Untangling Structural and Functional Diversity of Prokaryotic Microbial Assemblage on Mangrove Pneumatophores
Abstract
:1. Introduction
1.1. Mangroves
1.2. Pneumatophores
2. Community Composition and Function of the Prokaryotic Microbial Community Associated with Pneumatophores
2.1. Participation of Pneumatophore-Associated Prokaryotic Communities in Nutrient Cycling
2.2. Diversity of Prokaryotic Community Associated with Mangrove Pneumatophores
2.2.1. Cyanobacteria
2.2.2. Bacteria
2.3. Interaction between Pneumatophore-Associated Microorganisms and Mangrove Plants
3. Biotic and Abiotic Factors Affecting Composition, Diversity, and Function of Microorganisms Associated with Pneumatophores
3.1. Factors Affecting Microbial Composition and Diversity
3.2. Tidal Inundation Influence on Pneumatophore-Associated Microbial Community and Vertical Zonation
4. Approaches for Untangling Prokaryotic Microbial Diversity: Culture-Independent, Culture-Dependent, and Their Integration
4.1. Culture-Dependent Assessment of Microbial Diversity
4.2. Culture-Independent Assessment of Microbial Diversity
4.2.1. Metagenomics
4.2.2. Metatranscriptomics
4.2.3. Metaproteomics and Metabolomics
5. Concluding Remarks and Prospects
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Kathiresan, K.; Bingham, B.L. Biology of mangroves and mangrove ecosystems. Adv. Mar. Biol. 2001, 40, 81–251. [Google Scholar]
- Primavera, J.H.; Friess, D.A.; Van Lavieren, H.; Lee, S.Y. The mangrove ecosystem. In World Seas: An Environmental Evaluation; Elsevier: Amsterdam, The Netherlands, 2019; pp. 1–34. [Google Scholar]
- Doughty, C.L.; Langley, J.A.; Walker, W.S.; Feller, I.C.; Schaub, R.; Chapman, S.K. Mangrove range expansion rapidly increases coastal wetland carbon storage. Estuaries Coasts 2016, 39, 385–396. [Google Scholar] [CrossRef]
- Godoy, M.D.; Lacerda, L.D.D. Mangroves response to climate change: A review of recent findings on mangrove extension and distribution. An. Acad. Bras. Ciências 2015, 87, 651–667. [Google Scholar] [CrossRef] [PubMed]
- Sadeer, N.B.; Mahomoodally, M.F.; Zengin, G.; Jeewon, R.; Nazurally, N.; Rengasamy Kannan, R.R.; Albuquerque, R.D.D.G.; Shunmugiah, K.P. Ethnopharmacology, phytochemistry, and global distribution of mangroves―A comprehensive review. Mar. Drugs 2019, 17, 231. [Google Scholar] [CrossRef] [PubMed]
- Jia, P.; Huang, W.; Zhang, Z.; Cheng, J.; Xiao, Y. The carbon sink of mangrove ecological restoration between 1988–2020 in Qinglan Bay, Hainan Island, China. Forests 2022, 13, 1547. [Google Scholar] [CrossRef]
- Srivastava, J.; Prasad, V. Evolution and paleobiogeography of mangroves. Mar. Ecol. 2019, 40, e12571. [Google Scholar] [CrossRef]
- Ghizelini, A.M.; Mendonça-Hagler, L.C.S.; Macrae, A. Microbial diversity in Brazilian mangrove sediments: A mini review. Braz. J. Microbiol. 2012, 43, 1242–1254. [Google Scholar] [CrossRef] [PubMed]
- Twilley, R.R. Mangrove wetlands. In Southern Forested Wetlands; Routledge: London, UK, 2019; pp. 445–473. [Google Scholar]
- Trégarot, E.; Caillaud, A.; Cornet, C.C.; Taureau, F.; Catry, T.; Cragg, S.M.; Failler, P. Mangrove ecological services at the forefront of coastal change in the French overseas territories. Sci. Total Environ. 2021, 763, 143004. [Google Scholar] [CrossRef]
- Kathiresan, K. Mangroves: Types and Importance; Springer: Singapore, 2021; pp. 1–31. [Google Scholar]
- Mitra, A. Ecosystem services of mangroves: An overview. In Mangrove Forests in India: Exploring Ecosystem Services; Springer: Cham, Switzerland, 2020; pp. 1–32. [Google Scholar]
- Almahasheer, H.; Duarte, C.M.; Irigoien, X. Nutrient limitation in central Red Sea mangroves. Front. Mar. Sci. 2016, 3, 271. [Google Scholar] [CrossRef]
- Holguin, G.; Vazquez, P.; Bashan, Y. The role of sediment microorganisms in the productivity, conservation, and rehabilitation of mangrove ecosystems: An overview. Biol. Fertil. Soils 2001, 33, 265–278. [Google Scholar] [CrossRef]
- Moraes, R.; Delitti, W.B.C.; Struffaldi-De Vuono, Y. Litterfall and litter nutrient content in two Brazilian Tropical Forests. Rev. Bras. Bot. 1999, 22, 9–16. [Google Scholar] [CrossRef]
- Adame, M.; Reef, R.; Santini, N.; Najera, E.; Turschwell, M.; Hayes, M.; Masque, P.; Lovelock, C. Mangroves in arid regions: Ecology, threats, and opportunities. Estuar. Coast. Shelf Sci. 2021, 248, 106796. [Google Scholar] [CrossRef]
- Khan, M.; Islam, N.; Suwa, R.; Hagihara, A. Biomass and aboveground net primary production in a subtropical mangrove stand of Kandelia obovata (S., L.) Yong at Manko Wetland, Okinawa, Japan. Wetl. Ecol. Manag. 2009, 17, 585–599. [Google Scholar] [CrossRef]
- Meng, S.; Peng, T.; Liu, X.; Wang, H.; Huang, T.; Gu, J.-D.; Hu, Z. Ecological role of bacteria involved in the biogeochemical cycles of mangroves based on functional genes detected through GeoChip 5.0. MSphere 2022, 7, e00936-21. [Google Scholar] [CrossRef]
- Palit, K.; Rath, S.; Chatterjee, S.; Das, S. Microbial diversity and ecological interactions of microorganisms in the mangrove ecosystem: Threats, vulnerability, and adaptations. Environ. Sci. Pollut. Res. 2022, 29, 32467–32512. [Google Scholar] [CrossRef] [PubMed]
- Allard, S.M.; Costa, M.T.; Bulseco, A.N.; Helfer, V.; Wilkins, L.G.; Hassenrück, C.; Zengler, K.; Zimmer, M.; Erazo, N.; Mazza Rodrigues, J.L. Introducing the mangrove microbiome initiative: Identifying microbial research priorities and approaches to better understand, protect, and rehabilitate mangrove ecosystems. MSystems 2020, 5, e00658-20. [Google Scholar] [CrossRef] [PubMed]
- Mai, Z.; Ye, M.; Wang, Y.; Foong, S.Y.; Wang, L.; Sun, F.; Cheng, H. Characteristics of microbial community and function with the succession of mangroves. Front. Microbiol. 2021, 12, 764974. [Google Scholar] [CrossRef] [PubMed]
- Smith, T.J. Forest structure. In Tropical Mangrove Ecosystems; American Geophysical Union: Washington, DC, USA, 1992; pp. 101–136. [Google Scholar]
- Kulkarni, S.O.; Shouche, Y.S. Mangrove ecosystem and microbiome. In Microbiome-Host Interactions; CRC Press: Boca Raton, FL, USA, 2021; pp. 259–273. [Google Scholar]
- Duke, N. A systematic revision of the mangrove genus Avicennia (Avicenniaceae) in Australasia. Aust. Syst. Bot. 1991, 4, 299–324. [Google Scholar] [CrossRef]
- Hogarth, P.J. The Biology of Mangroves and Seagrasses; Oxford University Press: Oxford, UK, 2015. [Google Scholar]
- Hamilton, S. Mangroves and Aquaculture; Springer: Berlin, Germany, 2020; Volume 33. [Google Scholar]
- Hao, S.; Su, W.; Li, Q.Q. Adaptive roots of mangrove Avicennia marina: Structure and gene expressions analyses of pneumatophores. Sci. Total Environ. 2021, 757, 143994. [Google Scholar] [CrossRef]
- Tomlinson, P.B. The Botany of Mangroves; Cambridge University Press: Cambridge, UK, 2016; p. 413. [Google Scholar]
- Yáñez-Espinosa, L.; Flores, J. A review of sea-level rise effect on mangrove forest species: Anatomical and morphological modifications. In Global Warming Impacts: Case Study on the Economy, Human Health and on Urban and Natural Environments; In Tech: Rijieka, Croatia, 2011; pp. 253–276. [Google Scholar]
- Kristensen, E.; Valdemarsen, T.; de Moraes, P.C.; Güth, A.Z.; Sumida, P.Y.; Quintana, C.O. Pneumatophores and crab burrows increase CO2 and CH4 emission from sediments in two Brazilian fringe mangrove forests. Mar. Ecol. Prog. Ser. 2022, 698, 29–39. [Google Scholar] [CrossRef]
- Round, F.E. The Ecology of Algae; Cambridge University Press: Cambridge, UK, 1984. [Google Scholar]
- Sanka Loganathachetti, D.; Sadaiappan, B.; Poosakkannu, A.; Muthuraman, S. Pyrosequencing-based seasonal observation of prokaryotic diversity in pneumatophore-associated soil of Avicennia marina. Curr. Microbiol. 2016, 72, 68–74. [Google Scholar] [CrossRef] [PubMed]
- Mann, F.D.; Steinke, T. Biological nitrogen fixation (acetylene reduction) associated with blue-green algal (cyanobacterial) communities in the Beachwood Mangrove Nature Reserve. I. The effect of environmental factors on acetylene reduction activity. S. Afr. J. Bot. 1989, 55, 438–446. [Google Scholar] [CrossRef]
- Phillips, A.; Lambert, G.; Granger, J.; Steinke, T. Vertical zonation of epiphytic algae associated with Avicennia marina (Forssk.) Vierh. pneumatophores at beachwood mangroves nature reserve, Durban, South Africa. Bot. Mar. 1996, 39, 167–175. [Google Scholar] [CrossRef]
- Potts, M. Nitrogen fixation in mangrove forests. In Hydrobiology of the Mangal. The Ecosystem of the Mangrove Forest; Springer: Dordrecht, The Netherlands, 1984; pp. 155–162. [Google Scholar]
- Lugomela, C.; Bergman, B.; Waterbury, J. Cyanobacterial diversity and nitrogen fixation in coastal areas around Zanzibar, Tanzania. Algol. Stud. 2001, 103, 95–115. [Google Scholar] [CrossRef]
- Mann, F.D.; Steinke, T. Biological nitrogen fixation (acetylene reduction) associated with blue-green algal (cyanobacterial) communities in the Beachwood Mangrove Nature Reserve II. Seasonal variation in acetylene reduction activity. S. Afr. J. Bot. 1993, 59, 1–8. [Google Scholar] [CrossRef]
- Lakshmipriya, V.; Sivakumaar, P. Optimization of certain growth parameters for the production of exopolysaccharides from Azotobacter species isolated from mangrove ecosystem. Res. J. Biol. Sci. 2013, 5, 27–33. [Google Scholar]
- Thatoi, H.; Behera, B.C.; Mishra, R.R.; Dutta, S.K. Biodiversity and biotechnological potential of microorganisms from mangrove ecosystems: A review. Ann. Microbiol. 2013, 63, 1–19. [Google Scholar] [CrossRef]
- Alongi, D.M. Bacterial productivity and microbial biomass in tropical mangrove sediments. Microb. Ecol. 1988, 15, 59–79. [Google Scholar] [CrossRef] [PubMed]
- Alvarenga, D.O.; Rigonato, J.; Branco, L.H.Z.; Fiore, M.F. Cyanobacteria in mangrove ecosystems. Biodivers. Conserv. 2015, 24, 799–817. [Google Scholar] [CrossRef]
- Toledo, G.; Bashan, Y.; Soeldner, A. Cyanobacteria and black mangroves in Northwestern Mexico: Colonization, and diurnal and seasonal nitrogen fixation on aerial roots. Can. J. Microbiol. 1995, 41, 999–1011. [Google Scholar] [CrossRef]
- Por, F.; Dor, I. The hard bottom mangroves of Sinai, Red Sea. Rapp. Comm. Int. Mer. Medit. 1975, 23, 145–147. [Google Scholar]
- Zuberer, D.A.; Silver, W. Biological dinitrogen fixation (acetylene reduction) associated with Florida mangroves. Appl. Environ. Microbiol. 1978, 35, 567–575. [Google Scholar] [CrossRef] [PubMed]
- Zuberer, D.; Silver, W. Mangrove-associated nitrogen fixation. In Proceedings of the International Symposium on Biology and Management of Mangroves; University of Florida Institute of Food and Agricultural Sciences: Gainesville, FL, USA, 1975; pp. 643–653. [Google Scholar]
- Hicks, B.J.; Silvester, W.B. Nitrogen fixation associated with the New Zealand mangrove (Avicennia marina (Forsk.) Vierh. var. resinifera (Forst. f.) Bakh.). Appl. Environ. Microbiol. 1985, 49, 955–959. [Google Scholar]
- Lugomela, C.; Bergman, B. Biological N2-fixation on mangrove pneumatophores: Preliminary observations and perspectives. Ambio 2002, 31, 612–613. [Google Scholar] [CrossRef] [PubMed]
- Pelegraí, S.P.; Rivera-Monroy, V.H.; Twilley, R.R. A comparison of nitrogen fixation (acetylene reduction) among three species of mangrove litter, sediments, and pneumatophores in South Florida, USA. Hydrobiologia 1997, 356, 73–79. [Google Scholar] [CrossRef]
- Por, F.D. Hydrobiology of the Mangal: The Ecosystem of the Mangrove Forests; Springer: Berlin/Heidelberg, Germany, 1984; Volume 20. [Google Scholar]
- Steinke, T.; Naidoo, Y. Biomass of algae epiphytic on pneumatophores of the mangrove, Avicennia marina, in the St Lucia estuary. S. Afr. J. Bot. 1990, 56, 226–232. [Google Scholar] [CrossRef]
- Potts, M. Nitrogen fixation (acetylene reduction) associated with communities of heterocystous and non-heterocystous blue-green algae in mangrove forests of Sinai. Oecologia 1979, 39, 359–373. [Google Scholar] [CrossRef] [PubMed]
- Sahoo, G.; Ansari, Z.; Shaikh, J.B.; Varik, S.U.; Gauns, M. Epibiotic communities (microalgae and meiofauna) on the pneumatophores of Avicennia officinalis (L.). Estuar. Coast. Shelf Sci. 2018, 207, 391–401. [Google Scholar] [CrossRef]
- Laursen, W.; King, R. The distribution and abundance of mangrove macroalgae in Woolooware Bay, New South Wales, Australia. Bot. Mar. 2000, 43, 377–384. [Google Scholar] [CrossRef]
- García, A.F.; Bueno, M.; Leite, F.P.P. The Bostrychietum community of pneumatophores in Araçá Bay: An analysis of the diversity of macrofauna. J. Mar. Biol. Assoc. UK 2016, 96, 1617–1624. [Google Scholar] [CrossRef]
- Steinke, T.; Ward, C.; Lubke, R. The distribution of algae epiphytic on pneumatophores of the mangrove, Avicennia marina, at different salinities in the Kosi System. S. Afr. J. Bot. 2003, 69, 546–554. [Google Scholar] [CrossRef]
- Melville, F.; Pulkownik, A.; Burchett, M. Zonal and seasonal variation in the distribution and abundance of mangrove macroalgae in the Parramatta River, Australia. Estuar. Coast. Shelf Sci. 2005, 64, 267–276. [Google Scholar] [CrossRef]
- Leon-Tejera, H.; Perez-Estrada, C.J.; Montejano, G.; Serviere-Zaragoza, E. Biodiversity and temporal distribution of Chroococcales (Cyanoprokaryota) of an arid mangrove on the east coast of Baja California Sur, Mexico. Fottea 2011, 11, 235–244. [Google Scholar] [CrossRef]
- Hussain, M.; Khoja, T. Intertidal and subtidal blue-green algal mats of open and mangrove areas in the Farasan Archipelago (Saudi Arabia), Red Sea. Bot. Mar. 1993, 36, 377–388. [Google Scholar] [CrossRef]
- Van der Valk, A.; Attiwill, P. Acetylene reduction in an Avicennia marina community in Southern Australia. Aust. J. Bot. 1984, 32, 157–164. [Google Scholar]
- Feller, I.C.; Lovelock, C.E.; Berger, U.; McKee, K.L.; Joye, S.B.; Ball, M. Biocomplexity in mangrove ecosystems. Ann. Rev. Mar. Sci. 2010, 2, 395–417. [Google Scholar] [CrossRef]
- Mehdizadeh Allaf, M.; Peerhossaini, H. Cyanobacteria: Model microorganisms and beyond. Microorganisms 2022, 10, 696. [Google Scholar] [CrossRef]
- Zahra, Z.; Choo, D.H.; Lee, H.; Parveen, A. Cyanobacteria: Review of current potentials and applications. Environments 2020, 7, 13. [Google Scholar] [CrossRef]
- Rigonato, J.; Alvarenga, D.O.; Andreote, F.D.; Dias, A.C.F.; Melo, I.S.; Kent, A.; Fiore, M.F. Cyanobacterial diversity in the phyllosphere of a mangrove forest. FEMS Microbiol. Ecol. 2012, 80, 312–322. [Google Scholar] [CrossRef] [PubMed]
- Silva, C.S.P.; Genuario, D.B.; Vaz, M.G.M.V.; Fiore, M.F. Phylogeny of culturable cyanobacteria from Brazilian mangroves. Syst. Appl. Microbiol. 2014, 37, 100–112. [Google Scholar] [CrossRef]
- Silambarasan, G.; Ramanathan, T.; Kathiresan, K. Diversity of marine cyanobacteria from three mangrove environment in Tamil Nadu coast, South East coast of India. Curr. Res. J. Biol. 2012, 4, 235–238. [Google Scholar]
- Sakthivel, K.; Kathiresan, K. Cyanobacterial diversity from mangrove sediment of south east coast of India. Asian J. Biodivers. 2013, 4, 190–203. [Google Scholar] [CrossRef]
- Potts, M. Blue-green algae (Cyanophyta) in marine coastal environments of the Sinai Peninsula; distribution, zonation, stratification and taxonomic diversity. Phycologia 1980, 19, 60–73. [Google Scholar] [CrossRef]
- Lambert, G.; Steinke, T.; Naidoo, Y. Algae associated with mangroves in southern African estuaries: Cyanophyceae. S. Afr. J. Bot. 1989, 55, 476–491. [Google Scholar] [CrossRef]
- Phillips, A.; Lambert, G.; Granger, J.; Steinke, T. Horizontal zonation of epiphytic algae associated with Avicennia marina (Forssk.) Vierh. pneumatophores at beachwood mangroves nature reserve, Durban, South Africa. Bot. Mar. 1994, 37, 567–576. [Google Scholar] [CrossRef]
- Toledo, G.; Bashan, Y.; Soeldner, A. In vitro colonization and increase in nitrogen fixation of seedling roots of black mangrove inoculated by a filamentous cyanobacteria. Can. J. Microbiol. 1995, 41, 1012–1020. [Google Scholar] [CrossRef]
- Pérez-Estrada, C.J.; León-Tejera, H.; Serviere-Zaragoza, E. Cyanobacteria and macroalgae from an arid environment mangrove on the east coast of the Baja California Peninsula. Bot. Mar. 2012, 55, 187–196. [Google Scholar] [CrossRef]
- Gab-Alla, A. Biodiversity and distribution of epiphytes community associated with pneumatophores of the mangal Avicennia marina (forssk.) Vierh, along Egyptian Red Sea coast. Egypt. J. Aquat. Biol. Fish. 2000, 4, 179–196. [Google Scholar] [CrossRef]
- Mohamed, Z.A.; Al-Shehri, A.M. Biodiversity and toxin production of cyanobacteria in mangrove swamps in the Red Sea off the southern coast of Saudi Arabia. Bot. Mar. 2015, 58, 23–34. [Google Scholar] [CrossRef]
- Siva, S. Cyanophyceae associated with mangrove trees at Inhaca Island, Mozambique. Bothalia 1991, 21, 143–150. [Google Scholar] [CrossRef]
- Huisman, J.; Kendrick, A.; Rule, M. Mangrove-associated macroalgae and cyanobacteria in Shark Bay, Western Australia. J. R. Soc. West. Aust. 2015, 98, 45–68. [Google Scholar]
- Fatimahsari, T.K.; Fitri, S.G.S.; Khastini, R.O. Epiphytic cyanobacteria on Avicennia marina pneumatophore in mangrove ecosystem of Cagar Alam Pulau Dua (CAPD) Serang, Banten. In Proceeding of the International Conference on Research, Implementation and Education of Mathematics and Sciences, Depok, Indonesia, 18–20 May 2014; pp. B177–B182. [Google Scholar]
- Shamina, M.; Saranya, T.; Ram, A. Cyanobacterial biodiversity at mangrove vegetation of Kadalundi, Kerala. J. Microbiol. 2014, 3, 15–16. [Google Scholar]
- Larkum, A.W.; Chen, M.; Li, Y.; Schliep, M.; Trampe, E.; West, J.; Salih, A.; Kühl, M. A novel epiphytic chlorophyll d-containing cyanobacterium isolated from a mangrove-associated red alga. J. Phycol. 2012, 48, 1320–1327. [Google Scholar] [CrossRef] [PubMed]
- Kuang, T.; Lu, C.; Zhang, L.; Li, Y.; Larkum, A.; Schliep, M.; Kühl, M.; Neilan, B.; Chen, M. Newly isolated Chl d-containing cyanobacteria. In Photosynthesis Research for Food, Fuel and the Future: 15th International Conference on Photosynthesis; Springer: Berlin/Heidelberg, Germany, 2013; pp. 686–690. [Google Scholar]
- sona Janarthine, S.R.; Eganathan, P.; Balasubramanian, T.; Vijayalakshmi, S. Endophytic bacteria isolated from the pneumatophores of Avicennia marina. Afr. J. Microbiol. Res. 2011, 5, 4455–4466. [Google Scholar] [CrossRef]
- Janarthine, S.; Eganathan, P. Plant growth promoting of endophytic Sporosarcina aquimarina SjAM16103 isolated from the pneumatophores of Avicennia marina L. Int. J. Microbiol. 2012, 2012, 532060. [Google Scholar] [CrossRef] [PubMed]
- Naidoo, Y.; Steinke, T.; Mann, F.; Bhatt, A.; Gairola, S. Epiphytic organisms on the pneumatophores of the mangrove Avicennia marina: Occurrence and possible function. Afr. J. Plant Sci. 2008, 2, 012–015. [Google Scholar]
- Abhijith, R.; Vennila, A.; Purushothaman, C. Occurrence of phosphate-solubilizing bacteria in rhizospheric and pneumatophoric sediment of Avicennia marina. Int. J. Fish. Aquat. Stud. 2017, 5, 284–288. [Google Scholar]
- Varghese, M.A.; Thomas, A.M.; Kumar, R.S. Distribution and extracellular enzyme production of cultivable bacteria isolated from pneumatophores of Ayiramthengu mangrove ecosystem of Kerala coast. J. Mar. Biol. Assoc. India 2020, 62, 74. [Google Scholar] [CrossRef]
- Bibi, F.; Naseer, M.I.; Yasir, M.; Al-Ghamdi, A.A.K.; Azhar, E.I. LC-MS based identification of secondary metabolites from marine antagonistic endophytic bacteria. Genet. Mol. Res. 2017, 17, gmr16039857. [Google Scholar] [CrossRef]
- Devi, R.; Sugunan, V. Isolation and metabolic profile identification of four bioremedial endophytic bacterial colonies from the pneumatophore of Avicennia officinalis from Poovar mangrove, north east coast of Kerala, India. Perspect. Biodivers. India 2020, 25, 26–30. [Google Scholar]
- Grover, M.; Bodhankar, S.; Sharma, A.; Sharma, P.; Singh, J.; Nain, L. PGPR mediated alterations in root traits: Way toward sustainable crop production. Front. Sustain. Food Syst. 2021, 4, 618230. [Google Scholar] [CrossRef]
- Mohanty, P.; Singh, P.K.; Chakraborty, D.; Mishra, S.; Pattnaik, R. Insight into the role of PGPR in sustainable agriculture and environment. Front. Sustain. Food Syst. 2021, 5, 667150. [Google Scholar] [CrossRef]
- Basu, A.; Prasad, P.; Das, S.N.; Kalam, S.; Sayyed, R.; Reddy, M.; El Enshasy, H. Plant growth promoting rhizobacteria (PGPR) as green bioinoculants: Recent developments, constraints, and prospects. Sustainability 2021, 13, 1140. [Google Scholar] [CrossRef]
- Sheridan, R.P. Epicaulous, nitrogen-fixing microepiphytes in a tropical mangal community, Guadeloupe, French West Indies. Biotropica 1991, 23, 530–541. [Google Scholar] [CrossRef]
- Toledo, G.; Rojas, A.; Bashan, Y. Monitoring of black mangrove restoration with nursery-reared seedlings on an arid coastal lagoon. Hydrobiologia 2001, 444, 101–109. [Google Scholar] [CrossRef]
- Bashan, Y.; Puente, M.E.; Myrold, D.D.; Toledo, G. In vitro transfer of fixed nitrogen from diazotrophic filamentous cyanobacteria to black mangrove seedlings. FEMS Microbiol. Ecol. 1998, 26, 165–170. [Google Scholar] [CrossRef]
- Zehr, J.P. Nitrogen fixation by marine cyanobacteria. Trends Microbiol. 2011, 19, 162–173. [Google Scholar] [CrossRef]
- Stal, L.J. Nitrogen cycling in marine cyanobacterial mats. In Fossil and Recent Biofilms: A Natural History of Life on Earth; Springer: Berlin/Heidelberg, Germany, 2003; pp. 119–140. [Google Scholar]
- Dor, I. The blue-green algae of the mangrove forests of Sinai. Rapp. Comm. Int. Mer. Medit. 1975, 23, 109–110. [Google Scholar]
- Bohra, V.; Dafale, N.A.; Purohit, H.J. Understanding the alteration in rumen microbiome and CAZymes profile with diet and host through comparative metagenomic approach. Arch. Microbiol. 2019, 201, 1385–1397. [Google Scholar] [CrossRef]
- New, F.N.; Brito, I.L. What is metagenomics teaching us, and what is missed? Annu. Rev. Microbiol. 2020, 74, 117–135. [Google Scholar] [CrossRef]
- Pavlopoulos, G.A.; Baltoumas, F.A.; Liu, S.; Selvitopi, O.; Camargo, A.P.; Nayfach, S.; Azad, A.; Roux, S.; Call, L.; Ivanova, N.N. Unraveling the functional dark matter through global metagenomics. Nature 2023, 622, 594–602. [Google Scholar] [CrossRef] [PubMed]
- Bohra, V.; Tikariha, H.; Purohit, H.J.; Dafale, N.A. Unique pool of carbohydrate-degrading enzymes in novel bacteria assembled from cow and buffalo rumen metagenomes. Appl. Microbiol. Biotechnol. 2022, 106, 4643–4654. [Google Scholar] [CrossRef] [PubMed]
- Wainwright, B.J.; Millar, T.; Bowen, L.; Semon, L.; Hickman, K.; Lee, J.N.; Yeo, Z.Y.; Zahn, G. The core mangrove microbiome reveals shared taxa potentially involved in nutrient cycling and promoting host survival. Environ. Microbiome 2023, 18, 47. [Google Scholar] [CrossRef] [PubMed]
- Rampadarath, S.; Bandhoa, K.; Puchooa, D.; Jeewon, R.; Bal, S. Metatranscriptomics analysis of mangroves habitats around Mauritius. World J. Microbiol. Biotechnol. 2018, 34, 59. [Google Scholar] [CrossRef] [PubMed]
- Isaza, J.P.; Sandoval-Figueredo, V.; Rodelo, M.C.; Muñoz-García, A.; Figueroa-Galvis, I.; Vanegas, J. Metatranscriptomic characterization of the bacterial community of a contaminated mangrove from the Caribbean. Reg. Stud. Mar. Sci. 2021, 44, 101724. [Google Scholar] [CrossRef]
- Lee, T.C.-H.; Lai, K.K.-Y.; Xu, S.J.-L.; Lee, F.W.-F. Upregulation of peridinin-chlorophyll A-binding protein in a toxic strain of Prorocentrum hoffmannianum under normal and phosphate-depleted Conditions. Int. J. Mol. Sci. 2023, 24, 1735. [Google Scholar] [CrossRef] [PubMed]
- Gröger, T.M.; Käfer, U.; Zimmermann, R. Gas chromatography in combination with fast high-resolution time-of-flight mass spectrometry: Technical overview and perspectives for data visualization. TrAC Trends Anal. Chem. 2020, 122, 115677. [Google Scholar] [CrossRef]
- Kleiner, D.E.; Brunt, E.M.; Wilson, L.A.; Behling, C.; Guy, C.; Contos, M.; Cummings, O.; Yeh, M.; Gill, R.; Chalasani, N. Association of histologic disease activity with progression of nonalcoholic fatty liver disease. JAMA Netw. Open 2019, 2, e1912565. [Google Scholar] [CrossRef]
- Merder, J.; Freund, J.A.; Feudel, U.; Niggemann, J.; Singer, G.; Dittmar, T. Improved mass accuracy and isotope confirmation through alignment of ultrahigh-resolution mass spectra of complex natural mixtures. Anal. Chem. 2019, 92, 2558–2565. [Google Scholar] [CrossRef]
- Bohra, V.; Dafale, N.A.; Hathi, Z.; Purohit, H.J. Genomic annotation and validation of bacterial consortium NDMC-1 for enhanced degradation of sugarcane bagasse. Ann. Microbiol. 2019, 69, 695–711. [Google Scholar] [CrossRef]
- Paixão, D.A.A.; Tomazetto, G.; Sodre, V.R.; Goncalves, T.A.; Uchima, C.A.; Büchli, F.; Alvarez, T.M.; Persinoti, G.F.; da Silva, M.J.; Bragatto, J. Microbial enrichment and meta-omics analysis identify CAZymes from mangrove sediments with unique properties. Enzym. Microb. Technol. 2021, 148, 109820. [Google Scholar] [CrossRef] [PubMed]
- Marfil-Santana, M.D.; Martínez-Cárdenas, A.; Ruíz-Hernández, A.; Vidal-Torres, M.; Márquez-Velázquez, N.A.; Figueroa, M.; Prieto-Davó, A. A meta-omics analysis unveils the shift in microbial community structures and metabolomics profiles in mangrove sediments treated with a selective actinobacterial isolation procedure. Molecules 2021, 26, 7332. [Google Scholar] [CrossRef] [PubMed]
Geographical Region | Mangrove Plant | Major Microbial Community on Pneumatophores | Habitat | Nitrogenase Activity (Nmole C2H4 Reduced) | In Situ/ Ex Situ | Reference |
---|---|---|---|---|---|---|
Zanzibar Island, Indian Ocean | Sonneratia alba and few Avicennia marina | Rivularia sp. | Mangrove pneumatophores without Rivularia sp. | 27–118.5 * | In situ | [47] |
Mangrove pneumatophores with Rivularia sp. | 6–25.9 * | |||||
Mangrove sediments with cyanobacterial-dominated microbial mats | 6–16.8 * | |||||
Bare sediment | 1.3–3.8 * | |||||
Shark River Estuary, Southwest Florida, USA | Avicennia germinans (L.) Stern | Not mentioned | Mangrove pneumatophores | 0 to 4.8 # | Ex situ | [48] |
Bare sediment | 0 to 31.3 # | |||||
Beachwood Mangrove, Mgeni Estuary, South Africa | Avicennia marina (Forssk.) Vierh. | Lyngbya sp. | Pneumatophores | 15–90 * | Ex situ | [37] |
Oscillatoria sp. | Wet sediment | 100–700 * | ||||
Microcoleus sp. | Dry sediment | 100–350 * | ||||
Beachwood Mangrove, Mgeni Estuary, South Africa | Avicennia marina (Forssk.) Vierh. | Not mentioned | Pneumatophores | 450 * | Ex situ | [33] |
Wet mat habitat | 3300 * | |||||
Dry mat habitat | 3000 * | |||||
New Zealand Mangrove | Avicennia marina (Forsk.) Vierh. var. resinifera (Forst. f.) Bakh. | Caothrix sp. | Sediment beneath mangrove tree | 1.23 * | Ex situ | [46] |
Sediment (dark) | 0.62 * | |||||
Sediment (light) | 0.61 * | |||||
Sediment (summer) | 1.35 * | |||||
Sediment (winter) | 0.2 * | |||||
Mangrove pneumatophores (5 to 12 mm diameter) (dark) | 18 ^ | |||||
Mangrove pneumatophores (5 to 12 mm diameter) (light) | 94 ^ | |||||
Mangrove pneumatophores (5 to 12 mm diameter) (summer) | 100–500 ^ | |||||
Mangrove pneumatophores (5 to 12 mm diameter) (winter) | less than in summer (data not reported) |
Bacteria | Methodology | Habitat | Country and Location | Reference |
---|---|---|---|---|
Pseudomonas, | Isolation and microscopic identification | Epiphytic on pneumatophores | Ayiramthengu mangrove ecosystem, Kerala, India | [84] |
Acinetobacter, | ||||
Moraxella, | ||||
Streptoccoccus, | ||||
Deinococcus, | ||||
Micrococcus, | ||||
Paenibacillus, and | ||||
Staphylococcus species | ||||
Pseudomonas alcaligenes PMB1, Aeromonas taiwanensis PMB4, Aeromonas taiwanensis PMB3, and Bacterial strain PMB2 | Isolation and 16s rDNA identification | Endophytic on A. officinalis pneumatophores | Poovar, South Kerala, India | [86] |
Nocardioides aromaticivorans EA83, Streptomyces spectabilis EA85, and Nocardioides albus EA87 | Isolation and 16s rDNA identification | Endophytic on A. marina pneumatophores | Western coastal area of Jeddah, Saudi Arabia | [85] |
Bacillus atrophaeus strain F2 and | Isolation and 16s rDNA identification | Sediment on A. marina pneumatophores | Mangrove forests of Mumbai, India | [83] |
Bacillus sp. D04-1 | ||||
Bacillus sp. SjAM16101, Enterobacter sp. SjAM16102, Sporosarcina aquimarina SjAM16103, and Bacillus cereus SjAM16104 | Isolation and 16s rDNA identification | Endophytic on A. marina pneumatophores | Vellar estuary, southeast coast of India. | [80] |
Diazotrophic bacterial strains | Isolation | Endophytic on A. marina (Forssk.) Vierh. pneumatophores | Beachwood Mangroves Nature Reserve, South Africa | [82] |
Microbial Isolate | Feature of Interest | Assay Method | Reference |
---|---|---|---|
Chroococcus turgidus, Spirulina subsalsa, Oxynema acuminatum (formerly Oscillatoria acuminata), Oscillatoria sancta, Leptolyngbya tenuis, Lyngbya majuscula, Pseudanabaena catenata, and Calothrix breviarticulata | Toxic against Artemia salina | Artemia assay, ELISA, HPLC, and LC-MS/MS | [73] |
Acaryochloris sp. Mangrove1 | Presence of chlorophyll D | Not available | [79] |
Acaryochloris sp. MPGRS1 | Presence of chlorophyll D | (HPLC)-based pigment analysis and by confocal imaging of cultured cells | [78] |
Rivularia, Aphanocapsa, and Scytonema species | Nitrogen fixation | Acetylene reduction assay | [36] |
Microcoleus and Anabaena species | Nitrogen fixation | Acetylene reduction assay | [42] |
Nocardioides aromaticivorans EA83 (Actinomycetota), Streptomyces spectabilis EA85 (Actinomycetota), and Nocardioides albus EA87 (Actinomycetota) | Antifungal activity against fungal pathogens, Phytophthora capsici and Pythium ultimum | Cross streak method and LC-MS analysis of bacterial culture | [85] |
Bacillus atrophaeus strain F2 and Bacillus sp. D04-1 | Phosphate solubilization | Plate zymography and broth assay | [83] |
Bacillus sp. SjAM16101 and Enterobacter sp. SjAM16102 | Selective PGP activity: IAA production, phosphate solubilization, nitrogen fixation, sulfur reduction | Plate zymography and biochemical assay | [80] |
Bacillus cereus SjAM16104 and Sporosarcina aquimarina SjAM16103 | Selective PGP activity: IAA production, phosphate solubilization, nitrogen fixation, siderophore production, sulfur reduction | Plate zymography, biochemical assay, and in vitro inoculation of plants with bacterium | [80,81] |
Microbial Isolate | Source | Method of Study | Experimental Plant | Observation | Reference |
---|---|---|---|---|---|
Sporosarcina aquimarina SjAM16103 | Endophytic bacteria from pneumatophores of Avicennia marina | In vitro | Bacopa monnieri, Eupatorium triplinerve, Excoecaria agallocha, and Avicennia marina | Bacterial inoculation significantly increased growth (in terms of root length, shoot length, number of roots). Root hairs and early root development were observed in inoculated explants. | [81] |
Bacillus cereus SjAM16104 | Endophytic bacteria from pneumatophores of Avicennia marina | In vitro | Bacopa monnieri | Growth rates of treated explants (in terms of root length, shoot length, number of roots) were significantly increased compared to the control explants. | [80] |
Microcoleus chthonoplastes strains B1 | BGA epiphytic on Avicennia germinans pneumatophores | In vitro | Black mangrove propagules | Levels of total N and 15N in inoculated leaves were significantly higher than those in non-inoculated plants. | [92] |
Microcoleus sp. | BGA epiphytic on A. germinas pneumatophotre | In vitro | Black mangrove propagules Avicennia germinans (L.) Stem | Post-inoculation, nitrogen fixation gradually increased with time. Nitrogen fixation in the presence of plant was significantly higher than the amount of nitrogen fixed by a similar quantity of cyanobacteria on a N-free growth medium. | [70] |
Mangrove Plant | Location | No. of Zones | Species Identified in Bottom Zone | Species Identified in Middle Zone | Species Identified in Upper Zone | Sediment/Sublittoral Oncolites * | Reference |
---|---|---|---|---|---|---|---|
Avicennia marina | Station I, Cagar Alam Pulau Dua (CAPD) Serang, Banten | 3 | Aphanothece, Oscillatoria | Aphanothece, Myxosarcina, Oscillatoria, Microcoleus, Lyngbya, Phormidium | Chroococcus, Aphanothece, Myxosarcina, Oscillatoria, Lyngbya, Phormidium | - | [76] |
Avicennia marina | Station II, CAPD Serang, Banten | 3 | Chroococcus, Aphanocapsa, Myxosarcina, Oscillatoria, Lyngbya, Calothrix | Myxosarcina, Oscillatoria, Lyngbya, Calothrix | Oscillatoria, Calothrix | - | [76] |
Avicennia marina (Forssk.) Vierh. | Egyptian Red Sea coast | 3 | Calothrix, Lyngbya, Oscillatoria, Rivularia | Calothrlx, Lyngba, Oscillatoria, Rivularia | Calothrlx, Lyngba, Oscillatoria, Rivularia | - | [72] |
Avicennia germinans (L.) Stern | Balandra lagoon, Baja California Sur, Mexico | 3 | Lyngbya, Oscillatoria | Microcoleus | Aphanothece | Anabaena | [42] |
Avicennia | Ras Muhammad, mangroves of Sinai Peninsula | 1 | Rivularia | - | - | Microcoleus | [67] |
Avicennia | Shura el Manqata, Gulf of Elat, Sinai Peninsula | 3 | Kyrtuthrix, Rivularia | Calothrix | Scytonema | Lyngbya, Gloeothece, Lyngbya aestllarii, Microcoleus chthonoplasles, Hydrocoleliin, Schizothrix | [67] |
Avicennia marina (Forst.) Vierh. | Shura el Manqata, mangroves of Sinai Peninsula | 3 | Rivularia, Kyrtuthrix | Calothrix | Scytonema | Phormidium | [51] |
Avicennia marina (Forst.) Vierh. | Ras Muhammad, mangroves of Sinai Peninsula | 2 | Rivularia, Kyrtuthrix | Calothri | - | Phormidium | [51] |
Avicennia marina | Mangrove forests of Sinai | 3 | Lyngbya, Symploca | Rivularia, Calothrix, Brachytrichia | Scytonema | Phormidium, Aphanocapsa | [95] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bohra, V.; Tam, N.F.-Y.; Chen, L.; Lai, K.K.-Y.; Lam, W.; Xu, S.J.-L.; Zhou, H.-C.; Lang, T.; Lee, C.-L.; Lee, F.W.-F. Untangling Structural and Functional Diversity of Prokaryotic Microbial Assemblage on Mangrove Pneumatophores. J. Mar. Sci. Eng. 2024, 12, 802. https://doi.org/10.3390/jmse12050802
Bohra V, Tam NF-Y, Chen L, Lai KK-Y, Lam W, Xu SJ-L, Zhou H-C, Lang T, Lee C-L, Lee FW-F. Untangling Structural and Functional Diversity of Prokaryotic Microbial Assemblage on Mangrove Pneumatophores. Journal of Marine Science and Engineering. 2024; 12(5):802. https://doi.org/10.3390/jmse12050802
Chicago/Turabian StyleBohra, Varsha, Nora Fung-Yee Tam, Luzhen Chen, Kaze King-Yip Lai, Winnie Lam, Steven Jing-Liang Xu, Hai-Chao Zhou, Tao Lang, Chak-Lam Lee, and Fred Wang-Fat Lee. 2024. "Untangling Structural and Functional Diversity of Prokaryotic Microbial Assemblage on Mangrove Pneumatophores" Journal of Marine Science and Engineering 12, no. 5: 802. https://doi.org/10.3390/jmse12050802
APA StyleBohra, V., Tam, N. F. -Y., Chen, L., Lai, K. K. -Y., Lam, W., Xu, S. J. -L., Zhou, H. -C., Lang, T., Lee, C. -L., & Lee, F. W. -F. (2024). Untangling Structural and Functional Diversity of Prokaryotic Microbial Assemblage on Mangrove Pneumatophores. Journal of Marine Science and Engineering, 12(5), 802. https://doi.org/10.3390/jmse12050802