019, 167, 548–560. [Google Scholar] [CrossRef]
- Padrón, I.; Avila, D.; Marichal, G.N.; Rodríguez, J.A. Assessment of Hybrid Renewable Energy Systems to supplied energy to Autonomous Desalination Systems in two islands of the Canary Archipelago. Renew. Sustain. Energy Rev. 2019, 101, 221–230. [Google Scholar] [CrossRef]
- Mito, M.T.; Ma, X.; Albuflasa, H.; Davies, P.A. Reverse osmosis (RO) membrane desalination driven by wind and solar photovoltaic (PV) energy: State of the art and challenges for large-scale implementation. Renew. Sustain. Energy Rev. 2019, 112, 669–685. [Google Scholar] [CrossRef]
- Ye, B.; Jiang, J.; Cang, Y. Technical and economic feasibility analysis of an energy and fresh water coupling model for an isolated island. Energy Procedia 2019, 158, 6373–6377. [Google Scholar] [CrossRef]
- Giudici, F.; Castelletti, A.; Garofalo, E.; Giuliani, M.; Maier, H.R. Dynamic, multi-objective optimal design and operation of water-energy systems for small, off-grid islands. Appl. Energy 2019, 250, 605–616. [Google Scholar] [CrossRef]
- Rosales-Asensio, E.; García-Moya, F.J.; González-Martínez, A.; Borge-Diez, D.; de Simón-Martín, M. Stress mitigation of conventional water resources in water-scarce areas through the use of renewable energy powered desalination plants: An application to the Canary Islands. Energy Rep. 2020, 6, 124–135. [Google Scholar] [CrossRef]
- Mehrjerdi, H. Modeling and optimization of an island water-energy nexus powered by a hybrid solar-wind renewable system. Energy 2020, 197, 117217. [Google Scholar] [CrossRef]
- Campione, A.; Cipollina, A.; Calise, F.; Tamburini, A.; Galluzzo, M.; Micale, G. Coupling electrodialysis desalination with photovoltaic and wind energy systems for energy storage: Dynamic simulations and control strategy. Energy Convers. Manag. 2020, 216, 112940. [Google Scholar] [CrossRef]
- Brendel, L.P.M.; Shah, V.M.; Groll, E.A.; Braun, J.E. A methodology for analyzing renewable energy opportunities for desalination and its application to Aruba. Desalination 2020, 493, 114613. [Google Scholar] [CrossRef]
- Ailliot, P.; Boutigny, M.; Koutroulis, E.; Malisovas, A.; Monbet, V. Stochastic weather generator for the design and reliability evaluation of desalination systems with Renewable Energy Sources. Renew. Energy 2020, 158, 541–553. [Google Scholar] [CrossRef]
- Rosales-Asensio, E.; Rosales, A.E.; Colmenar-Santos, A. Surrogate optimization of coupled energy sources in a desalination microgrid based on solar PV and wind energy. Desalination 2021, 500, 114882. [Google Scholar] [CrossRef]
- Skroufouta, S.; Baltas, E. Investigation of hybrid renewable energy system (HRES) for covering energy and water needs on the Island of Karpathos in Aegean Sea. Renew. Energy 2021, 173, 141–150. [Google Scholar] [CrossRef]
- Cabrera, P.; Folley, M.; Carta, J.A. Design and performance simulation comparison of a wave energy-powered and wind-powered modular desalination system. Desalination 2021, 514, 115173. [Google Scholar] [CrossRef]
- Amin, I.; Ali, M.E.A.; Bayoumi, S.; Balah, A.; Oterkus, S.; Shawky, H.; Oterkus, E. Numerical hydrodynamics-based design of an offshore platform to support a desalination plant and a wind turbine in Egypt. Ocean Eng. 2021, 229, 108598. [Google Scholar] [CrossRef]
- Melián-Martel, N.; del Río-Gamero, B.; Schallenberg-Rodríguez, J. Water cycle driven only by wind energy surplus: Towards 100% renewable energy islands. Desalination 2021, 515, 115216. [Google Scholar] [CrossRef]
- Zhao, P.; Zhang, S.; Gou, F.; Xu, W.; Wang, J.; Dai, Y. The feasibility survey of an autonomous renewable seawater reverse osmosis system with underwater compressed air energy storage. Desalination 2021, 505, 114981. [Google Scholar] [CrossRef]
- Karaca, A.E.; Dincer, I.; Nitefor, M. Development of an integrated solar and wind driven energy system for desalination and power generation, Sustain. Energy Technol. Assessments 2022, 52, 102249. [Google Scholar] [CrossRef]
- Rashidi, M.M.; Mahariq, I.; Murshid, N.; Wongwises, S.; Mahian, O.; Nazari, M.A. Applying wind energy as a clean source for reverse osmosis desalination: A comprehensive review. Alex. Eng. J. 2022, 61, 12977–12989. [Google Scholar] [CrossRef]
- Wang, W.; Wang, D.; Zhao, Y.; Yu, Y.; Wang, Y. Research on capacity optimization and real-time control of island microgrid considering time-shifting load. Energy Rep. 2022, 8, 990–997. [Google Scholar] [CrossRef]
- Li, L.; Wang, J.; Zhong, X.; Lin, J.; Wu, N.; Zhang, Z.; Meng, C.; Wang, X.; Shah, N.; Brandon, N.; et al. Combined multi-objective optimization and agent-based modeling for a 100% renewable island energy system considering power-to-gas technology and extreme weather conditions. Appl. Energy 2022, 308, 118376. [Google Scholar] [CrossRef]
- Zhao, P.; Xu, W.; Liu, A.; Wu, W.; Wang, J.; Yan, Z. Performance evaluation of a renewable driven standalone combined power and water supply system with cascade electricity and heat storage. Renew. Energy 2022, 199, 1283–1299. [Google Scholar] [CrossRef]
- Das, P.; Das, B.K.; Rahman, M.; Hassan, R. Evaluating the prospect of utilizing excess energy and creating employments from a hybrid energy system meeting electricity and freshwater demands using multi-objective evolutionary algorithms. Energy 2022, 238, 121860. [Google Scholar] [CrossRef]
- Zhao, P.; Gou, F.; Xu, W.; Wang, J.; Dai, Y. Multi-objective optimization of a renewable power supply system with underwater compressed air energy storage for seawater reverse osmosis under two different operation schemes. Renew. Energy 2022, 181, 71–90. [Google Scholar] [CrossRef]
- Pombo, D.V.; Bindner, H.W.; Spataru, S.V.; Sørensen, P.E.; Rygaard, M. Machine learning-driven energy management of a hybrid nuclear-wind-solar-desalination plant. Desalination 2022, 537, 115871. [Google Scholar] [CrossRef]
- Sarathe, S.; Baredar, P.V.; Dwivedi, G.; Tapdiya, S.; Gaurav, A. Review of various types of renewable-powered desalination technologies with economic analysis. Mater. Today Proc. 2022, 56, 326–335. [Google Scholar] [CrossRef]
- Kiehbadroudinezhad, M.; Merabet, A.; Rajabipour, A.; Cada, M.; Kiehbadroudinezhad, S.; Khanali, M.; Hosseinzadeh-Bandbafha, H. Optimization of wind/solar energy microgrid by division algorithm considering human health and environmental impacts for power-water cogeneration. Energy Convers. Manag. 2022, 252, 115064. [Google Scholar] [CrossRef]
- Ju, L.; Liu, L.; Han, Y.; Yang, S.; Li, G.; Lu, X.; Liu, Y.; Qiao, H. Robust Multi-objective optimal dispatching model for a novel island micro energy grid incorporating biomass waste energy conversion system, desalination and power-to-hydrogen devices. Appl. Energy 2023, 343, 121176. [Google Scholar] [CrossRef]
- Karaca, A.E.; Dincer, I.; Nitefor, M. A new renewable energy system integrated with compressed air energy storage and multistage desalination. Energy 2023, 268, 126723. [Google Scholar] [CrossRef]
- Alawad, S.M.; Mansour, R.B.; Al-Sulaiman, F.A.; Rehman, S. Renewable energy systems for water desalination applications: A comprehensive review. Energy Convers. Manag. 2023, 286, 117035. [Google Scholar] [CrossRef]
- Kariman, H.; Shafieian, A.; Khiadani, M. Small scale desalination technologies: A comprehensive review. Desalination 2023, 567, 116985. [Google Scholar] [CrossRef]
- Li, Y.; Bu, F.; Li, Y.; Long, C. Optimal scheduling of island integrated energy systems considering multi-uncertainties and hydrothermal simultaneous transmission: A deep reinforcement learning approach. Appl. Energy 2023, 333, 120540. [Google Scholar] [CrossRef]
- Hardjono, V.Z.P.; Reyseliani, N.; Purwanto, W.W. Planning for the integration of renewable energy systems and productive zone in Remote Island: Case of Sebira Island. Clean. Energy Syst. 2023, 4, 100057. [Google Scholar] [CrossRef]
- Xu, L.; Wang, S.; Wang, Z.; Qi, X. Dual-layer self-healing strategy for standalone building energy systems: A case study of a tropical island. Energy Build. 2023, 283, 112827. [Google Scholar] [CrossRef]
- Mito, M.T.; Ma, X.; Albuflasa, H.; Davies, P.A. Modular operation of renewable energy-driven reverse osmosis using neural networks for wind speed prediction and scheduling. Desalination 2023, 567, 116950. [Google Scholar] [CrossRef]
- He, H.; Huang, Y.; Nakadomari, A.; Masrur, H.; Krishnan, N.; Hemeida, A.M.; Mikhaylov, A.; Senjyu, T. Potential and economic viability of green hydrogen production from seawater electrolysis using renewable energy in remote Japanese islands. Renew. Energy 2023, 202, 1436–1447. [Google Scholar] [CrossRef]
- Petersen, G.; Fries, S.; Mohn, J.; Müller, A. Wind and solar-powered reverse osmosis desalination units—Description of two demonstration projects. Desalination 1979, 31, 501–509. [Google Scholar] [CrossRef]
- Petersen, G.; Fries, S.; Mohn, J.; Müller, A. Wind and solar powered reverse osmosis desalination units—Design, start up, operating experience. Desalination 1981, 39, 125–135. [Google Scholar] [CrossRef]
- Petersen, G.; Fries, S.; Kaiba, K.; Knünz, D. A Wind-powered water desalination plant for small island community at the German coast of the North Sea. Design and working experience. In Proceedings of the Conference: Energy for Rural and Island Communities, Inverness, UK, 22–24 September 1983; pp. 173–180. [Google Scholar]
- McGowan, J.G.; Manwell, J.F.; Connors, S.R. Wind/diesel energy systems: Review of design options and recent developments. Sol. Energy 1988, 41, 561–575. [Google Scholar] [CrossRef]
- Plantikow, U. Wind-powered MVC seawater desalination—Operational results. Desalination 1999, 122, 291–299. [Google Scholar] [CrossRef]
- Veza, J.M.; Peate, B.; Castellano, F. Electrodialysis desalination designed for wind energy (on-grid tests). Desalination 2001, 141, 53–61. [Google Scholar] [CrossRef]
- Liu, C.C.K.; Jae-Woo, P.; Migita, R.; Gang, Q. Experiments of a prototype wind-driven reverse osmosis desalination system with feedback control. Desalination 2002, 150, 277–287. [Google Scholar] [CrossRef]
- LGarcía-Rodríguez, Renewable energy applications in desalination: State of the art. Sol. Energy 2003, 75, 381–393. [CrossRef]
- Carta, J.A.; González, J.; Subiela, V. Operational analysis of an innovative wind powered reverse osmosis system installed in the Canary Islands. Sol. Energy 2003, 75, 153–168. [Google Scholar] [CrossRef]
- Carta, J.; González, J.; Gómez, C. Operating results of a wind–diesel system which supplies the full energy needs of an isolated village community in the Canary Islands. Sol. Energy 2003, 74, 53–63. [Google Scholar] [CrossRef]
- Lindemann, J.H. Wind and solar powered seawater desalination applied solutions for the Mediterranean, the Middle East and the Gulf countries. Desalination 2004, 168, 73–80. [Google Scholar] [CrossRef]
- de la Nuez Pestana, I.; Latorre, F.J.G.; Espinoza, C.A.; Gotor, A.G.; Nuez, I.; García, F.J.; Argudo, C.; Gómez, A. Optimization of RO desalination systems powered by renewable energies. Part I: Wind energy. Desalination 2004, 160, 293–299. [Google Scholar] [CrossRef]
- Veza, J.M.; Penate, B.; Castellano, F. Electrodialysis desalination designed for off-grid wind energy. Desalination 2004, 160, 211–221. [Google Scholar] [CrossRef]
- Subiela, V.J.; Carta, J.A.; González, J. The SDAWES project: Lessons learnt from an innovative project. Desalination 2004, 168, 39–47. [Google Scholar] [CrossRef]
- Duić, N.; da Graça Carvalho, M. Increasing renewable energy sources in island energy supply: Case study Porto Santo. Renew. Sustain. Energy Rev. 2004, 8, 383–399. [Google Scholar] [CrossRef]
- Paulsen, K.; Hensel, F. Introduction of a new Energy Recovery System—Optimized for the combination with renewable energy. Desalination 2005, 184, 211–215. [Google Scholar] [CrossRef]
- Liu, C.C.K.; Xia, W.; Park, J.W. A wind-driven reverse osmosis system for aquaculture wastewater reuse and nutrient recovery. Desalination 2007, 202, 24–30. [Google Scholar] [CrossRef]
- Paulsen, K.; Hensel, F. Design of an autarkic water and energy supply driven by renewable energy using commercially available components. Desalination 2007, 203, 455–462. [Google Scholar] [CrossRef]
- Subiela, V.J.; de la Fuente, J.A.; Piernavieja, G.; Peñate, B. Canary Islands Institute of Technology (ITC) experiences in desalination with renewable energies (1996–2008). Desalin. Water Treat. 2009, 7, 220–235. [Google Scholar] [CrossRef]
- Gude, V.G.; Nirmalakhandan, N.; Deng, S. Renewable and sustainable approaches for desalination. Renew. Sustain. Energy Rev. 2010, 14, 2641–2654. [Google Scholar] [CrossRef]
- Qingfen, M.; Hui, L. Wind energy technologies integrated with desalination systems: Review and state-of-the-art. Desalination 2011, 277, 274–280. [Google Scholar] [CrossRef]
- Peñate, B.; Castellano, F.; Bello, A.; García-Rodríguez, L. Assessment of a stand-alone gradual capacity reverse osmosis desalination plant to adapt to wind power availability: A case study. Energy 2011, 36, 4372–4384. [Google Scholar] [CrossRef]
- Liu, C.C.K. The Development of a Renewable-Energy-Driven Reverse Osmosis System for Water Desalination and Aquaculture Production. J. Integr. Agric. 2013, 12, 1357–1362. [Google Scholar] [CrossRef]
- Zhao, B.; Zhang, X.; Li, P.; Wang, K.; Xue, M.; Wang, C. Optimal sizing, operating strategy and operational experience of a stand-alone microgrid on Dongfushan Island. Appl. Energy 2014, 113, 1656–1666. [Google Scholar] [CrossRef]
- Carta, J.A.; González, J.; Cabrera, P.; Subiela, V.J. Preliminary experimental analysis of a small-scale prototype SWRO desalination plant, designed for continuous adjustment of its energy consumption to the widely varying power generated by a stand-alone wind turbine. Appl. Energy 2015, 137, 222–239. [Google Scholar] [CrossRef]
- Lai, W.; Ma, Q.; Lu, H.; Weng, S.; Fan, J.; Fang, H. Effects of wind intermittence and fluctuation on reverse osmosis desalination process and solution strategies. Desalination 2016, 395, 17–27. [Google Scholar] [CrossRef]
- Smaoui, M.; Krichen, L. Control, energy management and performance evaluation of desalination unit based renewable energies using a graphical user interface. Energy 2016, 114, 1187–1206. [Google Scholar] [CrossRef]
- Cabrera, P.; Lund, H.; Carta, J.A. Smart renewable energy penetration strategies on islands: The case of Gran Canaria. Energy 2018, 162, 421–443. [Google Scholar] [CrossRef]
- Abdelkareem, M.A.; El Haj Assad, M.; Sayed, E.T.; Soudan, B. Recent progress in the use of renewable energy sources to power water desalination plants. Desalination 2018, 435, 97–113. [Google Scholar] [CrossRef]
- Serrano-Tovar, T.; Suárez, B.P.; Musicki, A.; de la Fuente Bencomo, J.A.; Cabello, V.; Giampietro, M. Structuring an integrated water-energy-food nexus assessment of a local wind energy desalination system for irrigation. Sci. Total Environ. 2019, 689, 945–957. [Google Scholar] [CrossRef] [PubMed]
- Ruiz-García, A.; Nuez, I. Long-term intermittent operation of a full-scale BWRO desalination plant. Desalination 2020, 489, 114526. [Google Scholar] [CrossRef]
- Bundschuh, J.; Kaczmarczyk, M.; Ghaffour, N.; Tomaszewska, B. State-of-the-art of renewable energy sources used in water desalination: Present and future prospects. Desalination 2021, 508, 115035. [Google Scholar] [CrossRef]
- Miranda, M.S.; Infield, D. A wind-powered seawater reverse-osmosis system without batteries. Desalination 2003, 153, 9–16. [Google Scholar] [CrossRef]
- Thomson, M.; Miranda, M.S.; Infield, D. A small-scale seawater reverse-osmosis system with excellent energy efficiency over a wide operating range. Desalination 2003, 153, 229–236. [Google Scholar] [CrossRef]
- Heijman, S.G.J.; Rabinovitch, E.; Bos, F.; Olthof, N.; van Dijk, J.C. Sustainable seawater desalination: Stand-alone small scale windmill and reverse osmosis system. Desalination 2009, 248, 114–117. [Google Scholar] [CrossRef]
- Setiawan, A.A.; Zhao, Y.; Nayar, C.V. Design, economic analysis and environmental considerations of mini-grid hybrid power system with reverse osmosis desalination plant for remote areas. Renew. Energy 2009, 34, 374–383. [Google Scholar] [CrossRef]
- Latorre, F.J.G.; Báez, S.O.P.; Gotor, A.G. Energy performance of a reverse osmosis desalination plant operating with variable pressure and flow. Desalination 2015, 366, 146–153. [Google Scholar] [CrossRef]
- Uche, J.; Muzás, A.; Acevedo, L.E.; Usón, S.; Martínez, A.; Bayod, A.A. Experimental tests to validate the simulation model of a Domestic Trigeneration Scheme with hybrid RESs and Desalting Techniques. Renew. Energy 2020, 155, 407–419. [Google Scholar] [CrossRef]
- Amin, I.; Dai, S.; Day, S.; Ali, M.E.A.; Balah, A.; Shawky, H.; Oterkus, S.; Oterkus, E. Experimental study on the motion response of an integrated floating desalination plant and offshore wind turbine on a non-ship platform. Ocean Eng. 2021, 234, 109275. [Google Scholar] [CrossRef]
- Ruiz-García, A.; Nuez, I.; Khayet, M. Performance assessment and modeling of an SWRO pilot plant with an energy recovery device under variable operating conditions. Desalination 2023, 555, 116523. [Google Scholar] [CrossRef]
- Marsh, N.; Howard, J.; Finlayson, F.; Rybar, S. SWRO—The largest plant in British waters. Desalination 1999, 125, 25–36. [Google Scholar] [CrossRef]
- Rezaei, A.; Naserbeagi, A.; Alahyarizadeh, G.; Aghaei, M. Economic evaluation of Qeshm island MED-desalination plant coupling with different energy sources including fossils and nuclear power plants. Desalination 2017, 422, 101–112. [Google Scholar] [CrossRef]
- Atkinson, S. Containerised SWRO systems address increasing potable water demands in Oman. Membr. Technol. 2018, 2018, 7. [Google Scholar] [CrossRef]
- Yim, S.K.; Ahn, W.Y.; Kim, G.T.; Koh, G.W.; Cho, J.; Kim, S.H. Pilot-scale evaluation of an integrated membrane system for domestic wastewater reuse on islands. Desalination 2007, 208, 113–124. [Google Scholar] [CrossRef]
- Kunisada, Y.; Ohta, K.; Kaneda, H.; Hirai, M.; Murayama, Y. Operating experience on RO sea water desalination plant at chigasaki laboratory. Desalination 1981, 39, 413–421. [Google Scholar] [CrossRef]
- Kusakari, K.; Kawamata, F.; Matsumoto, N.; Saeki, H.; Terada, Y. Electrodialysis plant at Hatsushima. Desalination 1977, 21, 45–50. [Google Scholar] [CrossRef]
- CH2M HILL studies Hong Kong’s first desal project. Membr. Technol. 2003, 2003, 1. [CrossRef]
- Operational acceptance ends first phase of Ebeye, Marshall Islands Project. Membr. Technol. 2018, 2018, 4. [CrossRef]
- Osmoflo upgrades water treatment plant on Queensland island in Australia. Membr. Technol. 2019, 2019, 2. [CrossRef]
- Jamieson, T.; Balzano, S.; Le Lan, C.; Kildea, T.; Ellis, A.V.; Brown, M.H.; Leterme, S.C. Survival of the fittest: Prokaryotic communities within a SWRO desalination plant. Desalination 2021, 514, 115152. [Google Scholar] [CrossRef]
- Atkinson, S. Singapore’s first large-scale dual-mode desalination plant is now on stream. Membr. Technol. 2020, 2020, 6. [Google Scholar] [CrossRef]
- Spanhaak, G. The Combined Production of Electricity and Fresh Water on the Island of Texel. In Selected Water Problems in Islands and Coastal Areas; Elsevier: Amsterdam, The Netherlands, 1979; pp. 437–443. [Google Scholar] [CrossRef]
- Andrews, W.T.; Bergman, R.A. The malta seawater RO facility. Desalination 1986, 60, 135–144. [Google Scholar] [CrossRef]
- Ntavou, E.; Kosmadakis, G.; Manolakos, D.; Papadakis, G.; Papantonis, D. Experimental evaluation of a multi-skid reverse osmosis unit operating at fluctuating power input. Desalination 2016, 398, 77–86. [Google Scholar] [CrossRef]
- Pais, J.A.G.C.R.; Ferreira, L.M.G.A. Performance study of an industrial RO plant for seawater desalination. Desalination 2007, 208, 269–276. [Google Scholar] [CrossRef]
- Buros, O.K. A history of desalting water in the Virgin Islands. Desalination 1984, 50, 87–101. [Google Scholar] [CrossRef]
- Bonnélye, V.; Sanz, M.A.; Francisci, L.; Beltran, F.; Cremer, G.; Colcuera, R.; Laraudogoitia, J. Curacao, Netherlands Antilles: A successful example of boron removal on a seawater desalination plant. Desalination 2007, 205, 200–205. [Google Scholar] [CrossRef]
- Degrémont builds RO plant in Curaçao. Membr. Technol. 2003, 2003, 2. [CrossRef]
- Winters, H. Three-year experience of a seawater RO plant operating at a conversion greater than 50% in the Cayman Islands. Desalination 1989, 74, 183–185. [Google Scholar] [CrossRef]
- Andrews, W.T.; Pergande, W.F.; McTaggart, G.S. Energy performance enhancements of a 950 m3/d seawater reverse osmosis unit in Grand Cayman. Desalination 2001, 135, 195–204. [Google Scholar] [CrossRef]
- Atkinson, S. UF and RO technologies produce drinking water in the USA and Bahamas. Membr. Technol. 2017, 2017, 8. [Google Scholar] [CrossRef]
- Pyne, R.D.G.; Howard, J.B. Desalination/Aquifer Storage Recovery (DASR): A cost-effective combination for Corpus Christi, Texas. Desalination 2004, 165, 363–367. [Google Scholar] [CrossRef]
- Karakulski, K.; Gryta, M.; Morawski, A.W. Pilot plant studies on the removal of trihalomethanes by composite reverse osmosis membranes. Desalination 2001, 140, 227–234. [Google Scholar] [CrossRef]
- Hendershaw, W.K.; Lyle, J.D.; Harris, C.G. Indian River Plantation: The evolution, 16-year history and operating experience of the oldest reverse osmosis water treatment plant on Hutchinson Island (FL). Desalination 1995, 102, 225–234. [Google Scholar] [CrossRef]
- Kadaj, R.; McMillan, D.; Losch, J. A low pressure reverse osmosis facility for Marco Island (FL). Desalination 1995, 102, 25–26. [Google Scholar] [CrossRef]
- Avlonitis, S.A. Operational water cost and productivity improvements for small-size RO desalination plants. Desalination 2002, 142, 295–304. [Google Scholar] [CrossRef]
- Manenti, F.; Masi, M.; Santucci, G. Start-up operations of MED desalination plants. Desalination 2013, 329, 57–61. [Google Scholar] [CrossRef]
- Bartels, C.; Cioffi, S.; Rybar, S.; Wilf, M.; Koutsakos, E. Long term experience with membrane performance at the Larnaca desalination plant. Desalination 2008, 221, 92–100. [Google Scholar] [CrossRef]
- Tsiourtis, N.X. Seawater desalination projects. The Cyprus experience. Desalination 2001, 139, 139–147. [Google Scholar] [CrossRef]
- Georghiou, G.; Pashalidis, I. Boron in groundwaters of Nicosia (Cyprus) and its treatment by reverse osmosis. Desalination 2007, 215, 104–110. [Google Scholar] [CrossRef]
- Burashid, K.; Hussain, A.R. Seawater RO plant operation and maintenance experience: Addur desalination plant operation assessment. Desalination 2004, 165, 11–22. [Google Scholar] [CrossRef]
- Duić, N.; Lerer, M.; Carvalho, M.G. Increasing the supply of renewable energy sources in island energy systems. Int. J. Sustain. Energy 2003, 23, 177–186. [Google Scholar] [CrossRef]
- Documentation—H2RES. 2021. Available online: https://h2res.org/users-manual/ (accessed on 22 February 2024).
- Milo’s Desalination—ITA Group. 2021. Available online: https://itagroup.gr/en/milo-s-desalination/ (accessed on 26 February 2024).
- Information of Cañada del Río (Fuerteventura) Project. 2015. Available online: https://caaf.es/parque-eolico/ (accessed on 28 February 2024).
- Information of Agragua (Gran Canaria) Project. 2001. Available online: https://www.idae.es/sites/default/files/documentos/publicaciones_idae/documentos_2161_doc62_pemontanapelada_a2001_a_7076509e.pdf (accessed on 28 February 2024).
- Information of Soslaires (Gran Canaria) Project. 2010. Available online: https://www.laprovincia.es/gran-canaria/2010/04/16/finca-autosuficiente-10789090.html (accessed on 28 February 2024).
- Information of the Corralejo (Fuerteventura) Project. 2011. Available online: https://www.evwind.com/2011/01/20/eolica-en-canarias-el-parque-eolico-de-corralejo-produjo-el-87-de-la-energia-consumida-por-la-desalinizadora/ (accessed on 28 February 2024).
- Information of Gorona del Viento (El Hierro) Project. 2024. Available online: https://www.goronadelviento.es/central-hidroeolica/ (accessed on 28 February 2024).
- Marrero, A.; González, J.; Carta, J.A.; Cabrera, P. A New Control Algorithm to Increase the Stability of Wind–Hydro Power Plants in Isolated Systems: El Hierro as a Case Study. J. Mar. Sci. Eng. 2023, 11, 335. [Google Scholar] [CrossRef]
- Information of Díaz Rijo (Lanzarote) Project. 2016. Available online: https://www.elchaplon.com/instalados-los-dos-aerogeneradores-de-la-central-de-desalacion-diaz-rijo (accessed on 28 February 2024).
- Information of Los Valles (Lanzarote) Project. 2018. Available online: https://consorcioagualanzarote.com/el-parque-eolico-de-los-valles-genero-un-8-mas-de-energia-en-2018/ (accessed on 28 February 2024).
- Information of Puerto del Rosario (Fuerteventura) Project. 2019. Available online: https://www.cabildofuer.es/cabildo/el-cabildo-de-fuerteventura-culmina-la-instalacion-de-un-aerogenerador-en-la-desaladora-del-caaf-en-puerto-del-rosario/ (accessed on 28 February 2024).
- Conagrican. 2021. Available online: https://conagrican.com/ (accessed on 29 August 2023).
- Information of Conagrican (Gran Canaria) Project. 2021. Available online: https://www.canarias7.es/economia/conagrican-instala-parque-20210324131016-nt.html (accessed on 28 February 2024).
- González, J.; Cabrera, P.; Carta, J.A. Wind Energy Powered Desalination Systems. In Desalination Water from Water, 2nd ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2019; pp. 567–646. [Google Scholar] [CrossRef]
- Cabrera, P.; Carta, J.A. Computational Intelligence in the Desalination Industry. In Computational Intelligence and Optimization Methods for Control Engineering; Springer: Cham, Switzerland, 2019; pp. 105–131. [Google Scholar] [CrossRef]
- Tzen, E.; Rossis, K.; González, J.; Cabrera, P.; Peñate, B.; Subiela, V. Wind technology design and reverse osmosis systems for off-grid and grid-connected applications. In Renewable Energy Technologies for Water Desalination; CRC Press: London, UK, 2017. [Google Scholar] [CrossRef]
- NEWSLETTER No24 DESAL+ LIVING LAB—SEPTEMBER. 2023. Available online: https://www.desalinationlab.com/desal-living-lab-newsletters/ (accessed on 28 February 2024).
- Velázquez-Medina, S.; Santana-Sarmiento, F. Evaluation method of marine spaces for the planning and exploitation of offshore wind farms in isolated territories. A two-island case study. Ocean Coast. Manag. 2023, 239, 106603. [Google Scholar] [CrossRef]
- Schallenberg-Rodríguez, J.; García Montesdeoca, N. Spatial planning to estimate the offshore wind energy potential in coastal regions and islands. Practical case: The Canary Islands. Energy 2018, 143, 91–103. [Google Scholar] [CrossRef]
- Greenalia Avanza en el Desarrollo de Gofio. 2021. Available online: https://greenalia.es/noticia/greenalia-avanza-en-el-desarrollo-de-gofio-el-primer-parque-eolico-marino-flotante-de-espana-tras-obtener-el-permiso-aeronautico-por-parte-de-aesa/ (accessed on 1 July 2023).
- Proyecto Floating Offshore Wind Canarias (FOWCA) Documento Inicial de Proyecto. 2022. Available online: www.equinor.com (accessed on 1 July 2023).
- Beiter, P.; Musial, W.; Duffy, P.; Cooperman, A.; Shields, M.; Heimiller, D.; Optis, M. The Cost of Floating Offshore Wind Energy in California between 2019 and 2032; National Renewable Energy Laboratory: Golden, CO, USA, 2020.
Publisher | Journals | Publisher’s Full-Text Search Facility |
---|---|---|
Elsevier | Energy, Energy Conversion and Management, Solar Energy, Renewable Energy, Energy for Sustainable Development, Applied Energy, Desalination, Filtration and Separation, Sustainable Energy Technologies and Assessments, Energy Reports, Renewable and Sustainable Energy Reviews, Thermal Science and Engineering Progress, Journal of Energy Storage, Science of The Total Environment, Water Science and Engineering | https://www.sciencedirect.com/ (accessed on 28 February 2024) |
Wiley Interdisciplinary Reviews | Energy and Environment, Energy Research | https://onlinelibrary.wiley.com/search/advanced (accessed on 28 February 2024) |
MDPI | Energies, Sustainability, Processes, Applied Sciences, Water | https://www.mdpi.com/ (accessed on 28 February 2024) |
Springer | Solar Desalination for the 21st Century, International Journal of Energy and Environmental Engineering, Renewable Energy Based Solutions, Alternative Energy Sources and Technologies | https://link.springer.com/ (accessed on 28 February 2024) |
Deswater | Desalination and Water Treatment | https://www.deswater.com/home.php (accessed on 28 February 2024) |
WSEAS | WSEAS Transactions on Environment and Development | https://wseas.com/ (accessed on 28 February 2024) |
Taylor Francis | International Journal of Sustainable Energy, Desalination and Water Treatment | http://www.tandfonline.com (accessed on 28 February 2024) |
IEEE | IEEE Access | https://ieeexplore.ieee.org/search/advanced (accessed on 28 February 2024) |
CET | CET Journal | https://www.cetjournal.it/index.php/cet (accessed on 28 February 2024) |
IOP Science | Earth and Environmental Science | https://iopscience.iop.org/ (accessed on 28 February 2024) |
Emerald | Journal of Engineering, Design and Technology | https://www.emerald.com/insight/ (accessed on 28 February 2024) |
AIP Publishing | Journal of Renewable and Sustainable Energy | https://aip.scitation.org/ (accessed on 28 February 2024) |
Korea Science | Journal of Electrical Engineering and Technology | http://koreascience.or.kr/main.page (accessed on 28 February 2024) |
Scientific.net | Advanced Materials Research, Applied Mechanics and Materials | https://www.scientific.net/ (accessed on 28 February 2024) |
Hindawi | Computational Science in Smart Grids and Energy Systems | https://www.hindawi.com/ (accessed on 28 February 2024) |
Biomedcentral | Energy, Sustainability and Society | https://energsustainsoc.biomedcentral.com/ (accessed on 28 February 2024) |
IWA Publishing | Water Supply | https://iwaponline.com/ (accessed on 28 February 2024) |
Year | On-Grid | Off-Grid | |||
---|---|---|---|---|---|
100% Connected to the Grid | Wind Power Used to Power the Desalination Plant | Without Energy Storage System | With Energy Storage System | Hybrid System | |
1999 | [31] | [32,33] | |||
2000 | [34,35] | ||||
2001 | [36] | [37,38,39,40] | [41] | ||
2002 | [42,43] | [42,44,45] | |||
2003 | [46] | [47] | [48] | ||
2004 | [17] | [49,50] | [51] | ||
2005 | [52] | [53] | |||
2006 | [54] | [55,56] | |||
2007 | [57,58] | [57] | [57] | [57,59,60] | [57] |
2008 | [61] | ||||
2009 | [62,63] | ||||
2010 | [64,65] | ||||
2011 | [66] | [67] | [68,69] | ||
2012 | [70,71,72] | [73] | [74] | ||
2013 | |||||
2014 | |||||
2015 | [75] | [76] | [76,77] | ||
2016 | [78,79] | [80] | [81,82,83] | ||
2017 | |||||
2018 | [84,85] | [86] | [87,88,89] | ||
2019 | [90] | [91] | [92,93,94,95] | ||
2020 | [96] | [12,97,98,99,100] | |||
2021 | [23,101,102] | [25,103,104] | [26,105,106] | ||
2022 | [107,108,109,110,111,112] | [108,113] | [108] | [108] | [108,113,114,115,116] |
2023 | [117,118,119,120,121,122,123] | [119,120] | [119,120,124] | [119,120] | [119,120,125] |
Software/Tool | References |
---|---|
HOMER | [63,73,87,89,92,94,97,112] |
ROSA and/or TorayDS2 | [87,91] |
EnergyPlan | [26] |
TIMES, TRNSYS, TRNOPT and/or GenOPT | [67,71,72,76,98,122] |
MATLAB | [12,72,77,82,88,100,102,103,105,109,124] |
H2RES | [66,75,78] |
Vensim | [58] |
Custom tool | [17,25,31,32,34,37,39,40,41,43,44,45,46,48,49,50,51,52,53,54,55,56,57,59,60,62,64,65,68,69,79,80,81,83,84,85,86,90,91,95,96,98,99,101,104,106,107,110,111,113,114,116,117,118,121,123,125] |
Not specified | [23,33,35,36,38,42,47,61,70,74,93,108,115,119,120] |
Year | On-Grid | Off-Grid | |||
---|---|---|---|---|---|
100% Connected to the Grid | Wind Power Used to Power the Desalination Plant | Without Energy Storage System | With Energy Storage System | Hybrid System | |
1979 | [126] | ||||
1981 | [127] | ||||
1983 | [128] | ||||
1988 | [129] | ||||
1999 | [130] | ||||
2000 | |||||
2001 | [131] | [131] | |||
2002 | [132] | ||||
2003 | [133] | [134] | [133,135] | ||
2004 | [136] | [13,137,138,139] | [140] | ||
2005 | [141] | ||||
2006 | |||||
2007 | [142] | [143] | |||
2008 | |||||
2009 | [144] | ||||
2010 | [145] | ||||
2011 | [146] | [146] | [146,147] | [146] | [146] |
2012 | |||||
2013 | [148] | ||||
2014 | [149] | ||||
2015 | [150] | ||||
2016 | [151] | [151,152] | |||
2017 | [27] | ||||
2018 | [14,153,154] | [14,154] | [14,28,154] | [14,28,154] | [14,154] |
2019 | [155] | ||||
2020 | [156] | ||||
2021 | [157] | [157] | [157] |
Year | On-Grid | Off-Grid | |||
---|---|---|---|---|---|
100% Connected to the Grid | Wind Power Used to Power the Desalination Plant | Without Energy Storage System | With Energy Storage System | Hybrid System | |
2003 | [158,159] | ||||
2009 | [160] | [161] | |||
2015 | [162] | ||||
2020 | [163] | ||||
2021 | [164] | ||||
2023 | [165] |
Location | Reference | Type | Year |
---|---|---|---|
Cañada del Río, Fuerteventura, Spain | [200] | 100% connected to the grid | 1994 |
Rügen Island, Germany | [130] | Wind power used to power the desalination plant/standalone | 1999 |
Agragua, Gran Canaria, Spain | [201] | Wind power used to power the desalination plant | 2001 |
Soslaires, Gran Canaria, Spain | [91,202] | Wind power used to power the desalination plant | 2002 |
Milos Island, Greece | [199] | 100% connected to the grid | 2007 |
Corralejo, Fuerteventura, Spain | [203] | Wind power used to power the desalination plant | 2010 |
Gorona del Viento, El Hierro, Spain | [204,205] | 100% connected to the grid | 2014 |
Díaz Rijo, Lanzarote, Spain | [206] | Wind power used to power the desalination plant | 2016 |
Los Valles, Lanzarote, Spain | [207] | 100% connected to the grid | 2018 |
Puerto del Rosario, Fuerteventura, Spain | [208] | Wind power used to power the desalination plant | 2019 |
Conagrican, Gran Canaria, Spain | [209,210] | Wind power used to power the desalination plant | 2021 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Matos, C.; Cabrera, P.; Carta, J.A.; Melián-Martel, N. Wind-Powered Desalination on Islands: A Review of Energy–Water Pathways. J. Mar. Sci. Eng. 2024, 12, 464. https://doi.org/10.3390/jmse12030464
Matos C, Cabrera P, Carta JA, Melián-Martel N. Wind-Powered Desalination on Islands: A Review of Energy–Water Pathways. Journal of Marine Science and Engineering. 2024; 12(3):464. https://doi.org/10.3390/jmse12030464
Chicago/Turabian StyleMatos, Carlos, Pedro Cabrera, José A. Carta, and Noemi Melián-Martel. 2024. "Wind-Powered Desalination on Islands: A Review of Energy–Water Pathways" Journal of Marine Science and Engineering 12, no. 3: 464. https://doi.org/10.3390/jmse12030464
APA StyleMatos, C., Cabrera, P., Carta, J. A., & Melián-Martel, N. (2024). Wind-Powered Desalination on Islands: A Review of Energy–Water Pathways. Journal of Marine Science and Engineering, 12(3), 464. https://doi.org/10.3390/jmse12030464