Spacing Ratio Effects on the Evolution of the Flow Structure of Two Tandem Circular Cylinders in Proximity to a Wall
Abstract
:1. Introduction
2. Experiment and Data Processing Method
2.1. Experiment Model and Measurement
2.2. Uncertainty of Time-Averaged Velocity
2.3. Data Processing Method
3. Results and Discussion
3.1. Mean Flow Physics
3.2. Evolution of Flow Structure
3.2.1. Vortex Shedding Characteristic
3.2.2. Evolution Process of Flow Structure
3.3. The Reynolds Stresses and Turbulent Transport
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Alam, M.M.; Zhou, Y. Flow around two side-by-side closely spaced circular cylinders. J. Fluids Struct. 2007, 23, 799–805. [Google Scholar] [CrossRef]
- Li, Z.; Prsic, M.A.; Ong, M.C.; Khoo, B.C. Large Eddy Simulations of flow around two circular cylinders in tandem in the vicinity of a plane wall at small gap ratios. J. Fluids Struct. 2018, 76, 251–271. [Google Scholar] [CrossRef]
- Prsic, M.A.; Ong, M.C.; Pettersen, B.; Myrhaug, D. Large Eddy simulations of flow around tandem circular cylinders in the vicinity of a plane wall. J. Mar. Sci. Tech. 2019, 24, 338–358. [Google Scholar] [CrossRef]
- Wu, G.F.; Lin, W.Q.; Du, X.Q.; Shi, C.L.; Zhu, J.Y. On the flip-flopping phenomenon of two side-by-side circular cylinders at a high subcritical Reynolds number of 1.4 × 105. Phys. Fluids 2020, 32, 094112. [Google Scholar] [CrossRef]
- Eizadi, H.; An, H.W.; Zhou, T.M.; Zhu, H.J.; Cheng, L. Wake transitions of six tandem circular cylinders at low Reynolds numbers. Phys. Fluids 2022, 34, 023605. [Google Scholar] [CrossRef]
- Lin, W.J.; Lin, C.; Hsieh, S.C.; Dey, S. Flow characteristics around a circular cylinder placed horizontally above a plane boundary. J. Eng. Mech. 2009, 135, 697–716. [Google Scholar] [CrossRef]
- Kiya, M.; Arie, M.; Tamura, H.; Mori, H. Vortex shedding from two circular cylinders in staggered arrangement. ASME J. Fluids Eng. 1980, 102, 166–173. [Google Scholar] [CrossRef]
- Wang, X.K.; Zhang, J.-X.; Hao, Z.; Zhou, B.; Tan, S.K. Influence of wall proximity on flow around two tandem circular cylinders. Ocean Eng. 2015, 94, 36–50. [Google Scholar] [CrossRef]
- Hu, D.; Tang, W.; Sun, L.; Li, F.; Ji, X.Y. Numerical simulation of local scour around two pipelines in tandem using CFD-DEM method. Appl. Ocean Res. 2019, 93, 101968. [Google Scholar] [CrossRef]
- Liu, Y.L.; Qi, L.M.; Zhou, J.K.; Li, J.H.; Tao, Y.Z.; Qiu, X. Experimental research on wake characteristics and vortex evolution of side-by-side circular cylinders placed near a wall. Ocean Eng. 2023, 285, 115268. [Google Scholar] [CrossRef]
- Zdravkovich, M.M. The effects of interference between circular cylinders in cross flow. J. Fluids Struct. 1987, 1, 239–261. [Google Scholar] [CrossRef]
- Zhou, Y.; Yiu, M.W. Flow structure, momentum and heat transport in a two-tandem-cylinder wake. J. Fluid Mech. 2006, 548, 17–48. [Google Scholar] [CrossRef]
- Xu, G.; Zhou, Y. Strouhal numbers in the wake of two inline cylinders. Exp. Fluids 2004, 37, 248–256. [Google Scholar] [CrossRef]
- Zhou, Q.; Alam, M.M.; Cao, S.Y.; Liao, H.L.; Li, M.S. Numerical study of wake and aerodynamic forces on two tandem circular cylinders at Re = 103. Phys. Fluids 2019, 31, 45–62. [Google Scholar] [CrossRef]
- Lin, J.-C.; Yang, Y.; Rockwell, D. Flow past two cylinders in tandem: Instantaneous and averaged flow structure. J. Fluids Struct. 2002, 16, 1059–1071. [Google Scholar] [CrossRef]
- Igarashi, T. Characteristics of the Flow around Two Circular Cylinders Arranged in Tandem: 1st Report. Bull. JSME 1981, 24, 323–331. [Google Scholar] [CrossRef]
- Ljungkrona, L.; Norberg, C.; Sundén, B. Free-stream turbulence and tube spacing effects on surface pressure fluctuations for two tubes in an in-line arrangement. J. Fluids Struct. 1991, 5, 701–727. [Google Scholar] [CrossRef]
- Ljungkrona, L.; Sundén, B. Flow visualization and surface pressure measurement on two tubes in an inline arrangement. Exp. Therm Fluid Sci. 1993, 6, 15–27. [Google Scholar] [CrossRef]
- Wu, J.; Welch, L.W.; Welsh, M.C.; Sheridan, J.; Walker, G.J. Spanwise wake structures of a circular cylinder and two circular cylinders in tandem. Exp. Therm. Fluid Sci. 1994, 9, 299–308. [Google Scholar] [CrossRef]
- Sumner, D. Two circular cylinders in cross-flow: A review. J. Fluids Struct. 2010, 26, 849–899. [Google Scholar] [CrossRef]
- Alam, M.M. The aerodynamics of a cylinder submerged in the wake of another. J. Fluids Struct. 2014, 51, 393–400. [Google Scholar] [CrossRef]
- Harichandan, A.B.; Roy, A. Numerical investigation of flow past single and tandem cylindrical bodies in the vicinity of a plane wall. J. Fluids Struct. 2012, 33, 19–43. [Google Scholar] [CrossRef]
- Rao, A.; Thompson, M.C.; Leweke, T.; Hourigan, K. Dynamics and stability of the wake behind tandem cylinders sliding along a wall. J. Fluid Mech. 2013, 722, 291–316. [Google Scholar] [CrossRef]
- D’Souza, J.E.; Jaiman, R.K.; Mak, C.K. Dynamics of tandem cylinders in the vicinity of a plane moving wall. Comput. Fluids 2016, 124, 117–135. [Google Scholar] [CrossRef]
- Tang, G.Q.; Chen, C.Q.; Zhao, M.; Lu, L. Numerical simulation of flow past twin near-wall circular cylinders in tandem arrangement at low Reynolds number. Water Sci. Eng. 2015, 8, 1–11. [Google Scholar] [CrossRef]
- Sciacchitano, A.; Wieneke, B. PIV uncertainty propagation. Meas. Sci. Technol. 2016, 27, 084006. [Google Scholar] [CrossRef]
- Qu, Y.; Wang, J.J.; Feng, L.H.; He, X. Effect of excitation frequency on flow characteristics around a square cylinder with a synthetic jet positioned at front surface. J. Fluid Mech. 2019, 880, 764–798. [Google Scholar] [CrossRef]
- Feng, L.H.; Wang, J.J.; Pan, C. Proper orthogonal decomposition analysis of vortex dynamics of a circular cylinder under synthetic jet control. Phys. Fluids 2011, 23, 014106. [Google Scholar] [CrossRef]
- Berkooz, G.; Holmes, P.; Lumley, J.L. The proper orthogonal decomposition in the analysis of turbulent flows. Annu. Rev. Fluid Mech. 1993, 25, 539–575. [Google Scholar] [CrossRef]
- Van Oudheusden, B.W.; Scarano, F.; Van Hinsberg, N.P.; Watt, D.W. Phase-resolved characterization of vortex shedding in the near wake of a square-section cylinder at incidence. Exp. Fluids 2005, 39, 86–98. [Google Scholar] [CrossRef]
- Qu, Y.; Wang, J.J.; Sun, M.; Feng, L.H.; Pan, C. Wake vortex evolution of square cylinder with a slot synthetic jet positioned at the rear surface. J. Fluid Mech. 2017, 812, 940–996. [Google Scholar] [CrossRef]
- Zhou, J.; Adrian, R.J.; Balachandar, S.; Kendall, T.M. Mechanisms for generating coherent packets of hairpin vortices in channel flow. J. Fluid Mech. 1999, 387, 353–396. [Google Scholar] [CrossRef]
- Jeong, J.; Hussain, F. On the identification of a vortex. J. Fluid Mech. 1995, 185, 69–94. [Google Scholar] [CrossRef]
- Hauser, H.; Hagen, H.; Theisel, H. Topology-Based Methods in Visualization; Springer: Berlin/Heidelberg, Germany, 2007. [Google Scholar]
- Karches, T. Towards a Dynamic Compartmental Model of a Lamellar Settler. Symmetry 2023, 15, 864. [Google Scholar] [CrossRef]
- He, G.S.; Wang, J.J. Flat plate boundary layer transition induced by a controlled near-wall circular cylinder wake. Phys. Fluids 2015, 27, 024106. [Google Scholar] [CrossRef]
- Tang, Z.Q.; Wu, Y.H.; Jia, Y.X.; Jiang, N. PIV measurements of a turbulent boundary layer perturbed by a wall-mounted transverse circular cylinder element. Flow Turbul. Combust. 2018, 100, 365–389. [Google Scholar] [CrossRef]
- Mohebi, M.; Wood, D.H.; Martinuzzi, R.J. The turbulence structure of the wake of a thin flat plate at post-stall angles of attack. Exp. Fluids 2017, 58, 67. [Google Scholar] [CrossRef]
- Abdelhady, M.; Wood, D.H. An investigation of the wakes of stranded cables using particle image velocimetry. Phys. Fluids 2021, 33, 035132. [Google Scholar] [CrossRef]
- He, G.S.; Wang, J.J.; Pan, C.; Feng, L.H.; Gao, Q. Vortex dynamics for flow over a circular cylinder in proximity to a wall. J. Fluid Mech. 2017, 812, 698–720. [Google Scholar] [CrossRef]
- Zhou, J.K.; Qiu, X.; Li, J.H.; Liu, Y.L. Vortex evolution of flow past the near-wall circular cylinder immersed in a flat-plate turbulent boundary layer. Ocean Eng. 2022, 260, 112011. [Google Scholar] [CrossRef]
- Price, S.J.; Sumner, D.; Smith, J.G.; Leong, K.; Paidoussis, M.P. Flow visualization around a circular cylinder near to a plane wall. J. Fluids Struct. 2002, 16, 175–191. [Google Scholar] [CrossRef]
- Zhou, J.K.; Qiu, X.; Li, J.H.; Liu, Y.L. The gap ratio effects on vortex evolution behind a circular cylinder placed near a wall. Phys. Fluids 2021, 33, 037112. [Google Scholar] [CrossRef]
- Lengani, D.; Simoni, D.; Ubaldi, M.; Pietro, Z. POD analysis of the unsteady behavior of a laminar separation bubble. Exp. Ther. Fluid Sci. 2014, 58, 70–79. [Google Scholar] [CrossRef]
- Dipankar, A.; Sengupta, T.K. Flow past a circular cylinder in the vicinity of a plane wall. J. Fluids Struct. 2005, 20, 403–423. [Google Scholar] [CrossRef]
- Chen, L.F.; Wang, Y.T.; Sun, S.; Wang, S.Q. The effect of boundary shear flow on hydrodynamic forces of a pipeline over a fully scoured seabed. Ocean Eng. 2020, 206, 107326. [Google Scholar] [CrossRef]
- Chen, W.L.; Ji, C.N.; Xu, D.; Zhang, Z.M. Vortex-induced vibrations of two inline circular cylinders in proximity to a stationary wall. J. Fluids Struct. 2020, 94, 102958. [Google Scholar] [CrossRef]
- Liu, J.; Gao, F.P. Triggering mechanics for transverse vibrations of a circular cylinder in a shear flow: Wall-proximity effects. J. Fluids Struct. 2022, 108, 103423. [Google Scholar] [CrossRef]
- Ikhennicheu, M.; Druault, P.; Gaurier, B.; Germain, G. Turbulent kinetic energy budget in a wall-mounted cylinder wake using PIV measurements. Ocean Eng. 2020, 210, 107582. [Google Scholar] [CrossRef]
- He, G.S.; Pan, C.; Feng, L.H.; Gao, Q.; Wang, J.J. Evolution of Lagrangian coherent structures in a cylinder-wake disturbed flat plate boundary layer. J. Fluid Mech. 2016, 792, 274–306. [Google Scholar] [CrossRef]
- Hu, X.F.; Zhang, X.S.; You, Y.X. On the flow around two circular cylinders in tandem arrangement at high Reynolds numbers. Ocean Eng. 2019, 189, 106301. [Google Scholar] [CrossRef]
Author | Method | Research Object | |||
---|---|---|---|---|---|
Rao et al. [23] | Numerical simulation | Wake characteristics | |||
Tang et al. [25] | Numerical simulation | , , | |||
Wang et al. [8] | PIV | , , and flow regimes | |||
D’Souza et al. [24] | Numerical simulation | force and wake dynamics | |||
Li et al. [2] | Large eddy simulations | and | and | , and flow characteristics | |
Prsic et al. [3] | Large eddy simulations | and | and | , and flow regimes | |
Present study | PIV | and | , vortex evolution, vortex interaction |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qiu, X.; Ji, X.; Zhou, J.; Li, J.; Tao, Y.; Liu, Y. Spacing Ratio Effects on the Evolution of the Flow Structure of Two Tandem Circular Cylinders in Proximity to a Wall. J. Mar. Sci. Eng. 2024, 12, 721. https://doi.org/10.3390/jmse12050721
Qiu X, Ji X, Zhou J, Li J, Tao Y, Liu Y. Spacing Ratio Effects on the Evolution of the Flow Structure of Two Tandem Circular Cylinders in Proximity to a Wall. Journal of Marine Science and Engineering. 2024; 12(5):721. https://doi.org/10.3390/jmse12050721
Chicago/Turabian StyleQiu, Xiang, Xuezhi Ji, Jiankang Zhou, Jiahua Li, Yizhou Tao, and Yulu Liu. 2024. "Spacing Ratio Effects on the Evolution of the Flow Structure of Two Tandem Circular Cylinders in Proximity to a Wall" Journal of Marine Science and Engineering 12, no. 5: 721. https://doi.org/10.3390/jmse12050721
APA StyleQiu, X., Ji, X., Zhou, J., Li, J., Tao, Y., & Liu, Y. (2024). Spacing Ratio Effects on the Evolution of the Flow Structure of Two Tandem Circular Cylinders in Proximity to a Wall. Journal of Marine Science and Engineering, 12(5), 721. https://doi.org/10.3390/jmse12050721