First Results of a Campaign of the Measurement of Polycyclic Aromatic Hydrocarbons in the Sediments of the Hooghly River, West Bengal, India
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sampling Procedure
2.3. Analytical Procedure
3. Results
3.1. Chemical Features of Sediments
3.2. Toxicity Assessment of PAHs
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- McLusky, D.S.; Elliott, M. The Estuarine Ecosystem: Ecology, Threats and Management, 3rd ed.; Oxford Academic: Oxford, UK, 2004. [Google Scholar] [CrossRef]
- Bai, J.; Jia, J.; Zhang, G.; Zhao, Q.; Lu, Q.; Cui, B.; Liu, X. Spatial and temporal dynamics of heavy metal pollution and source identification in sediment cores from the short–term flooding riparian wetlands in a Chinese delta. Environ. Pollut. 2016, 219, 379–388. [Google Scholar] [CrossRef]
- Trifuoggi, M.; Donadio, C.; Ferrara, L.; Stanislao, C.; Toscanesi, M.; Arienzo, M. Levels of pollution of rare earth elements in the surface sediments from the Gulf of Pozzuoli (Campania, Italy). Mar. Pollut. Bull. 2018, 136, 374–384. [Google Scholar] [CrossRef]
- Arienzo, M.; Bolinesi, F.; Aiello, G.; Barra, D.; Donadio, C.; Stanislao, C.; Ferrara, L.; Mangoni, O.; Toscanesi, M.; Giarra, A.; et al. The environmental assessment of an estuarine transitional environment, southern Italy. J. Mar. Sci. Eng. 2020, 8, 628. [Google Scholar] [CrossRef]
- Arienzo, M.; Ferrara, L.; Toscanesi, M.; Giarra, A.; Donadio, C.; Trifuoggi, M. Sediment contamination by heavy metals and ecological risk assessment: The case of Gulf of Pozzuoli, Naples, Italy. Mar. Pollut. Bull. 2020, 155, 111149. [Google Scholar] [CrossRef]
- De Pippo, T.; Donadio, C.; Pennetta, M.; Petrosino, C.; Terlizzi, F.; Valente, A. Coastal hazard assessment and mapping in Northern Campania, Italy. Geomorphology 2008, 97, 451–466. [Google Scholar] [CrossRef]
- Shetye, S.R. Indian estuaries: Dynamics, ecosystems, and threats. Natl. Acad. Sci. Lett. 2011, 34, 229–237. [Google Scholar]
- Garzanti, E.; Andò, S.; Vezzoli, G. Grain-size dependence of sediment composition and environmental bias in provenance studies. Earth Planet. Sci. Lett. 2009, 277, 422–432. [Google Scholar] [CrossRef]
- Balu, S.; Bhunia, S.; Gachhui, R.; Mukherjee, J. Assessment of polycyclic aromatic hydrocarbon contamination in the Sundarbans, the world’s largest tidal mangrove forest and indigenous microbial mixed biofilm-based removal of the contaminants. Environ. Poll. 2020, 266, 115270. [Google Scholar] [CrossRef]
- Bhattacharya, A. The morphodynamic setting in substrate behavior of Sunderban Mangrove wetland, India. ENVIS Newsl. Wetl. Ecosyst. 2008, 4, 2–9. [Google Scholar]
- Binelli, A.; Sarkar, S.K.; Chatterjee, M.; Riva, C.; Parolini, M.; Bhattacharya, B.; Bhattacharya, A.K.; Satpathy, K.K. A comparison of sediment quality guidelines for toxicity assessment in the Sunderban Wetlands (Bay of Bengal, India). Chemosphere 2008, 73, 1129–1137. [Google Scholar] [CrossRef]
- Dominguez, C.; Sarkar, S.K.; Bhattacharya, A.; Chatterjee, M.; Bhattacharya, B.D.; Jover, E.; Albaiges, J.; Bayona, J.M.; Alam, M.A.; Satpathy, K.K. Quantification and source identification of polycyclic aromatic hydrocarbons in core sediments from Sundarban Mangrove Wetland, India. Arch. Environ. Contam. Toxicol. 2010, 59, 49–61. [Google Scholar] [CrossRef]
- Machado, A.A.S.; Wood, C.M.; Bianchini, A.; Gillis, P.A. Responses of biomarkers in wild freshwater mussels chronically exposed to complex contaminant mixtures. Ecotoxicology 2014, 23, 1345–1358. [Google Scholar] [CrossRef]
- Lee, C.C.; Chen, C.S.; Wang, Z.X.; Tien, C.J. Polycyclic aromatic hydrocarbons in 30 river ecosystems, Taiwan: Sources, and ecological and human health risks. Sci. Total Environ. 2021, 95, 148867. [Google Scholar] [CrossRef]
- Ambade, B.; Sethi, S.S.; Kumar, A.; Sankar, T.K.; Kurwadkar, S. Health risk assessment, composition, and distribution of polycyclic aromatic hydrocarbons (PAHs) in drinking water of Southern Jharkhand, East India. Arch. Environ. Contam. Toxicol. 2021, 80, 120–133. [Google Scholar] [CrossRef]
- Szatyłowicz, E.; Hawrylik, E. Assessment of Migration of PAHs Contained in Soot of Solid Fuel Combustion into the Aquatic Environment. Water 2022, 14, 3079. [Google Scholar] [CrossRef]
- Zeng, Q.; Jeppesen, E.; Gu, X.; Mao, Z.; Chen, H. Distribution, fate and risk assessment of PAHs in water and sediments from an aquaculture-and shipping-impacted subtropical lake, China. Chemosphere 2018, 201, 612–620. [Google Scholar] [CrossRef]
- Larsson, M.; Lam, M.M.; Hees, P.V.; Giesy, J.P.; Engwall, M. Occurrence and leachability of polycyclic aromatic compounds in contaminated soils: Chemical and bioanalytical characterization. Sci. Total Environ. 2018, 622–623, 1476–1484. [Google Scholar] [CrossRef]
- Ferrara, L.; Trifuoggi, M.; Toscanesi, M.; Donadio, C.; Barra, D.; Aiello, G.; Arienzo, M. Source identification and eco-risk assessment of polycyclic aromatic hydrocarbons in the sediments of seawaters facing the former steel plant ILVA, Naples, Italy. Reg. Stud. Mar. Sci. 2020, 35, 101097. [Google Scholar] [CrossRef]
- Pampanin, D.M.; Sydnes, M.O. Polycyclic aromatic hydrocarbons a constituent of petroleum: Presence and influence in the aquatic environment. In Hydrocarbon; Kutcherov, V., Kolesnikov, A., Eds.; IntechOpen: London, UK, 2013. [Google Scholar] [CrossRef]
- Krauss, M.; Wilcke, W.; Martius, C.; Bandeira, A.G.; Garcia, M.V.B.; Amelung, W. Atmospheric versus biological sources of polycyclic aromatic hydrocarbons (PAHs) in a tropical rain forest environment. Environ. Pollut. 2005, 135, 143–154. [Google Scholar] [CrossRef]
- Arienzo, M.; Donadio, C.; Mangoni, O.; Bolinesi, F.; Stanislao, C.; Trifuoggi, M.; Toscanesi, M.; Di Natale, G.; Ferrara, L. Characterization and source apportionment of polycyclic aromatic hydrocarbons (PAHs) in the sediments of gulf of Pozzuoli (Campania, Italy). Mar. Pollut. Bull. 2017, 124, 480–487. [Google Scholar] [CrossRef]
- Abdel-Shafy, H.I.; Mansour, M.S.M. A review on polycyclic aromatic hydrocarbons: Source, environmental impact, effect on human health and remediation. Egypt. J. Pet. 2016, 25, 107–123. [Google Scholar] [CrossRef]
- Guigue, C.; Tedetti, M.; HuyDang, D.; Mullot, J.; Garnier, C.; Goutxet, M. Remobilization of polycyclic aromatic hydrocarbons and organic matter in seawater during sediment resuspension experiments from a polluted coastal environment: Insights from Toulon Bay (France). Environ. Pollut. 2017, 229, 627–638. [Google Scholar] [CrossRef] [PubMed]
- Zuloaga, O.; Prieto, A.; Ahmed, K.; Sarkar, S.K.; Bhattacharya, A.; Chatterjee, M.; Bhattacharya, B.D.; Satpathy, K.K. Distribution of polycyclic aromatic hydrocarbons in recent sediments of Sundarban mangrove wetland of India and Bangladesh: A comparative approach. Environ. Earth Sci. 2013, 68, 355–367. [Google Scholar] [CrossRef]
- Zanardi-Lamardo, E.; Mitra, S.; Vieira-Campos, A.A.; TakeshiYogui, G.; Sarkar, S.K.; Biswas, J.K.; Godhantaraman, N. Distribution and sources of organic contaminants in surface sediments of Hooghly River estuary and Sundarban mangrove, eastern coast of India. Mar. Pollut. Bull. 2019, 146, 9–49. [Google Scholar] [CrossRef] [PubMed]
- Sadhuram, Y.; Sarma, V.V.; Ramana Murthy, T.V.; Rao, B.P. Seasonal variability of physico–chemical characteristics of the Haldia channel of Hooghly estuary, India. J. Earth Syst. Sci. 2005, 114, 37–49. [Google Scholar] [CrossRef]
- Mitra, S.; Ghosh, S.; Satpathy, K.K.; Bhattacharya, B.D.; Sarkar, S.K.; Mishra, P.; Raja, P. Water quality assessment of the ecologically stressed Hooghly River Estuary, India: A multivariate approach. Mar. Pollut. Bull. 2017, 126, 592–599. [Google Scholar] [CrossRef] [PubMed]
- Mondal, P.; de Alcântara, M.R.; Jonathan, M.P.; Biswas, J.K.; Murugan, K.; Sarkar, S.K. Seasonal assessment of trace element contamination in intertidal sediments of the meso-macrotidal Hooghly (Ganges) River Estuary with a note on mercury speciation. Mar. Pollut. Bull. 2018, 127, 117–130. [Google Scholar] [CrossRef]
- Rogers, K.G.; Goodbred, S.L.; Mondal, D.R. Monsoon sedimentation on the “abandoned” tide influenced Ganges-Brahmaputra Delta plain. Est. Coast. Shelf Sci. 2013, 131, 297–309. [Google Scholar] [CrossRef]
- Belloni, S. Una tabella universale per eseguire granulometrie col metodo della sedimentazione unica o col metodo del densimetro di Casagrande modificato. Geol. Tecton. 1969, 16, 1281–1289. [Google Scholar]
- Folk, R.L.; Ward, W.C. Brazos River bar: A study in the significance of grain size parameters. J. Sediment. Petrol. 1957, 27, 3–26. [Google Scholar] [CrossRef]
- Jackson, M.L. Soil Chemical Analysis; Prentice Hall of India Pvt. Ltd.: New Delhi, India, 1971; p. 498. [Google Scholar]
- Blott, S.J.; Pye, K. GRADISTAT: A particle size distribution and statistics package for the analysis of unconsolidated sediments. Earth Surf. Process. Landf. 2001, 26, 1237–1248. [Google Scholar] [CrossRef]
- Graham, D.; Midgley, N.G. Graphical representation of particle shape using triangular diagrams: An excel spreadsheet method. Earth Surf. Process. Landf. 2000, 25, 1473–1477. [Google Scholar] [CrossRef]
- Angelucci, A.; Palmerini, V. Studio sedimentologico delle sabbie rosse di Piverno (Lazio sud-occidentale). Geol. Romana 1964, 3, 203–226. [Google Scholar]
- IARC. Overall Evaluations of Carcinogenicity: An Updating of IARC Monographs Volumes 1 to 42. In IARC Monographs on the Evaluation of Carcinogenic Risks to Humans; International Agency for Research on Cancer: Lyon, France, 1987; Volume Supplement 7. [Google Scholar]
- Zhang, Y.; Guo, F.; Meng, W.; Wang, X.Q. Water quality assessment and source identification of Daliao river basin using multivariate statistical methods. Environ. Monit. Assess. 2009, 152, 105–121. [Google Scholar] [CrossRef] [PubMed]
- Liao, J.F. The chemical properties of the mangrove Solonchak in the northeast part of Hainan Island. Acta Sci. Nat. Univ. Sunyatseni 1990, 9, 67–72. [Google Scholar]
- Marion, G.M.; Millero, F.J.; Feistel, R. Precipitation of solid phase calcium carbonates and their effect on application of seawater SA-T-P models. Ocean Sci. 2009, 5, 285–291. [Google Scholar] [CrossRef]
- Antizar-Ladislao, B.; Mondal, P.; Mitra, S.; Sarkar, S.K. Assessment of trace metal contamination level and toxicity in sediments from coastal regions of West Bengal, eastern part of India. Mar. Pollut. Bull. 2015, 101, 886–894. [Google Scholar] [CrossRef] [PubMed]
- Sarkar, S.K.; Bilinski, S.F.; Bhattacharya, A.; Saha, M.; Bilinski, H. Levels of elements in the surficial estuarine sediments of the Hugli River, northeast India and their environmental implications. Environ. Int. 2004, 30, 1089–1098. [Google Scholar] [CrossRef]
- Chatterjee, M.; Silva Filho, E.V.; Sarkar, S.K.; Sella, S.M.; Bhattacharya, A.; Satpathy, K.K. Distribution and possible source of trace elements in the sediment cores of a tropical macrotidal estuary and their ecotoxicological significance. Environ. Int. 2007, 33, 346–356. [Google Scholar] [CrossRef]
- Carthew, K.D.; Taylor, M.P.; Drysdale, R.N. Are current models of tufa sedimentary environments applicable to tropical systems? A case study from the Gregory River. Sediment. Geol. 2003, 162, 199–221. [Google Scholar] [CrossRef]
- Arienzo, M.; Trifuoggi, M.; Ferrara, L.; Donadio, C.; Mondal, P.; Ponniah, J.M.; Sarkar, S.K.; Toscanesi, M. Influence of monsoon season on heavy metal composition of Hooghly River estuary sediments, West Bengal, India. J. Geochem. Explor. 2023, 248, 107181. [Google Scholar] [CrossRef]
- Friedman, G.M. Dynamic Processes and Statistical Parameters Compared for Size Frequency Distribution of Beach and River Sands. J. Sediment. Petrol. 1967, 37, 327–354. [Google Scholar]
- Duodu, G.O.; Ogogo, K.N.; Mummullage, S.; Harden, F.; Goonetilleke, A.; Ayoko, G.A. Source apportionment and risk assessment of PAHs in Brisbane River sediment, Australia. Ecol. Indic. 2017, 73, 784–799. [Google Scholar] [CrossRef]
- Lei, P.; Pan, K.; Zhang, H.; Bi, J. Pollution and risk of PAHs in surface sediments from the tributaries and their relation to anthropogenic activities, in the main urban districts of Chongqing city, Southwest China. Bull. Environ. Contam. Toxicol. 2019, 103, 28–33. [Google Scholar] [CrossRef]
- Chen, H.Y.; Teng, Y.G.; Wang, J.S. Source apportionment of polycyclic aromatic hydrocarbons (PAHs) in surface sediments of the Rizhao coastal area (China) using diagnostic ratios and factor analysis with nonnegative constraints. Sci. Total Environ. 2012, 414, 293–300. [Google Scholar] [CrossRef] [PubMed]
- Mzoughi, N.; Chouba, L. Distribution and partitioning of aliphatic hydrocarbons and polycyclic aromatic hydrocarbons between water, suspended particulate matter, and sediment in harbours of the West coastal of the Gulf of Tunis (Tunisia). J. Environ. Monit. 2011, 13, 689–698. [Google Scholar] [CrossRef] [PubMed]
- Trabelsi, S.; Driss, M.R. Polycyclic aromatic hydrocarbons in superficial coastal sediments from Bizerte Lagoon, Tunisia. Mar. Pollut. Bull. 2005, 50, 344–348. [Google Scholar] [CrossRef] [PubMed]
- Barhoumi, B.; LeMenach, K.; Devier, M.H.; Ameur, W.B.; Etcheber, H.; Budzinski, H.; Cachot, J.; Driss, M.R. Polycyclic aromatic hydrocarbons (PAHs) in surface sediments from the Bizerte Lagoon, Tunisia: Levels, sources, and toxicological significance. Environ. Monit. Assess. 2014, 186, 2653–2669. [Google Scholar] [CrossRef] [PubMed]
- Ameur, W.B.; Trabelsi, S.; Driss, M.R. Polycyclic aromatic hydrocarbons in superficial sediments from Ghar El Melh Lagoon, Tunisia. Bull. Environ. Contam. Toxicol. 2010, 85, 184–189. [Google Scholar] [CrossRef]
- Baumard, P.; Budzinski, H.; Garrigues, P.H.; Sorbe, J.C.; Burgeot, T.; Bellocq, J. Concentrations of PAHs (polycyclic aromatic hydrocarbons) in various marine organisms in relation to those in sediments and to trophic level. Mar. Pollut. Bull. 1998, 36, 951–960. [Google Scholar] [CrossRef]
- Zakaria, M.P.; Takada, H.; Tsutsumi, S.; Ohno, K.; Yamada, J.; Kouno, E.; Kumata, H. Distribution of polycyclic aromatic hydrocarbons (PAHs) in rivers and estuaries in Malaysia: A widespread input of petrogenic PAHs. Environ. Sci. Technol. 2002, 36, 1907–1918. [Google Scholar] [CrossRef] [PubMed]
- Yunker, M.B.; Macdonald, R.W.; Vingarzan, R.; Mitchell, R.H.; Goyette, D.; Sylvestre, S. PAHs in the Fraser River basin: A critical appraisal of PAH ratios as indicators of PAH source and composition. Org. Geochem. 2002, 33, 489–515. [Google Scholar] [CrossRef]
- Kerr, J.M.; Melton, H.R.; McMillen, S.J.; Magaw, R.I.; Naughton, G.; Little, G.N. Polyaromatic hydrocarbon content in crude oils around the world. In Proceedings of the 1999 SPE/EPA Exploration and Production Environmental Conference, Austin, TX, USA, 28 February–3 March 1999. [Google Scholar]
- Guzzella, L.; Depaolis, A. Polycyclic aromatic hydrocarbons in sediments of the Adriatic Sea. Mar. Pollut. Bull. 1994, 28, 159–165. [Google Scholar] [CrossRef]
- Long, E.R.; MacDonald, D.D. Recommended uses of empirically derived, sediment quality guidelines for marine and estuarine ecosystems. Hum. Ecol. Risk Assess. 1998, 4, 1019–1039. [Google Scholar] [CrossRef]
- Mumtaz, M.; George, J. Toxicological Profile for Polycyclic Aromatic Hydrocarbons; U.S. Department of Health and Human Services, Agency for Toxic Substances and Disease Registry: Atlanta, GA, USA, 1995. [Google Scholar]
- Obini, U.; Okafor, C.O.; Afuikwu, J.N. Determination of level of polycyclic aromatic hydrocarbon in soil contaminated with spent motor engine oil in abakaliki auto mechanic village. J. Appl. Sci. Environ. Manag. 2013, 17, 169–175. [Google Scholar] [CrossRef]
- Nisbet, I.C.T.; LaGoy, P.K.I. Toxic equivalency factors (TEFs) for polycyclic aromatic hydrocarbons (PAHs). Regul. Toxicol. Pharmacol. 1992, 16, 290–300. [Google Scholar] [CrossRef] [PubMed]
- US EPA. Polycyclic Aromatic Hydrocarbons (PAHs)—EPA Fact Sheet; National Center for Environmental Assessment, Office of Research and Development: Washington, DC, USA, 2008. [Google Scholar]
- Li, G.L.; Lang, Y.H.; Gao, M.S.; Yang, W.; Peng, P.; Wang, X.M. Carcinogenic and mutagenic potencies for different PAHs sources in coastal sediments of Shandong Peninsula. Mar. Pollut. Bull. 2014, 84, 418–423. [Google Scholar] [CrossRef]
- Adeniji, A.O.; Okoh, O.O.; Okoh, A.I. Distribution pattern and health risk assessment of polycyclic aromatic hydrocarbons in the water and sediment of Algoa Bay, South Africa. Environ. Geochem. Health 2019, 41, 1303–1320. [Google Scholar] [CrossRef]
Zones | Sampling Sites | Latitude N | Longitude E | pH | Corg % | CaCO3 % |
---|---|---|---|---|---|---|
Freshwater ~90 km | S1 Tribeni | 22°59′25″ | 88°24′12″ | 7.27 (6.93–7.90) | 0.34 (0.15–0.72) | 12.46 (9.09–15.60) |
S2 Barrackpore | 22°45′51″ | 88°20′40″ | 7.41 (7.05–7.73) | 0.42 (0.24–0.63) | 13.43 (10.04–16.33) | |
S3 Babughat | 22°49′32″ | 88°21′39″ | 7.39 (6.77–7.76) | 0.51 (0.15–1.14) | 11.48 (4.4–14.69) | |
S4 Budge Budge | 22°33′58″ | 88°11′16″ | 7.26 (6.85–7.53) | 0.51 (0.18–0.75) | 11.4 (8.33–13.43) | |
Brackish ~23 km | S5 Nurpur | 22°12′40″ | 88°04′16″ | 7.59 (6.80–8.11) | 0.39 (0.15–0.65) | 11.14 (7.20–13.89) |
S6 Diamond Harbor | 22°11′13″ | 88°11′24″ | 7.55 (7.16–7.94) | 0.47 (0.12–0.84) | 11.20 (6.34–14.74) | |
Estuarine ~63 km | S7 Lot 8 | 22°52′29″ | 88°10′09″ | 7.46 (7.03–7.83) | 0.42 (018–0.76) | 11.71 (1.98–15.54) |
S8 Gangasagar | 22°38′24″ | 88°04′46″ | 7.44 (7.13–7.91) | 0.43 (0.15–0.82) | 9.98 (6.37–15.54) |
Zones | Sampling Sites | Sand % | Silt % | Clay % | Class 1 | Mo | Mz | σI ϕ 2 | SkI | KG |
---|---|---|---|---|---|---|---|---|---|---|
Freshwater ~90 km | S1 Tribeni | 19.49 (11.22–32.08) | 30.80 (8.94–50.6) | 49.71 (36.91–75.72) | Silty-sandy clay | unimodal | 4.602 | 1.031 | 0.346 | 1.583 |
S2 Barrackpore | 15.84 (2.34–30.06) | 35.19 (17.15–62.18) | 48.97 (14.89–70.54) | Silty-sandy clay | unimodal | 4.691 | 0.765 | 0.272 | 1.357 | |
S3 Babughat | 16.78 (3.35–28.89) | 34.96 (23.23-55.43) | 48.52 (35.42–64.09) | Silty-sandy clay | unimodal | 4.472 | 0.575 | 0.194 | 1.420 | |
S4 Budge Budge | 14.96 (4.96–22.33) | 33.43 (23.7–62.33) | 51.60 (29.79–71.34) | Silty-sandy clay | unimodal | 4.472 | 0.575 | 0.201 | 1.593 | |
Brackish ~23 km | S5 Nurpur | 7.45 (2.15–13.45) | 32.93 (24.26–61.70) | 59.62 (36.15–68.52) | Silty-sandy clay | unimodal | 4.482 | 0.610 | 0.445 | 1.186 |
S6 Diamond Harbour | 8.73 (4.36–13.67) | 32.85 (24.98–63.29) | 58.43 (31.68–66.01) | Silty-sandy clay | unimodal | 4.859 | 0.776 | 0.538 | 1.517 | |
Estuarine ~63 km | S7 Lot 8 | 10.45 (0.9–20.09) | 32.22 (7.25–48.76) | 58.33 (31.15–87.55) | Silty-sandy clay | unimodal | 4.852 | 0.899 | 0.431 | 1.075 |
S8 Gangasagar | 34.61 (17.29–65.42) | 28.43 (17.00–40.38) | 36.96 (16.98–51.6) | Sandy-silty clay | unimodal | 4.850 | 0.805 | 0.409 | 1.137 |
NAP | ACY | ACE | FLR | PHE | ANT | FLT | PYR | BaA | CHR | BbF | BkF | BaP | DhA | IP | BgP | Total PAHs | TotalPD a PAHs | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Mean | 2.94 | 16.8 | 0.116 | 1.52 | 190 | 82.7 | 431 | 256 | 92.6 | 106 | 116 | 66.0 | 72.4 | 26.0 | 125 | 107 | 1682 | 445 |
0–88.4 | 0–580 | 0–18.4 | 0–36.6 | 0–2315 | 0–2129 | 0–7728 | 0–5319 | 0–2033 | 0–3617 | 0–5696 | 0–2925 | 0–3154 | 0–2180 | 0–7952 | 0–6080 | 0–47,366 | 0–18,137 | |
Law limits | 35 | 45 | 110 | 40 | 20 | 30 | 70 | 55 | 800 |
TEQ | MEQ | CEQ | * ΣPAHcarc/ΣPAHs | |
---|---|---|---|---|
Mean | 245 | 184 | 0.851 | 0.181 |
range | 0–10,902 | 0–9041 | 0–41.3 | 0–0.913 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arienzo, M.; Toscanesi, M.; Ferrara, L.; Donadio, C.; Mondal, P.; Ponniah, J.M.; Napolitano, G.; Kumar Sarkar, S.; Trifuoggi, M. First Results of a Campaign of the Measurement of Polycyclic Aromatic Hydrocarbons in the Sediments of the Hooghly River, West Bengal, India. J. Mar. Sci. Eng. 2024, 12, 666. https://doi.org/10.3390/jmse12040666
Arienzo M, Toscanesi M, Ferrara L, Donadio C, Mondal P, Ponniah JM, Napolitano G, Kumar Sarkar S, Trifuoggi M. First Results of a Campaign of the Measurement of Polycyclic Aromatic Hydrocarbons in the Sediments of the Hooghly River, West Bengal, India. Journal of Marine Science and Engineering. 2024; 12(4):666. https://doi.org/10.3390/jmse12040666
Chicago/Turabian StyleArienzo, Michele, Maria Toscanesi, Luciano Ferrara, Carlo Donadio, Priyanka Mondal, Jonathan Muthuswamy Ponniah, Gaetana Napolitano, Santosh Kumar Sarkar, and Marco Trifuoggi. 2024. "First Results of a Campaign of the Measurement of Polycyclic Aromatic Hydrocarbons in the Sediments of the Hooghly River, West Bengal, India" Journal of Marine Science and Engineering 12, no. 4: 666. https://doi.org/10.3390/jmse12040666
APA StyleArienzo, M., Toscanesi, M., Ferrara, L., Donadio, C., Mondal, P., Ponniah, J. M., Napolitano, G., Kumar Sarkar, S., & Trifuoggi, M. (2024). First Results of a Campaign of the Measurement of Polycyclic Aromatic Hydrocarbons in the Sediments of the Hooghly River, West Bengal, India. Journal of Marine Science and Engineering, 12(4), 666. https://doi.org/10.3390/jmse12040666