Bacterial Community Characteristics and Roles in Nitrogen Transformation in Industrial Farming Systems of Litopenaeus vannamei
Abstract
:1. Introduction
2. Materials and Methods
2.1. Collection of Water and Shrimp Samples
2.2. Determination of Physical and Chemical Indices of Water
2.3. Extraction of 16S rDNA from Bacterial Samples and Illumina Sequencing
2.4. Absolute Quantitative Determination of Nitrogen Cycling Genes
2.5. Data Analysis
3. Results
3.1. Physical and Chemical Measurements
3.2. α-Diversity of Bacterial Community
3.3. β-Diversity of Bacterial Community
3.4. Composition of the Bacterial Community
3.5. LEfSe Analysis of Bacterial Community Species Composition
3.6. Difference Analysis of Bacterial Community
3.7. Functional Prediction Analysis of Bacterial Community
3.8. Changes in Functional Genes
3.9. Correlation Analysis between Nitrogen Cycling Genes and Environmental Factors
3.10. Correlations between Dominant Bacterial Communities and Environmental Factors
4. Discussion
4.1. Diversity Indices of Bacterial Communities
4.2. Characteristics and Succession of Dominant Bacteria in the Bacterial Community
4.3. Correlations between Nitrogen Cycling Genes and Environmental Factors
4.4. Correlations between Bacterial Communities and Environmental Factors
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- FAO. The State of World Fisheries and Aquaculture 2022. Towards Blue Transformation; FAO: Rome, Italy, 2022. [Google Scholar] [CrossRef]
- Wang, D.; Wu, F.X.; Song, D.D.; Gao, H.Q. China Fisheries Statistic Yearbook 2023; China Agriculture Press: Beijing, China, 2023. [Google Scholar]
- Gao, D.Z.; Liu, M.; Hou, L.J.; Derrick, Y.F.L.; Wang, W.Q.; Li, X.F.; Zeng, A.Y.; Zheng, Y.L.; Han, P.; Yang, Y.; et al. Effects of shrimp-aquaculture reclamation on sediment nitrate dissimilatory reduction processes in a coastal wetland of southeastern China. Environ. Pollut. 2019, 255, 113219. [Google Scholar] [CrossRef] [PubMed]
- Garcon, D.P.; Fabri, L.M.; Moraes, C.M.; Costa, M.I.C.; Freitas, R.S.; McNamara, J.C.; Leone, F.A. Effects of ammonia on gill (Na+, K+)-ATPase kinetics in a hololimnetic population of the Amazon River shrimp Macrobrachium amazonicum. Aquat. Toxicol. 2022, 246, 106144. [Google Scholar] [CrossRef] [PubMed]
- Parvathy, A.J.; Das, B.C.; Jifiriya, M.J.; Varghese, T.; Pillai, D.; Kumar, V.J.R. Ammonia induced toxico-physiological responses in fish and management interventions. Rev. Aquac. 2023, 15, 452–479. [Google Scholar] [CrossRef]
- Li, Y.D.; Zhou, F.L.; Huang, J.H.; Yang, L.S.; Jiang, S.; Yang, Q.B.; He, J.G.; Jiang, S.G. Transcriptome reveals involvement of immune defense, oxidative imbalance, and apoptosis in ammonia-stress response of the black tiger shrimp (Penaeus monodon). Fish Shellfish. Immunol. 2018, 83, 162–170. [Google Scholar] [CrossRef] [PubMed]
- Liang, Z.X.; Liu, R.; Zhao, D.P.; Wang, L.L.; Sun, M.Z.; Wang, M.Q.; Song, L.S. Ammonia exposure induces oxidative stress, endoplasmic reticulum stress and apoptosis in hepatopancreas of pacific white shrimp (Litopenaeus vannamei). Fish Shellfish. Immunol. 2016, 54, 523–528. [Google Scholar] [CrossRef]
- Zhao, M.M.; Yao, D.F.; Li, S.K.; Zhang, Y.L.; Aweya, J.J. Effects of ammonia on shrimp physiology and immunity: A review. Rev. Aquac. 2020, 12, 2194–2211. [Google Scholar] [CrossRef]
- Romano, N.; Zeng, C.S. Toxic effects of ammonia, nitrite, and nitrate to decapod crustaceans: A review on factors influencing their toxicity, physiological consequences, and coping mechanisms. Rev. Fish. Sci. 2013, 21, 1–21. [Google Scholar] [CrossRef]
- Liang, Q.J.; Li, A.; Wu, L.T.; Zhang, Y.; Han, T.; Liu, X. scRNA-seq analysis reveals toxicity mechanisms in shrimp hemocytes subjected to nitrite stress. Chemosphere 2023, 316, 137853. [Google Scholar] [CrossRef] [PubMed]
- Tseng, I.T.; Chen, J.C. The immune response of white shrimp Litopenaeus vannamei and its susceptibility to Vibrio alginolyticus under nitrite stress. Fish Shellfish. Immunol. 2004, 17, 325–333. [Google Scholar] [CrossRef]
- Kuypers, M.M.M.; Marchant, H.K.; Kartal, B. The microbial nitrogen-cycling network. Nat. Rev. Microbiol. 2018, 16, 263–276. [Google Scholar] [CrossRef]
- Braker, G.; Schwarz, J.; Conrad, R. Influence of temperature on the composition and activity of denitrifying soil communities. FEMS Microbiol. Ecol. 2010, 73, 134–148. [Google Scholar] [CrossRef] [PubMed]
- Bao, P.; Wang, S.; Gao, Y.; Ma, B.; Zhang, Q.; Peng, Y. Effect of dissolved oxygen on microbial community of nitrify activated sludge based on high-throughput sequencing technology. J. Beijing Univ. Technol. 2017, 43, 801–808. [Google Scholar] [CrossRef]
- Park, M.; Kim, J.M.; Lee, T.; Oh, Y.K.; Nguyen, V.; Cho, S. Correlation of microbial community with salinity and nitrogen removal in an anammox-based denitrification system. Chemosphere 2021, 263, 128340. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.T.; Sun, Y.; Deng, L.T.; Meng, Q.X.; Jiang, X.; Bello, A.; Sheng, S.Y.; Han, Y.; Zhu, H.F.; Xu, X.H. Insight to key diazotrophic community during composting of dairy manure with biochar and its role in nitrogen transformation. Waste Manag. 2020, 105, 190–197. [Google Scholar] [CrossRef] [PubMed]
- Thompson, A.W.; Foster, R.A.; Krupke, A.; Carter, B.J.; Musat, N.; Vaulot, D.; Kuypers, M.M.M.; Zehr, J.P. Unicellular Cyanobacterium symbiotic with a single-celled eukaryotic alga. Science 2012, 337, 1546–1550. [Google Scholar] [CrossRef] [PubMed]
- Malm, S.; Tiffert, Y.; Micklinghoff, J.; Schultze, S.; Joost, I.; Weber, I.; Horst, S.; Ackermann, B.; Schmidt, M.; Wohlleben, W.; et al. The roles of the nitrate reductase NarGHJI, the nitrite reductase NirBD and the response regulator GlnR in nitrate assimilation of Mycobacterium tuberculosis. Microbiology 2009, 155, 1332–1339. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Chang, Z.; Qiao, L.; Wang, J.; Li, J. Nitrogen removal performance and microbial diversity of bioreactor packed with cellulosic carriers in recirculating aquaculture system. Int. Biodeterior. Biodegrad. 2021, 157, 105157. [Google Scholar] [CrossRef]
- Chen, C.T.; Wang, F.; Ren, Z.W.; Wang, X.C.; Shan, H.W. Influencing factors on nitrite removal by bagasse bioflocs and the succession of attached bacterial communities. J. Water Process. Eng. 2024, 59, 105057. [Google Scholar] [CrossRef]
- Hu, D.; Zeng, J.; Wang, L.; Shao, Z.; Zhao, R. Core microbiome involved in nitrite removal in shrimp culture ponds. Aquac. Res. 2022, 53, 1663–1675. [Google Scholar] [CrossRef]
- Wang, Z.J.; Feng, K.; Wei, Z.Y.; Wu, Y.N.; Isobe, K.; Senoo, K.; Peng, X.; Wang, D.R.; He, Q.; Du, X.F.; et al. Evaluation and redesign of the primers for detecting nitrogen cycling genes in environments. Methods Ecol. Evol. 2022, 13, 1976–1989. [Google Scholar] [CrossRef]
- Dong, L.H.; Meng, Y.; Wang, J.; Liu, Y.Y. Evaluation of droplet digital PCR for characterizing plasmid reference material used for quantifying ammonia oxidizers and denitrifiers. Anal. Bioanal. Chem. 2014, 406, 1701–1712. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Luo, X.Q.; Hu, R.G.; Wu, M.N.; Wu, J.S.; Wei, W.X. Impact of long-term fertilization on the composition of denitrifier communities based on nitrite reductase analyses in a paddy soil. Microb. Ecol. 2010, 60, 850–861. [Google Scholar] [CrossRef] [PubMed]
- Keeley, R.F.; Rodriguez-Gonzalez, L.; Class, U.; Briggs, G.E.; Frazier, V.E.; Mancera, P.A.; Manzer, H.S.; Ergas, S.J.; Scott, K.M. Degenerate PCR primers for assays to track steps of nitrogen metabolism by taxonomically diverse microorganisms in a variety of environments. J. Microbiol. Methods 2020, 175, 105990. [Google Scholar] [CrossRef] [PubMed]
- Khanal, A.; Lee, J.H. Functional diversity and abundance of nitrogen cycle-related genes in paddy soil. Appl. Biol. Chem. 2020, 63, 17. [Google Scholar] [CrossRef]
- Xun, W.B.; Li, W.; Xiong, W.; Ren, Y.; Liu, Y.P.; Miao, Y.Z.; Xu, Z.H.; Zhang, N.; Shen, Q.R.; Zhang, R.F. Diversity-triggered deterministic bacterial assembly constrains community functions. Nat. Commun. 2019, 10, 3833. [Google Scholar] [CrossRef] [PubMed]
- Ptacnik, R.; Solimini, A.G.; Andersen, T.; Tamminen, T.; Brettum, P.; Lepistö, L.; Willén, E.; Rekolainen, S. Diversity predicts stability and resource use efficiency in natural phytoplankton communities. Proc. Natl. Acad. Sci. USA 2008, 105, 5134–5138. [Google Scholar] [CrossRef]
- Shanahan, F. Probiotics in Perspective. Gastroenterology 2010, 139, 1808–1812. [Google Scholar] [CrossRef] [PubMed]
- Li, J.N.; Liu, G.B.; Liu, Q.; Wang, F.; Shan, H.W.; Xie, Y.C.; Li, C.J. Microbial community dynamics and its correlation with environmental factors in the water of polyculture ponds containing Penaeus japonicus, Portunus trituberculatus and Sinonovacula constricta. Aquat. Ecol. 2023, 57, 263–279. [Google Scholar] [CrossRef]
- Ingerslev, H.C.; Jorgensen, L.V.; Strube, M.L.; Larsen, N.; Dalsgaard, I.; Boye, M.; Madsen, L. The development of the gut microbiota in rainbow trout (Oncorhynchus mykiss) is affected by first feeding and diet type. Aquaculture 2014, 424, 24–34. [Google Scholar] [CrossRef]
- Dunne, A.; Carvalho, S.; Morán, X.A.G.; Calleja, M.L.; Jones, B. Localized effects of offshore aquaculture on water quality in a tropical sea. Mar. Pollut. Bull. 2021, 171, 112732. [Google Scholar] [CrossRef]
- Zhao, R.X.; Symonds, J.E.; Walker, S.P.; Steiner, K.; Carter, C.G.; Bowman, J.P.; Nowak, B.F. Effects of feed ration and temperature on Chinook salmon (Oncorhynchus tshawytscha) microbiota in freshwater recirculating aquaculture systems. Aquaculture 2021, 543, 736965. [Google Scholar] [CrossRef]
- Gao, Y.; Ding, J.J.; Yuan, M.T.; Chiariello, N.; Docherty, K.; Field, C.; Gao, Q.; Gu, B.H.; Gutknecht, J.; Hungate, B.A.; et al. Long-term warming in a Mediterranean-type grassland affects soil bacterial functional potential but not bacterial taxonomic composition. Npj Biofilms Microbomes 2021, 7, 17. [Google Scholar] [CrossRef] [PubMed]
- Louca, S.; Parfrey, L.W.; Doebeli, M. Decoupling function and taxonomy in the global ocean microbiome. Science 2016, 353, 1272–1277. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Lei, X.J.; Li, J.N.; Chu, L.X.; Wang, F.; Shan, H.W.; Hu, F.G. Microbial communities and nitrogen cycling in Litopenaeus vannamei and Mercenaria mercenaria polyculture ponds. Aquacult. Rep. 2023, 33, 101769. [Google Scholar] [CrossRef]
- Moschos, S.; Kormas, K.A.; Karayanni, H. Prokaryotic diversity in marine and freshwater recirculating aquaculture systems. Rev. Aquac. 2022, 14, 1861–1886. [Google Scholar] [CrossRef]
- Silva, T.; Vieira, E.; Lopes, A.R.; Nunes, O.C.; Fonseca, A.; Saraiva, I.; Boaventura, R.A.R.; Vilar, V.J.P. How the performance of a biological pre-oxidation step can affect a downstream photo-Fenton process on the remediation of mature landfill leachates: Assessment of kinetic parameters and characterization of the bacterial communities. Sep. Purif. Technol. 2017, 175, 274–286. [Google Scholar] [CrossRef]
- Califano, G.; Kwantes, M.; Abreu, M.H.; Costa, R.; Wichard, T. Cultivating the macroalgal holobiont: Effects of integrated multi-trophic aquaculture on the microbiome of Ulva rigida (Chlorophyta). Front. Mar. Sci. 2020, 7, 52. [Google Scholar] [CrossRef]
- Zhang, L.F.; Fu, G.K.; Zhang, Z. Simultaneous nutrient and carbon removal and electricity generation in self-buffered biocathode microbial fuel cell for high-salinity mustard tuber wastewater treatment. Bioresour. Technol. 2019, 272, 105–113. [Google Scholar] [CrossRef] [PubMed]
- Zhou, G.W.; Zhou, Y.H.; Zhou, G.Q.; Lu, L.; Wan, X.K.; Shi, H.X. Assessment of a novel overflow-type electrochemical membrane bioreactor (EMBR) for wastewater treatment, energy recovery and membrane fouling mitigation. Bioresour. Technol. 2015, 196, 648–655. [Google Scholar] [CrossRef]
- Jiang, X.; Ma, H.; Zhao, Q.L.; Yang, J.; Xin, C.Y.; Chen, B.C. Bacterial communities in paddy soil and ditch sediment under rice-crab co-culture system. AMB Express 2021, 11, 163. [Google Scholar] [CrossRef]
- Tarnecki, A.M.; Levi, N.J.; Resley, M.; Main, K. Effect of copper sulfate on the external microbiota of adult common snook (Centropomus undecimalis). Anim. Microbiome 2021, 3, 21. [Google Scholar] [CrossRef] [PubMed]
- Califano, G.; Castanho, S.; Soares, F.; Ribeiro, L.; Cox, C.J.; Mata, L.; Costa, R. Molecular taxonomic profiling of bacterial communities in a gilthead seabream (Sparus aurata) hatchery. Front. Microbiol. 2017, 8, 204. [Google Scholar] [CrossRef] [PubMed]
- Han, F.; Zhang, M.R.; Liu, Z.; Han, Y.F.; Li, Q.; Zhou, W.Z. Enhancing robustness of halophilic aerobic granule sludge by granular activated carbon at decreasing temperature. Chemosphere 2022, 292, 133507. [Google Scholar] [CrossRef] [PubMed]
- Kong, S.; Chen, Z.; Ghonimy, A.; Zhao, F.Z.; Li, J. Effects of Penaeus japonicus stocking density on water quality and bacterial community structure in water in an integrated multi-trophic aquaculture (IMTA) system. Fish. Sci. 2023, 90, 75–91. [Google Scholar] [CrossRef]
- Janka, E.; Pathak, S.; Rasti, A.; Gyawali, S.; Wang, S. Simultaneous heterotrophic nitrification and aerobic denitrification of water after sludge dewatering in two sequential moving bed biofilm reactors (MBBR). Int. J. Environ. Res. Public Health 2022, 19, 1841. [Google Scholar] [CrossRef] [PubMed]
- Zheng, L.; Xing, Y.Z.; Ding, A.Z.; Sun, S.Q.; Cheng, H.G.; Bian, Z.Y.; Yang, K.; Wang, S.R.; Zhu, G.B. Brownification of freshwater promotes nitrogen-cycling microorganism growth following terrestrial material increase and ultraviolet radiation reduction. Sci. Total Environ. 2022, 853, 158556. [Google Scholar] [CrossRef] [PubMed]
- Deng, Y.Q.; Mao, C.; Chen, H.X.; Wang, B.T.; Cheng, C.H.; Ma, H.L.; Guo, Z.X.; Feng, J.; Su, Y.L. Shifts in pond water bacterial communities are associated with the health status of sea bass (Lateolabrax maculatus). Ecol. Indic. 2021, 127, 107775. [Google Scholar] [CrossRef]
- Zhou, Y.; Anwar, M.N.; Guo, B.; Huang, W.Y.; Liu, Y. Response of antibiotic resistance genes and microbial niches to dissolved oxygen in an oxygen-based membrane biofilm reactor during greywater treatment. Sci. Total Environ. 2022, 833, 155062. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Wang, Q.K.; Li, L.X.; Sun, X.L.; Lv, A.J.; Chen, C.X. Characterization of aerobic denitrification genome sequencing of Vibrio parahaemolyticus strain HA2 from recirculating mariculture system in China. Aquaculture 2020, 526, 735295. [Google Scholar] [CrossRef]
- Ren, J.L.; Ma, H.J.; Liu, Y.; Ruan, Y.J.; Wei, C.Z.; Song, J.; Wu, Y.H.; Han, R. Characterization of a novel marine aerobic denitrifier Vibrio spp. AD2 for efficient nitrate reduction without nitrite accumulation. Environ. Sci. Pollut. Res. 2021, 28, 30807–30820. [Google Scholar] [CrossRef]
- Xia, X.M.; Zheng, Q.; Leung, S.K.; Wang, Y.; Lee, P.Y.; Jing, H.M.; Jiao, N.Z.; Liu, H.B. Distinct metabolic strategies of the dominant heterotrophic bacterial groups associated with marine Synechococcus. Sci. Total Environ. 2021, 798, 149208. [Google Scholar] [CrossRef] [PubMed]
- Allers, E.; Niesner, C.; Wild, C.; Pernthaler, J. Microbes enriched in seawater after addition of coral mucus. Appl. Environ. Microbiol. 2008, 74, 3274–3278. [Google Scholar] [CrossRef] [PubMed]
- Guo, H.P.; Huang, L.; Hu, S.T.; Chen, C.; Huang, X.L.; Liu, W.; Wang, S.P.; Zhu, Y.Y.; Zhao, Y.J.; Zhang, D.M. Effects of carbon/nitrogen ratio on growth, intestinal microbiota and metabolome of shrimp (Litopenaeus vannamei). Front. Microbiol. 2020, 11, 652. [Google Scholar] [CrossRef]
- Smith, C.J.; Dong, L.F.; Wilson, J.; Stott, A.; Osborn, A.M.; Nedwell, D.B. Seasonal variation in denitrification and dissimilatory nitrate reduction to ammonia process rates and corresponding key functional genes along an estuarine nitrate gradient. Front. Microbiol. 2015, 6, 542. [Google Scholar] [CrossRef] [PubMed]
- Krishnani, K.K. Detection and diversity of nitrifying and denitrifying functional genes in coastal aquaculture. Aquaculture 2010, 302, 57–70. [Google Scholar] [CrossRef]
- Huang, M.L.; Wang, Z.; Qi, R. Enhancement of the complete autotrophic nitrogen removal over nitrite process in a modified single-stage subsurface vertical flow constructed wetland: Effect of saturated zone depth. Bioresour. Technol. 2017, 233, 191–199. [Google Scholar] [CrossRef]
- Nie, M.; Li, Z. Bioprocess of nitrite accumulation in water—A review. Chin. J. Biotechnol. 2020, 36, 1493–1503. [Google Scholar] [CrossRef] [PubMed]
- Braker, G.; Zhou, J.Z.; Wu, L.Y.; Devol, A.H.; Tiedje, J.M. Nitrite reductase genes (nirK and nirS) as functional markers to investigate diversity of denitrifying bacteria in Pacific northwest marine sediment communities. Appl. Environ. Microbiol. 2000, 66, 2096–2104. [Google Scholar] [CrossRef]
- Xiong, J.P.; Ma, S.S.; He, X.Q.; Han, L.J.; Huang, G.Q. Nitrogen transformation and dynamic changes in related functional genes during functional-membrane covered aerobic composting. Bioresour. Technol. 2021, 332, 125087. [Google Scholar] [CrossRef]
- Graf, D.R.H.; Jones, C.M.; Hallin, S. Intergenomic comparisons highlight modularity of the denitrification pathway and underpin the importance of community structure for N2O emissions. PLoS ONE 2014, 9, e114118. [Google Scholar] [CrossRef]
- Wu, X.J.; Peng, J.J.; Liu, P.F.; Bei, Q.C.; Rensing, C.; Li, Y.; Yuan, H.M.; Liesack, W.; Zhang, F.S.; Cui, Z.L. Metagenomic insights into nitrogen and phosphorus cycling at the soil aggregate scale driven by organic material amendments. Sci. Total Environ. 2021, 785, 147329. [Google Scholar] [CrossRef] [PubMed]
- Jiang, X.Y.; Liu, C.Q.; Cai, J.; Hu, Y.; Shao, K.Q.; Tang, X.M.; Gong, Y.; Yao, X.L.; Xu, Q.J.; Gao, G. Relationships between environmental factors and N-cycling microbes reveal the indirect effect of further eutrophication on denitrification and DNRA in shallow lakes. Water Res. 2023, 245, 120572. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.R.; Lei, X.Q.; Lai, Q.L.; Li, Y.; Zhang, B.Z.; Zhang, J.Y.; Zhang, H.J.; Yang, L.X.; Zheng, W.; Tian, Y.; et al. Phaeodactylibacter xiamenensis gen. nov., sp nov., a member of the family Saprospiraceae isolated from the marine alga Phaeodactylum tricornutum. Int. J. Syst. Evol. Microbiol. 2014, 64, 3496–3502. [Google Scholar] [CrossRef] [PubMed]
- Tang, Y.P.; Wang, R.X.; Tan, L.Q.; Guo, L.; Duan, Y.F.; Yang, L.S.; Jiang, S.G.; Zhou, F.L.; Jiang, S.; Huang, J.H. Effects of live microalgae and algae powder on microbial community, survival, metamorphosis and digestive enzyme activity of Penaeus monodon larvae at different growth stages. Aquaculture 2020, 526, 735344. [Google Scholar] [CrossRef]
- Li, S.H.; Kang, I.; Cho, J.C. Metabolic versatility of the family halieaceae revealed by the genomics of novel cultured isolates. Microbiol. Spectr. 2023, 11, e0387922. [Google Scholar] [CrossRef]
Genes | Sequences of the Primers (5′→3′) | References |
---|---|---|
napA | (F) TGGACVATGGGYTTYAAYC | [21] |
(R) CCTTCYTTYTCSACCCACAT | [22] | |
nirK | (F) ATCATGGTSCTGCCGCG | [22] |
(R) GCYTCGATCAGRTTRTGGTT | [22] | |
nirS | (F) GTSAACGTSAAGGARACSGG | [21] |
(R) GASTTCGGRTGSGTCTTGA | [22] | |
ureC | (F) AARMTSCAYGARGACTGGGG | [22] |
(R) TGRCASACCATSAKCATGTC | [22] | |
amoA | (F) GGHGACTGGGAYTTCTGG | [23] |
(R) CCTCKGSAAAGCCTTCTTC | [23] | |
narG | (F) ACSCAYGGSGTWDAACTGYAC | [21] |
(R) GGNACGTTNGASCCCCA | [24] | |
nxrB | (F) GTGGAACAAYGTGGARACSAAGCC | [25] |
(R) CGGTTCTGGTCRATCA | [26] |
TAN | NO2−-N | NO3−-N | TN | TOC | C/N | pH | T | DO | |
---|---|---|---|---|---|---|---|---|---|
amoA | 0.40 | 0.47 * | 0.47 * | 0.31 | −0.05 | 0.04 | 0.11 | −0.53 * | −0.43 |
napA | 0.52 * | 0.55 * | 0.64 ** | 0.53 * | 0.00 | −0.20 | −0.27 | −0.53 * | −0.45 * |
narG | 0.67 ** | 0.57 ** | 0.49 * | 0.58 ** | 0.21 | −0.17 | −0.05 | −0.60 ** | −0.48 * |
nxrB | 0.32 | 0.35 | 0.20 | 0.36 | 0.13 | −0.01 | 0.06 | −0.43 | −0.27 |
nirK | 0.45 * | 0.47 * | 0.50 * | 0.24 | 0.08 | 0.01 | 0.03 | −0.51 * | −0.52 * |
nirS | 0.14 | 0.45 * | 0.35 | 0.34 | 0.12 | 0.07 | 0.16 | −0.53 | −0.07 |
ureC | 0.88 *** | 0.81 *** | 0.81 *** | 0.72 *** | 0.16 | −0.21 | −0.41 | −0.81 *** | −0.80 *** |
TAN | NO2−-N | NO3−-N | TN | TOC | C/N | pH | T | DO | |
---|---|---|---|---|---|---|---|---|---|
amoA | 0.46 * | 0.10 | 0.38 | 0.4689 * | 0.1595 | −0.18 | −0.36 | −0.17 | 0.16 |
napA | −0.49 * | −0.27 | −0.43 | −0.7194 *** | −0.0835 | 0.52 * | 0.68 ** | −0.06 | 0.42 |
narG | 0.63 ** | −0.14 | 0.04 | 0.2706 | 0.2831 | −0.15 | −0.34 | 0.14 | −0.28 |
nxrB | −0.54 * | 0.48 * | 0.51 * | −0.0282 | −0.4055 | −0.10 | 0.08 | −0.27 | 0.57 ** |
nirK | −0.70 * | 0.14 | −0.01 | −0.5115 * | −0.4825 * | 0.25 | 0.26 | −0.13 | 0.45 * |
nirS | 0.49 * | 0.09 | 0.20 | 0.3513 | 0.2876 | −0.21 | −0.44 | 0.12 | −0.31 |
ureC | 0.07 | −0.11 | −0.09 | 0.0552 | −0.5078 * | −0.46 * | −0.02 | 0.63 ** | −0.21 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shan, H.; Du, Y.; Li, T.; Wang, F.; Li, H.; Wang, H. Bacterial Community Characteristics and Roles in Nitrogen Transformation in Industrial Farming Systems of Litopenaeus vannamei. J. Mar. Sci. Eng. 2024, 12, 787. https://doi.org/10.3390/jmse12050787
Shan H, Du Y, Li T, Wang F, Li H, Wang H. Bacterial Community Characteristics and Roles in Nitrogen Transformation in Industrial Farming Systems of Litopenaeus vannamei. Journal of Marine Science and Engineering. 2024; 12(5):787. https://doi.org/10.3390/jmse12050787
Chicago/Turabian StyleShan, Hongwei, Yulong Du, Tao Li, Fang Wang, Hongyu Li, and Haitao Wang. 2024. "Bacterial Community Characteristics and Roles in Nitrogen Transformation in Industrial Farming Systems of Litopenaeus vannamei" Journal of Marine Science and Engineering 12, no. 5: 787. https://doi.org/10.3390/jmse12050787
APA StyleShan, H., Du, Y., Li, T., Wang, F., Li, H., & Wang, H. (2024). Bacterial Community Characteristics and Roles in Nitrogen Transformation in Industrial Farming Systems of Litopenaeus vannamei. Journal of Marine Science and Engineering, 12(5), 787. https://doi.org/10.3390/jmse12050787