Medium-Term Effects of Dune Erosion and Longshore Sediment Transport on Beach–Dune Systems Evolution
Abstract
:1. Introduction
2. Methodology
2.1. LTC and CS-Model
2.2. Wave Impact and Dune Erosion
- H0 is the deepwater root-mean-square wave height [25] (m);
- L0 is the deepwater wavelength (m);
- a is a coefficient representative of foreshore slope—about 0.15, according to Hanson et al. [37];
- R is the runup height (m);
- is a friction coefficient for waves travelling over the berm;
- YBD is the width of the beach, determined by the difference between the berm (YB) and the seaward foot dune (YS) positions (m).
2.3. Method to Combine Longshore and Cross-Shore Processes of Sediment Transport
- (1)
- LTC is run to obtain the longshore sediment transport gradients at each cross-shore profile (ΔQlongshore);
- (2)
- The bathymetry and topography of the LTC numerical domain are updated through Δz, resulting from the distribution of the volume of the longshore-sediment-transport gradient computed for each beach profile across its active width. The active width of the profiles is defined by the distance between the depth of closure and the runup limit;
- (3)
- The new shoreline position in LTC is determined and compared with the previous position, allowing for the estimation of shoreline position variation due to the effects of longitudinal-sediment-transport gradients at each coastal segment, directly related to each cross-shore profile (ΔYB);
- (4)
- The morphological parameters used by the CS-Model to define each cross-shore profile are updated to incorporate the effects of the longshore-sediment-transport gradients, defining a new berm position by adding ΔYB;
- (5)
- The CS-Model is run to obtain the effects of cross-shore sediment transport processes (eventual wave attack to the dune and consequent dune erosion) at each cross-shore profile (ΔQcross-shore);
- (6)
- The volume of sediments resulting from dune erosion is used to update the bathymetry and topography of the LTC through the distribution of the cross-shore volumes in the active profile width (Δz);
- (7)
- The parameters that define the cross-shore morphology of the profiles are updated based on the impacts induced by the cross-shore effects (new berm position, new dune toe positions and new sandbar volume).
3. Numerical Setup and Assessed Scenarios
3.1. Sensibility of the CS-Model Results to Dune Erosion
- A = 1.34 × 10−3 and b = 3.19 × 10−4;
- H0 is the deepwater root-mean-square wave height (m);
- D50 is the medium grain size (m).
3.2. Numerical Setup
3.3. Assessed Scenarios
4. Results
4.1. Sediment Transport Volumes
4.2. Evolution of Berm and Dune Foot Positions
5. Discussion
6. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Woodroffe, C. Coasts: Form, Process and Evolution; Cambridge University Press: Cambridge, UK, 2002; ISBN 0-521-01183-3. [Google Scholar]
- Jackson, D.W.T.; Costas, S.; González-Villanueva, R.; Cooper, A. A global ‘greening’ of coastal dunes: An integrated consequence of climate change? Glob. Planet. Chang. 2019, 182, 103026. [Google Scholar] [CrossRef]
- Pais, D.; Andrade, C.; Pinto, C. Evolution of a beach-dune system after artificial nourishment: The case of São Joao da Caparica (Portugal). In Proceedings of the Building Coastal Resilience 2022, KU Leuven Bruges Campus, Bruges, Belgium, 12–13 April 2022; pp. 50–52. [Google Scholar]
- Kroon, A.; de Schipper, M.; de Vries, S.; Aarninkhof, S. Subaqueous and Subaerial Beach Changes after Implementation of a Mega Nourishment in Front of a Sea Dike. J. Mar. Sci. Eng. 2022, 10, 1152. [Google Scholar] [CrossRef]
- Kolodin, J.; Lorenzo-Trueba, J.; Hoagland, P.; Jin, D.; Ashton, A. Engineered coastal berm-dune renourishment in new jersey: Can coastal communities continue to hold the line? Anthr. Coasts 2021, 4, 193–209. [Google Scholar] [CrossRef]
- Adapt European Climate Adaptation Platform Climate-ADAPT. Available online: https://climate-adapt.eea.europa.eu (accessed on 1 April 2024).
- Vousdoukas, M.; Mentaschi, L.; Voukouvalas, E.; Verlaan, M.; Jevrejeva, S.; Jackson, L.; Feyen, L. Global probabilistic projections of extreme sea levels show intensification of coastal flood hazard. Nat. Commun. 2018, 9, 2360. [Google Scholar] [CrossRef] [PubMed]
- PESETA. Climate Change and Coastal Flooding; European Commission: Luxembourg, 2020; 2p. [Google Scholar]
- Kirezci, E.; Young, I.; Ranasinghe, R.; Muis, S.; Nicholls, R.; Lincke, D.; Hinkel, J. Projections of global-scale extreme sea levels and resulting episodic coastal flooding over the 21st Century. Sci. Rep. 2020, 10, 11629. [Google Scholar] [CrossRef] [PubMed]
- D’Alessandro, F.; Tomasicchio, G.; Frega, F.; Leone, E.; Francone, A.; Pantusa, D.; Barbaro, G.; Foti, G. Beach–Dune System Morphodynamics. J. Mar. Sci. Eng. 2022, 10, 627. [Google Scholar] [CrossRef]
- Larson, M.; Rosati, J.D.; Kraus, N.C. Overview of Regional Coastal Sediment Processes and Controls. AS Army Corps Eng. 2002, 2002, 23. [Google Scholar]
- Houser, C.; Elllis, J. Treatise on Geomorphology. In Treatise on Geomorphology; Shroder, J., Ed.; Elsevier: San Diego, CA, USA; Academic Press: Cambridge, MA, USA, 2013; Volume 10, pp. 267–288. ISBN 9780123864543. [Google Scholar]
- Beuzen, T.; Harley, M.; Splinter, K.; Turner, I. Controls of Variability in Berm and Dune Storm Erosion. J. Geophys. Res. Earth Surf. 2019, 124, 2647–2665. [Google Scholar] [CrossRef]
- Sallenger, A. Storm Impact Scale for Barrier Islands. J. Coast. Res. 2000, 16, 890–895. [Google Scholar]
- Antolínez, J.; Méndez, F.; Anderson, D.; Ruggiero, P.; Kaminsky, G. Predicting Climate-Driven Coastlines with a Simple and Efficient Multiscale Model. J. Geophys. Res. Earth Surf. 2019, 124, 1596–1624. [Google Scholar] [CrossRef]
- Hoagland, S.W.H.; Jeffries, C.R.; Irish, J.L.; Weiss, R.; Mandli, K.; Vitousek, S.; Johnson, C.M.; Cialone, M.A. Advances in Morphodynamic Modeling of Coastal Barriers: A Review. J. Waterw. Port Coastal Ocean Eng. 2023, 149, 1–27. [Google Scholar] [CrossRef]
- Hanson, H.; Aarninkhof, S.; Capobianco, M.; Jiménez, J.A.; Larson, M.; Nicholls, R.; Plant, N.G.; Southgate, H.N.; Steetzel, H.J.; Stive, M.J.F.; et al. Modelling of Coastal Evolution on Yearly to Decadal Time Scales. J. Coast. Res. 2003, 19, 790–811. [Google Scholar]
- Burcharth, H.F.; Hawkins, S.J.; Zanuttigh, B.; Lamberti, A. Design tools related to engineering. Environ. Des. Guidel. Low Crested Coast. Struct. 2007, 1, 203–333. [Google Scholar] [CrossRef]
- Larson, M. Numerical Modeling. In Encyclopedia of Coastal Science; Schwartz, M.L., Ed.; Springer: Dordrecht, The Netherlands, 2005; pp. 730–733. ISBN 978-1-4020-3880-8. [Google Scholar]
- Palalane, J.; Larson, M. A Long-Term Coastal Evolution Model with Longshore and Cross-Shore Transport. J. Coast. Res. 2020, 36, 411–424. [Google Scholar] [CrossRef]
- Figlus, J.; Kobayashi, N.; Gralher, C.; Iranzo, V. Wave Overtopping and Overwash of Dunes. J. Waterw. Port Coastal Ocean Eng. 2011, 137, 26–33. [Google Scholar] [CrossRef]
- Brunone, B.; Tomasicchio, G. Wave Kinematics at Steep Slopes: Second-Order Model. J. Waterw. Port Coastal Ocean Eng. 1997, 123, 223–232. [Google Scholar] [CrossRef]
- Kobayashi, N.; Buck, M.; Payo, A.; Bradley, J. Berm and Dune Erosion during a Storm. J. Waterw. Port Coastal Ocean Eng. 2009, 135, 1–10. [Google Scholar] [CrossRef]
- Zhang, J.; Larson, M. A Numerical Model to Simulate Beach and Dune Evolution. J. Coast. Res. 2022, 38, 776–784. [Google Scholar] [CrossRef]
- Larson, M.; Palalane, J.; Fredriksson, C.; Hanson, H. Simulating cross-shore material exchange at decadal scale. Theory and model component validation. Coast. Eng. 2016, 116, 57–66. [Google Scholar] [CrossRef]
- Larson, M.; Erikson, L.; Hanson, H. An analytical model to predict dune erosion due to wave impact. Coast. Eng. 2004, 51, 675–696. [Google Scholar] [CrossRef]
- Berard, N.; Mulligan, R.; da Silva, A.; Dibajnia, M. Evaluation of XBeach performance for the erosion of a laboratory sand dune. Coast. Eng. 2017, 125, 70–80. [Google Scholar] [CrossRef]
- Vitousek, S.; Barnard, P.L.; Limber, P.; Erikson, L.; Cole, B. A model integrating longshore and cross-shore processes for predicting long-term shoreline response to climate change. J. Geophys. Res. Earth Surf. 2017, 122, 782–806. [Google Scholar] [CrossRef]
- Robinet, A.; Idier, D.; Castelle, B.; Marieu, V. A reduced-complexity shoreline change model combining longshore and cross-shore processes: The LX-Shore model. Environ. Model. Softw. 2018, 109, 1–16. [Google Scholar] [CrossRef]
- Ding, Y.; Kim, S.; Permenter, R.; Styles, R.; Beck, T. Cross-Shore Sediment Transport for Modeling Long-Term Shoreline Changes in Response to Waves and Sea Level Change. In Proceedings of the International Conference on Coastal Sediments, Tampa, FL, USA, 27–31 May 2019; pp. 2296–2308. [Google Scholar]
- CERC. Shore Protection Manual; U.S. Army Corps of Engineers, Coastal Engineering and Research Center, U.S. Government Printing Office: Washington, DC, USA, 1984; Volume 1.
- Kamphuis, J. Alongshore Sediment Transport Rate. J. Waterw. Port Coastal Ocean Eng. 1991, 117, 624–641. [Google Scholar] [CrossRef]
- Yates, M.L.; Guza, R.T.; O’Reilly, W.C. Equilibrium shoreline response: Observations and modeling. J. Geophys. Res. Ocean. 2009, 114. [Google Scholar] [CrossRef]
- Coelho, C. Riscos de Exposição de Frentes Urbanas para Diferentes Intervenções de Defesa Costeira; Universidade de Aveiro: Aveiro, Portugal, 2005; 404p. [Google Scholar]
- Coelho, C.; Narra, P.; Marinho, B.; Lima, M. Coastal management software to support the decision-makers to mitigate coastal erosion. J. Mar. Sci. Eng. 2020, 8, 37. [Google Scholar] [CrossRef]
- Ferreira, M.; Coelho, C. Artificial nourishments effects on longshore sediments transport. J. Mar. Sci. Eng. 2021, 9, 240. [Google Scholar] [CrossRef]
- Hanson, H.; Larson, M.; Kraus, N. Calculation of beach change under interacting cross-shore and longshore processes. Coast. Eng. 2010, 57, 610–619. [Google Scholar] [CrossRef]
- Fisher, J.S.; Overton, M.F. Numerical Model for Dune Erosion Due to Wave Uprush. Proc. Coast. Eng. Conf. 1985, 2, 1553–1558. [Google Scholar] [CrossRef]
- USACE. Part III: Coastal Sediment Processes (EM 1110-2-1100). In Coastal Engineering Manual; USACE Publications: Washington, DC, USA, 2002. [Google Scholar]
- Dean, R. Equilibrium beach profiles: Characteristics and applications. J. Coast. Res 1991, 7, 53–84. [Google Scholar]
- Vellinga, P. Beach and Dune Erosion During Storm Surges; Delft Hydraulics Laboratory: Delft, The Netherlands, 1986. [Google Scholar]
- Dette, H.; Peters, K.; Newe, J. MAST III-SAFE Project: Data documentation, Large Wave Flume Experiments ’96/97, Experiments on Beach and Dune Stability; Technical University of Braunschweig: Braunschweig, Germany, 1998. [Google Scholar]
- Kraus, N.; Smith, J.M. SUPERTANK Laboratory Data Collection Project: Volumes I And II. Main Text and Appendices; Technical Report CERC-94-3; Coastal Engineering Research Center, U.S. Army Engineer Waterways Experiment Station: Vicksburg, MS, USA, 1994. [Google Scholar]
- Hughes, M.; Chiu, T. Beach and Dune Erosion during Severe Storms; Report UFL/COEL-TR/043; Coastal and Oceanographic Engineering Department, University of Florida: Gainesville, FL, USA, 1981. [Google Scholar]
- Kubota, S.; Katori, S.; Takeazawa, M. Relationship between on-offshore sediment transport rate on the beach face and wave energy. In Proceedings of the International Conference on Coastal Sediments ’99, Long Island, NY, USA, 21–23 June 1999; ASCE: Reston, VA, USA, 1999; pp. 447–462. [Google Scholar]
- Birkemeier, W.; Savage, R.; Leffler, M. A Collection of Storm Erosion Field Data; Miscellaneous Paper CERC-88-9; Coastal Engineering Research Center, U.S. Army Engineer Waterways Experiment Station: Vicksburg, MS, USA, 1998. [Google Scholar]
- Palalane, J.; Fredriksson, C.; Marinho, B.; Larson, M.; Hanson, H.; Coelho, C. Simulating cross-shore material exchange at decadal scale. Model application. Coast. Eng. 2016, 116, 26–41. [Google Scholar] [CrossRef]
- Kato, K.; Udo, K. Cross-Shore Model Application to Hasaki Beach, Japan: Evaluation of Parameter Setting. In Proceedings of the Coastal Engineering, Online, 6–9 October 2020; Volume 116, p. 1. [Google Scholar]
- Costa, V.; ASCE, F.; Veloso Gomes, F.; Ramos, F.; Vicente, C. History of Coastal Engineering in Portugal. In History and Heritage of Coastal Engineering; Nicholas, K., Ed.; American Society of Civil Engineering: Reston, VA, USA, 1996; p. 603. ISBN 0-7844-0196-9. [Google Scholar]
- Ferreira, M.; Coelho, C.; Silva, P.A. Littoral Drift Gradients on the Portuguese Coastal Sector Esmoriz-Nazaré: Past and Future Trends. In Proceedings of the Coastal Engineering, Sydney, Australia, 4–9 December 2022; p. 22. [Google Scholar]
- Sigren, J.; Figlus, J.; Armitage, A. Coastal sand dunes and dune vegetation: Restoration, erosion, and storm protection. Shore Beach 2014, 82, 5–12. [Google Scholar]
- Luijendijk, A.; Hagenaars, G.; Ranasinghe, R.; Baart, F.; Donchyts, G.; Aarninkhof, S. The State of the World’s Beaches. Sci. Rep. 2018, 8, 6641. [Google Scholar] [CrossRef] [PubMed]
- Arévalo-Valenzuela, P.; Peña-Cortés, F.; Pincheira-Ulbrich, J. Ecosystem services and uses of dune systems of the coast of the Araucanía Region, Chile: A perception study. Ocean Coast. Manag. 2021, 200, 11. [Google Scholar] [CrossRef]
- Everard, M.; Jones, L.; Watts, B. Have we neglected the societal importance of sand dunes? An ecosystem services perspective. Aquat. Conserv. Mar. Freshw. Ecosyst. 2010, 20, 476–487. [Google Scholar] [CrossRef]
- Elko, N.; Brodie, K.; Stockdon, H.; Nordstrom, K.; Houser, C.; McKenna, K.; Moore, L.; Rosati, J.; Ruggiero, P.; Thuman, R.; et al. Dune Management Challenges on Developed Coasts. Shore Beach 2016, 84, 15. [Google Scholar]
- Thiéblemont, R.; le Cozannet, G.; Rohmer, J.; Privat, A.; Guidez, R.; Negulescu, C.; Philippenko, X.; Luijendijk, A.; Calkoen, F.; Nicholls, R. Sea-level rise induced change in exposure of low-lying coastal land: Implications for coastal conservation strategies. Anthr. Coasts 2024, 7, 8. [Google Scholar] [CrossRef]
- Johnston, K.; Dugan, J.; Hubbard, D.; Emery, K.; Grubbs, M. Using dune restoration on an urban beach as a coastal resilience approach. Front. Mar. Sci. 2023, 10, 17. [Google Scholar] [CrossRef]
- French, J.; Burningham, H. Coastal geomorphology: Trends and challenges. Prog. Phys. Geogr. Earth Environ. 2009, 33, 117–129. [Google Scholar] [CrossRef]
- Pais-Barbosa, J.; Ferreira, A.M.; Lima, M.; Filho, L.M.; Roebeling, P.; Coelho, C. Cost-benefit analysis of artificial nourishments: Discussion of climate change adaptation pathways at Ovar (Aveiro, Portugal). Ocean Coast. Manag. 2023, 244, 106826. [Google Scholar] [CrossRef]
- D’Alessandro, F.; Tomasicchio, G. Wave–dune interaction and beach resilience in large-scale physical model tests. Coast. Eng. 2016, 116, 15–25. [Google Scholar] [CrossRef]
- Fontán-Bouzas, Á.; Andriolo, U.; Silva, P.A.; Baptista, P. Wave Impact Analysis on a Beach-Dune System to Support Coastal Management and Nourishment Works: The Showcase of Mira, Portugal. Front. Mar. Sci. 2022, 9, 15. [Google Scholar] [CrossRef]
- Sabatier, F.; Anthony, E.; Héquette, A.; Suanez, S.; Musereau, J.; Ruz, M.; Regnauld, H. Morphodynamics of beach/dune systems: Examples from the coast of France. Géomorphologie Reli. Process. Environ. 2009, 15, 3–22. [Google Scholar] [CrossRef]
- Coelho, C.; Ferreira, M.; Marinho, B. Numerical Modelling of Artificial Sediment Nourishment Impacts. J. Coast. Res. 2020, 95, 209–213. [Google Scholar] [CrossRef]
- Whitehead, J.; Dumas, C.; Herstine, J.; Hill, J.; Buerger, B. Valuing Beach Access and Width with Revealed and Stated Preference Data. Mar. Resour. Econ. 2008, 23, 119–135. [Google Scholar] [CrossRef]
- Parsons, G.R.; Chen, Z.; Hidrue, M.K.; Standing, N.; Lilley, J. Valuing beach width for recreational use: Combining revealed and stated preference data. Mar. Resour. Econ. 2013, 28, 221–241. [Google Scholar] [CrossRef]
- de Paula, D.; Vasconcelos, Y.; de Sousa, F. Effects of beach width variability on recreational function: A case study of NE Brazil. Reg. Stud. Mar. Sci. 2022, 51, 102182. [Google Scholar] [CrossRef]
- Larson, M.; Kraus, N.C.; Hanson, H. Simulation of Regional Longshore Sediment Transport and Coastal Evolution—The “CASCADe” Model. In Proceedings of the Coastal Engineering, Cardiff, Walles, 7–12 July 2002; World Scientific: Singapore, 2003; pp. 2612–2624. [Google Scholar]
Data Sets | Cs |
---|---|
Large wave tank data [41,42,43] | 1.80 × 10−3 |
Hughes and Chiu small-scale laboratory data [44] | 0.82 × 10−3 |
Kubota et al. field data HA94 [45] | 1.60 × 10−3 |
Kubota et al. field data HA97 [45] | 0.92 × 10−3 |
Birkemeier et al. field data [46] | 0.13 × 10−3 |
βL | βS | YB | YG | S | DB | Dc | Vb |
---|---|---|---|---|---|---|---|
(rad) | (rad) | (m) | (m) | (m) | (m) | (m) | (m3/m) |
0.32 | 0.24 | 3000 | 2957.21 | 6 | 2.8 | 15 | 129.46 |
S1 | S2 | S3 | S4 | S5 | S6 | |
---|---|---|---|---|---|---|
Qin (North) | 2,248,400 | 2,248,400 | 2,248,400 | 2,301,389 | 2,230,283 | 2,219,080 |
Qout (South) | 2,248,400 | 2,248,400 | 2,248,400 | 2,264,110 | 2,192,673 | 2,275,124 |
ΔVlong = Qin − Qout | 0 | 0 | 0 | 37,279 | 37,610 | −56,044 |
ΔVcross = ΔVdune | 181,073 | 3 | 3669 | 34,111 | 34,110 | 69,838 |
ΔVtotwl | 181,073 | 3 | 3669 | 72,530 | 72,576 | 14,036 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ferreira, A.M.; Coelho, C.; Silva, P.A. Medium-Term Effects of Dune Erosion and Longshore Sediment Transport on Beach–Dune Systems Evolution. J. Mar. Sci. Eng. 2024, 12, 1083. https://doi.org/10.3390/jmse12071083
Ferreira AM, Coelho C, Silva PA. Medium-Term Effects of Dune Erosion and Longshore Sediment Transport on Beach–Dune Systems Evolution. Journal of Marine Science and Engineering. 2024; 12(7):1083. https://doi.org/10.3390/jmse12071083
Chicago/Turabian StyleFerreira, Ana Margarida, Carlos Coelho, and Paulo A. Silva. 2024. "Medium-Term Effects of Dune Erosion and Longshore Sediment Transport on Beach–Dune Systems Evolution" Journal of Marine Science and Engineering 12, no. 7: 1083. https://doi.org/10.3390/jmse12071083
APA StyleFerreira, A. M., Coelho, C., & Silva, P. A. (2024). Medium-Term Effects of Dune Erosion and Longshore Sediment Transport on Beach–Dune Systems Evolution. Journal of Marine Science and Engineering, 12(7), 1083. https://doi.org/10.3390/jmse12071083