Pore Structure Characteristics and Reservoir Classification of Tight Sandstones within the Upper Permian Longtan Formation in the Laoshan Uplift, South Yellow Sea Basin: Implications for Hydrocarbon Exploration
Abstract
:1. Introduction
2. Geological Setting
3. Materials and Methods
3.1. Samples and Experimental Methods
3.2. Fractal Theory and Computational Methods
4. Results
4.1. Petrophysical Properties, Lithological Characteristics, and Pore Types
4.2. Pore structure Characteristics
4.2.1. High-Pressure Mercury Injection Characteristics
4.2.2. Nuclear Magnetic Resonance Characteristics
4.3. Fractal Characteristics
4.3.1. Fractal Analysis of High-Pressure Mercury Injection in Tight Sandstone
4.3.2. Fractal Analysis of Nuclear Magnetic Resonance in Tight Sandstone
5. Discussion
5.1. Variances in Full-Scale Pore Size Distribution Identified through Multiple Testing Methods
5.2. Influence of Pore Structure on Petrophysical Properties
5.3. Reservoir Classification Evaluation
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pollastro, R.M. Total petroleum system assessment of undiscovered resources in the giant Barnett Shale continuous (unconventional) gas accumulation, gas accumulation, Fort Worth Basin, Texas. AAPG Bull. 2007, 91, 551–578. [Google Scholar] [CrossRef]
- Zou, C.; Zhu, R.; Wu, S.; Yang, Z.; Tao, S.; Yuan, X.; Hou, L.; Yang, H.; Xu, C.; Li, D.; et al. Types, characteristics, genesis and prospects of conventional and unconventional hydrocarbon accumulations: Taking tight oil and tight gas in China as an instance. Acta Petrol. Sin. 2012, 33, 173–187. [Google Scholar]
- Jia, C.; Zou, C.; Li, J.; Li, D.; Zheng, M. Assessment criteria, main types, basic features and resource prospects of the tight oil in China. Acta Petrol. Sin. 2012, 33, 343–350. [Google Scholar]
- Li, G.; Zhu, R. Progress, challenges and key issues of unconventional oil and gas development of CNPC. China Pet. Explor. 2020, 25, 1. [Google Scholar]
- Zhang, P.; Lee, Y.I.; Zhang, J. A review of high-resolution X-ray computed tomography applied to petroleum geology and a case study. Micron 2019, 124, 102702. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Zou, C. Orderly “symbiotic enrichment” of conventional & unconventional oil and gas---discussion on theory and technology of conventional & unconventional petroleum geology. Acta Geol. Sin. 2022, 96, 1635–1653. [Google Scholar]
- Yao, J.; Liu, X.; Zhao, H.; Li, X. Characteristics of He 8th member tight sandstone gas reservoir and solution based on geology-engineering integration in Ordos Basin. China Pet. Explor. 2019, 24, 186–195. [Google Scholar]
- Wang, J.; Zhang, C.; Li, J.; Li, Y.; Li, X.; Liu, P.; Lu, J. Tight sandstone gas reservoirs in the Sulige Gas Field: Development understandings and stable-production proposals. Nat. Gas Ind. 2021, 41, 100–110. [Google Scholar]
- Liu, N.; He, K.; Ye, C. Application of geology-engineering integration in the development of tight gas reservoir in Sulige Gasfield. China Pet. Explor. 2017, 22, 53–60. [Google Scholar]
- Shi, X.; You, L.; Ge, Y.; Hu, Y.; Ma, L.; Wang, Y.; Guo, S. Water production mechanism in tight sandstone gas reservoirs after fracturing in Linxing Gas Field. Xinjiang Pet. Geol. 2024, 45, 81–87. [Google Scholar]
- Zhao, X.; Li, H.; Fu, L.; Cui, Y.; Han, G.; Lou, D.; Pu, X.; Liu, G.; Jiang, W.; Dong, X.; et al. Characteristics, main controlling factors and development mode of Paleozoic coal-formed condensate gas reservoirs in Huanghua depression, Bohai Bay Basin. Acta Petrol. Sin. 2021, 42, 1592–1604. [Google Scholar]
- Li, J.; Pu, R.; Wu, Y.; Tian, Y. Sedimentary characteristics and favorable reservoir prediction of Longtan Formation in Huangqiao area, Jiangsu Province. Pet. Geol. Exp. 2012, 34, 395–399. [Google Scholar]
- Tobin, R.C.; McClain, T.; Lieber, R.B.; Ozkan, A.; Banfield, L.A.; Marchand, A.M.E.; McRae, L.E. Reservoir quality modeling of tight-gas sands in Wamsutter field: Integration of diagenesis, petroleum systems, and production data. AAPG Bull. 2020, 94, 1229–1266. [Google Scholar] [CrossRef]
- Zhang, P.; Lee, Y.I.; Zhang, J. Diagenesis of tight-gas sandstones from the Lower Cretaceous Denglouku Formation, Songliao Basin, NE China: Implications for reservoir quality. J. Petrol. Geol. 2015, 38, 99–114. [Google Scholar] [CrossRef]
- Zhang, P.; Lee, Y.I.; Zhang, J. Diagenetic controls on the reservoir quality of tight oil-bearing sandstones in the Upper Triassic Yanchang Formation, Ordos Basin, North-Central China. J. Petrol. Geol. 2020, 43, 225–244. [Google Scholar] [CrossRef]
- Khormali, A.; Ahmadi, S. Prediction of barium sulfate precipitation in dynamic tube blocking tests and its inhibition for waterflooding application using response surface methodology. J. Petrol. Explor. Prod. Technol. 2023, 13, 2267–2281. [Google Scholar] [CrossRef]
- Fu, Y.; Yan, B.; Liang, J.; Chen, J.; Lei, B.; Wang, M.; Tan, M.; Yang, C.; Yuan, Y.; Zhang, P. Influence of basement high and detachment on the kinematics of a fold-and-thrust belt in the central South Yellow Sea Basin, China: Insights from analog modeling. Mar. Pet. Geol. 2024, 160, 17. [Google Scholar] [CrossRef]
- Zhang, X.; Guo, X.; Wu, Z.; Xiao, G.; Zhang, X.; Zhu, X. Preliminary results and geological significance of Well CSDP-2 in the Central Uplift of South Yellow Sea Basin. Chin. J. Geophys. 2019, 62, 197–218. [Google Scholar] [CrossRef]
- Chen, J.; Lei, B.; Liang, J.; Zhang, Y.; Wu, S.; Shi, J.; Wang, J.; Yuan, Y.; Zhang, Y.; Li, G.; et al. New progress of petroleum resources survey in South Yellow Sea basin. Mar. Geol. Quat. Geol. 2018, 38, 1–23. [Google Scholar]
- Lei, B.; Chen, J.; Liang, J.; Zhang, Y.; Li, G. Tectonic deformation and evolution of the South Yellow Sea basin since Indosinian movement. Mar. Geol. Quat. Geol. 2018, 38, 45–54. [Google Scholar]
- Cai, L.; Wang, J.; Guo, X.; Xiao, G.; Zhu, X.; Pang, Y. Characteristics of sedimentary facies and source rocks of Mesozoic-Paleozoic in Central Uplift of South Yellow Sea: A case study of CSDP-2 coring well. J. Jilin Univ. 2017, 47, 1030–1046. [Google Scholar]
- Yuan, Y.; Chen, J.; Zhang, Y.; Zhang, Y.; Liang, J.; Zhang, P. Sedimentary system characteristics and depositional filling model of Upper Permian–Lower Triassic in South Yellow Sea Basin. J. Cent. South Univ. 2018, 25, 2910–2928. [Google Scholar] [CrossRef]
- Cai, L.; Xiao, G.; Guo, X.; Wang, J.; Wu, Z.; Li, B. Evaluation of Upper Paleozoic and Mesozoic source rocks in Well CSDP-2 and marine oil & gas exploration prospect in the South Yellow Sea Basin. Acta Petrol. Sin. 2018, 39, 660–673. [Google Scholar]
- Xiao, G.; Cai, L.; Guo, X.; Zhang, X.; Wu, Z. Mesozoic-Paleozoic petroleum geological characteristics revealed by CSDP-2 Well in the South Yellow Sea of the “Continental Shelf Drilling Program”. Mar. Geol. Lett. 2019, 35, 73–76. [Google Scholar]
- Yuan, Y.; Chen, J.; Liang, J.; Zhang, Y.; Xue, L.; Wu, S.; Lan, T.; Wu, P. Characteristics and hydrocarbon prospects of the Permian sandstone reservoirs of the Laoshan Uplift, South Yellow Sea. Mar. Geol. Quat. Geol. 2021, 41, 181–193. [Google Scholar]
- Yang, Y.; Yi, C.; Li, G. Sequence stratigraphic identification and geologic age inference of seismic profiles in Central Uplift, South Yellow Sea. Mar. Orig. Pet. Geol. 2015, 20, 49–56. [Google Scholar]
- Zhang, P.; Huang, H.-H.M.; Hong, Y.; Tian, S.Y.; Liu, J.; Lee, Y.I.; Chen, J.; Liang, J.; Wang, H.; Yasuhara, M. Southward migration of Arctic Ocean species during the Last Glacial Period. Geophys. Res. Lett. 2022, 49, 10. [Google Scholar] [CrossRef]
- Chen, J.; Gong, J.; Li, G.; Li, H.; Yuan, Y.; Zhang, Y. Great resources potential of the marine Mesozoic-Paleozoic in the South Yellow Sea Basin. Mar. Geol. Front. 2016, 32, 1–7. [Google Scholar]
- Pfeifer, P.; Avnir, D. Chemistry in noninteger dimensions between two and three. I. Fractal theory of heterogeneous surfaces. J. Chem. Phys. 1983, 79, 3558–3565. [Google Scholar] [CrossRef]
- Li, K. Analytical derivation of Brooks-Corey type capillary pressure models using fractal geometry and evaluation of rock heterogeneity. J. Pet. Sci. Eng. 2010, 73, 20–26. [Google Scholar] [CrossRef]
- Liu, X.; Xiong, J.; Liang, L. Investigation of pore structure and fractal characteristics of organic-rich Yanchang formation shale in central China by nitrogen adsorption/desorption analysis. J. Nat. Gas Sci. Eng. 2015, 22, 62–72. [Google Scholar] [CrossRef]
- Li, K.; Horne, R.N. Fractal modeling of capillary pressure curves for The Geysers rocks. Geothermics 2006, 35, 198–207. [Google Scholar] [CrossRef]
- Jiang, Y.; Xu, G.; Bi, H.; Shi, Y.; Gao, Y.; Han, X.; Zeng, X. A new method to determine surface relaxivity of tight sandstone cores based on LF-NMR and high-speed centrifugation measurements. J. Pet. Sci. Eng. 2021, 196, 108096. [Google Scholar] [CrossRef]
- Nabawy, B.S.; Géraud, Y.; Rochette, P.; Bur, N. Pore-throat characterization in highly porous and permeable sandstones. AAPG Bull. 2009, 93, 719–739. [Google Scholar] [CrossRef]
- Wu, S.; Zhu, R.; Li, X.; Jin, X.; Yang, Z.; Mao, Z. Evaluation and application of porous structure characterization technologies in unconventional tight reservoirs. Earth Sci. Front. 2018, 25, 191–203. [Google Scholar]
- Yang, S.; Wei, J. Fundamentals of Petrophysics; Petroleum Industry Press: Beijing, China, 2004. [Google Scholar]
- Shi, J.; Qu, X.; Lei, Q.; Fu, B.; He, Y.; Zhao, G.; Cheng, L. Distribution characteristics and controlling factors of movable fluid in tight oil reservoir: A case study of Chang 7 reservoir in Ordos Basin. Nat. Gas Geosci. 2016, 27, 827. [Google Scholar]
- Wang, W.; Niu, X.; Liang, X.; Dan, W. Characteristic of Movable Fluid for Tight Sandstone Reservoir in Ordos Basin: A Case of Chang 7 Oil Reservoir of Yanchang Formation in Jiyuan Area. Geol. Sci. Technol. Inf. 2017, 36, 183–187. [Google Scholar]
- Ren, Y.; Wu, K.; He, K.; Wu, G.; Zhu, Y.; Wu, H.; Yang, Y. Application of NMR Technique to movable fluid of ultra-low permeability and tight reservoir: A case study on the Yanchang Formation in Longdong Area, Ordos Basin. J. Mineral. Pet. 2017, 37, 103–110. [Google Scholar]
- Wang, Z.; Zhang, C.; Xiao, C.; Chen, X.; Song, F. Experimental study of T2-cutoff values in low-permeability reservoirs. Prog. Geophys. 2004, 19, 652–655. [Google Scholar]
- Liu, T.; Ma, Z.; Fu, R. Analysis of rock pore structure with NMR spectra. Prog. Geophys. 2003, 18, 737–742. [Google Scholar]
- Zhao, Y.; Chen, S.; Guo, Z. Application of Nuclear magnetic resonance technology to pore structure in tight sandstone. a case from Third Member of Shihezi Formation Upper Paleozoic in Daniudi Gas Field, Ordos Basin. Geol. Sci. Technol. Inf. 2006, 25, 109–112. [Google Scholar]
- Schmitt, M.; Fernandes, C.; Wolf, F.; Neto, J.; Rahner, C.; dos Santos, V. Characterization of Brazilian tight gas sandstones relating permeability and Angstrom-to micron-scale pore structures. J. Nat. Gas Sci. Eng. 2015, 27, 785–807. [Google Scholar] [CrossRef]
- Xi, K.; Cao, Y.; Haile, B.G.; Zhu, R.; Jahren, J.; Bjørlykke, K.; Zhang, X.; Hellevang, H. How does the pore-throat size control the reservoir quality and oiliness of tight sandstones? The case of the Lower Cretaceous Quantou Formation in the southern Songliao Basin, China. Mar. Pet. Geol. 2016, 76, 1–15. [Google Scholar] [CrossRef]
- Liu, G.; Wang, L.; Sun, Z.; Wang, J.; Jiang, F. Research progress of pore-throat structure in tight sandstone formation. Pet. Sci. Bull. 2022, 7, 406–419. [Google Scholar]
- Zhang, Z.; Qin, Y.; Zhuang, X.; Li, G.; Wang, X. Poroperm characteristics of high-rank coals from Southern Qinshui Basin by mercury intrusion, SEM-EDS, nuclear magnetic resonance and relative permeability analysis. J. Nat. Gas Sci. Eng. 2018, 51, 116–128. [Google Scholar] [CrossRef]
- Liu, Z.; Liu, D.; Cai, Y.; Yao, Y.; Pan, Z.; Zhou, Y. Application of nuclear magnetic resonance (NMR) in coalbed methane and shale reservoirs: A review. Int. J. Coal Geol. 2020, 218, 15. [Google Scholar] [CrossRef]
- Li, Z.; Shen, X.; Qi, Z.; Hu, R. Study on the pore structure and fractal characteristics of marine and continental shale based on mercury porosimetry, N2 adsorption and NMR methods. J. Nat. Gas Sci. Eng. 2018, 53, 12–21. [Google Scholar] [CrossRef]
- Zhu, F.; Hu, W.; Cao, J.; Sun, F.; Liu, Y.; Sun, Z. Micro/nanoscale pore structure and fractal characteristics of tight gas sandstone: A case study from the Yuanba area, northeast Sichuan Basin, China. Mar. Pet. Geol. 2018, 98, 116–132. [Google Scholar] [CrossRef]
- Shao, X.; Pang, X.; Li, H.; Zhang, X. Fractal Analysis of pore network in tight gas sandstones using NMR method: A case study from the Ordos Basin, China. Energy Fuels 2017, 31, 10358–10368. [Google Scholar] [CrossRef]
- Ramandi, H.; Mostaghimi, P.; Armstrong, R.; Saadatfar, M.; Pinczewski, W. Porosity and permeability characterization of coal: A micro-computed tomography study. Int. J. Coal Geol. 2016, 154, 57–68. [Google Scholar] [CrossRef]
- Sorensen, J.A.; Kurz, B.A.; Hawthorne, S.B.; Jin, L.; Smith, S.A.; Azenkeng, A. Laboratory characterization and modeling to examine CO2 storage and enhanced oil recovery in an unconventional tight oil formation. Energy Procedia 2017, 114, 5460–5478. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhao, Y.; Lei, X.; Yang, M.; Zhang, Y.; Song, Y. Quantitatively study on methane hydrate formation/decomposition process in hydrate-bearing sediments using low-field MRI. Fuel 2020, 262, 116555. [Google Scholar] [CrossRef]
- Hassanpouryouzband, A.; Joonaki, E.; Farahani, M.V.; Takeya, S.; Ruppel, C.; Yang, J.; English, N.J.; Schicks, J.M.; Edlmann, K.; Mehrabian, H.; et al. Gas hydrates in sustainable chemistry. Chem. Soc. Rev. 2020, 49, 5225–5309. [Google Scholar] [CrossRef] [PubMed]
- Farahani, M.V.; Guo, X.; Zhang, L.; Yang, M.; Hassanpouryouzban, A.; Zhao, J.; Song, Y.; Tohidi, B. Effect of thermal formation/dissociation cycles on the kinetics of formation and pore-scale distribution of methane hydrates in porous media: A magnetic resonance imaging study. Sustain. Energy Fuels 2021, 5, 1567–1583. [Google Scholar] [CrossRef]
- Pearce, J.; Raza, S.; Baublys, K.; Hayes, P.; Firouzi, M.; Rudolph, V. Unconventional CO2 storage: CO2 mineral trapping predicted in characterized shales, sandstones, and coal seam interburden. SPE J. 2022, 27, 3218–3239. [Google Scholar] [CrossRef]
Sample No. | Well Depth/m | Petrophysical Characteristics | High-Pressure Mercury Injection Test | Nuclear Magnetic Resonance Test | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Porosity/% | Permeability/mD | Maximum Mercury Saturation/% | Threshold Pressure/MPa | Average Pore Radius/μm | Median Radius/μm | T2Cut-off/ms | Movable Fluid Saturation/% | Bound Fluid Saturation/% | ||
G-21 | 1020.00 | 1.958 | 0.01014 | 96.52 | 0.002691 | 1.4112 | 222.57 | 0.51 | 6.54 | 93.46 |
G-22 | 1030.00 | 1.210 | 0.012 | 89.78 | 0.006762 | 0.02167 | 185.58 | 1.87 | 5.65 | 94.35 |
C-3 | 1110.8 | 2.054 | 0.0154 | 98.16 | 0.069138 | 0.02915 | 183.34 | 1.15 | 18.48 | 81.52 |
C-4 | 1114.7 | 1.216 | 0.000259 | 95.03 | 0.047196 | 0.1108 | 202.47 | 1.06 | 12.83 | 87.17 |
C-5 | 1121.25 | 1.314 | 0.1036 | 99.74 | 0.016491 | 0.01413 | 82.68 | 0.98 | 7.52 | 92.48 |
C-6 | 1125.00 | 1.292 | 0.0246 | 93.20 | 0.005037 | 0.08554 | 121.95 | 1.25 | 11.37 | 88.63 |
C-8 | 1135.00 | 1.395 | 0.000634 | 73.60 | 0.003864 | 0.04688 | 132.79 | 0.71 | 9.50 | 90.50 |
C-14 | 1157.00 | 1.192 | 0.00275 | 88.38 | 0.165462 | 0.9472 | 235.29 | 4.94 | 5.84 | 94.16 |
C-16 | 1161.00 | 2.323 | 0.9185 | 85.28 | 0.050094 | 0.07395 | 331.76 | 8.7 | 34.83 | 65.17 |
C-19 | 1167.00 | 1.933 | 0.00206 | 98.24 | 0.053682 | 0.29405 | 265.56 | 0.47 | 7.00 | 93.00 |
C-22 | 1175.00 | 1.439 | 0.00374 | 97.60 | 0.079212 | 0.04882 | 206.06 | 0.9 | 23.72 | 76.28 |
Sample No. | Quartz (%) | Feldspar (%) | Calcite (%) | Pyrite (%) | Clay Minerals (%) |
---|---|---|---|---|---|
C-5 | 64.2 | 22.2 | 13.6 | ||
C-6 | 67.1 | 22.3 | 0.8 | 9.8 | |
C-8 | 75.9 | 13.1 | 11.1 | ||
C-14 | 59.8 | 14.0 | 26.3 | ||
C-16 | 78.0 | 14.2 | 2.2 | 1.4 | 4.1 |
G-21 | 67.6 | 13.2 | 19.2 | ||
G-22 | 65.8 | 18.0 | 16.2 |
Sample No. | High-Pressure Mercury Injection | Nuclear Magnetic Resonance | ||||||
---|---|---|---|---|---|---|---|---|
Small Pores | Large Pores | T2 < T2cutoff | T2 > T2cutoff | |||||
DP-1 | R2 | DP-2 | R2 | DN-1 | R2 | DN-2 | R2 | |
G-21 | 2.94 | 0.87 | 2.29 | 0.94 | −0.53 | 0.80 | 2.97 | 0.99 |
G-22 | 2.62 | 0.83 | 2.88 | 0.89 | 0.36 | 0.78 | 2.99 | 0.96 |
C-3 | 2.55 | 0.96 | 2.90 | 0.90 | 0.18 | 0.77 | 2.97 | 0.92 |
C-4 | 2.61 | 0.98 | 2.85 | 0.86 | 0.05 | 0.79 | 2.98 | 0.96 |
C-5 | 2.47 | 0.86 | 2.90 | 0.83 | 0 | 0.80 | 2.99 | 0.81 |
C-6 | 2.50 | 0.98 | 2.89 | 0.88 | 0.11 | 0.79 | 2.98 | 0.95 |
C-8 | 2.22 | 0.75 | 2.76 | 0.82 | −0.26 | 0.78 | 2.98 | 0.94 |
C-14 | 2.96 | 0.94 | 2.52 | 0.92 | 1.01 | 0.69 | 2.99 | 0.86 |
C-16 | 2.95 | 0.85 | 2.90 | 0.98 | 1.01 | 0.70 | 2.94 | 0.83 |
C-19 | 2.90 | 0.96 | 2.77 | 0.78 | −0.61 | 0.81 | 2.99 | 0.84 |
C-22 | 2.75 | 0.98 | 2.90 | 0.80 | −0.13 | 0.81 | 2.98 | 0.94 |
Sample Type | Permeability/mD | Median Radius /μm | Movable Fluid Saturation /% |
---|---|---|---|
Class I | 0.92 | 331.76 | 34.82 |
Class II | >0.001 | (265.56, 82.68)/187.88 1 | (23.71, 5.64)/9.91 1 |
Class III | <0.001 | (202.47, 132.79)/167.53 1 | (12.83, 9.50)/6.46 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, H.; Yuan, Y.; Chen, J.; Liang, J.; Zhao, H. Pore Structure Characteristics and Reservoir Classification of Tight Sandstones within the Upper Permian Longtan Formation in the Laoshan Uplift, South Yellow Sea Basin: Implications for Hydrocarbon Exploration. J. Mar. Sci. Eng. 2024, 12, 732. https://doi.org/10.3390/jmse12050732
Zhang H, Yuan Y, Chen J, Liang J, Zhao H. Pore Structure Characteristics and Reservoir Classification of Tight Sandstones within the Upper Permian Longtan Formation in the Laoshan Uplift, South Yellow Sea Basin: Implications for Hydrocarbon Exploration. Journal of Marine Science and Engineering. 2024; 12(5):732. https://doi.org/10.3390/jmse12050732
Chicago/Turabian StyleZhang, Haoran, Yong Yuan, Jianwen Chen, Jie Liang, and Hualin Zhao. 2024. "Pore Structure Characteristics and Reservoir Classification of Tight Sandstones within the Upper Permian Longtan Formation in the Laoshan Uplift, South Yellow Sea Basin: Implications for Hydrocarbon Exploration" Journal of Marine Science and Engineering 12, no. 5: 732. https://doi.org/10.3390/jmse12050732
APA StyleZhang, H., Yuan, Y., Chen, J., Liang, J., & Zhao, H. (2024). Pore Structure Characteristics and Reservoir Classification of Tight Sandstones within the Upper Permian Longtan Formation in the Laoshan Uplift, South Yellow Sea Basin: Implications for Hydrocarbon Exploration. Journal of Marine Science and Engineering, 12(5), 732. https://doi.org/10.3390/jmse12050732