Characterization of Overtopping Volumes from Focused Wave Groups over Smooth Dikes with an Emerged Toe: Insights from Physical Model Tests
Abstract
:1. Introduction
2. Experimental MODEL
2.1. Model Setup
2.2. Hydrodynamic Conditions: Focused Wave Groups
3. Parameter Definition and Scaling Laws in Wave Overtopping
4. Results
4.1. Wave Transformation and Overtopping Volume Characteristics
4.2. Focused Wave Parameter Space
4.2.1. Dimensional Variables
4.2.2. Dimensionless Variables
5. Discussion
5.1. Influence of the Wave Period on Overtopping Volumes
5.2. Dependence on Scaled Parameters
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Intergovernmental Panel on Climate Change (Ipcc). The Ocean and Cryosphere in a Changing Climate: Special Report of the Intergovernmental Panel on Climate Change, 1st ed.; Cambridge University Press: Cambridge, UK, 2022. [Google Scholar] [CrossRef]
- Amores, A.; Marcos, M.; Carrió, D.S.; Gómez-Pujol, L. Coastal impacts of Storm Gloria (January 2020) over the north-western Mediterranean. Nat. Hazards Earth Syst. Sci. 2020, 20, 1955–1968. [Google Scholar] [CrossRef]
- Morim, J.; Hemer, M.; Wang, X.L.; Cartwright, N.; Trenham, C.; Semedo, A.; Young, I.; Bricheno, L.; Camus, P.; Casas-Prat, M.; et al. Robustness and uncertainties in global multivariate wind-wave climate projections. Nat. Clim. Change 2019, 9, 711–718. [Google Scholar] [CrossRef]
- EurOtop. Manual on Wave Overtopping of Sea Defences and Related Structures. An Overtopping Manual Largely Based on European Research, but for Worldwide Application; Van der Meer, J.W., Allsop, N.W.H., Bruce, T., De Rouck, J., Kortenhaus, A., Pullen, T., Schüttrumpf, H., Eds.; 2018; Available online: www.overtopping-manual.com (accessed on 6 June 2024).
- Sandoval, C.; Bruce, T. Wave overtopping hazard to pedestrians: Video evidence from real accidents. In Coasts, Marine Structures and Breakwaters 2017; ICE Publishing: Liverpool, UK, 2018; pp. 501–512. [Google Scholar] [CrossRef]
- Koosheh, A.; Etemad-Shahidi, A.; Cartwright, N.; Tomlinson, R.; Van Gent, M.R.A. Individual wave overtopping at coastal structures: A critical review and the existing challenges. Appl. Ocean. Res. 2021, 106, 102476. [Google Scholar] [CrossRef]
- Hughes, S.A.; Thornton, C.I. Estimation of time-varying discharge and cumulative volume in individual overtopping waves. Coast. Eng. 2016, 117, 191–204. [Google Scholar] [CrossRef]
- Formentin, S.M.; Gaeta, M.G.; Palma, G.; Zanuttigh, B.; Guerrero, M. Flow Depths and Velocities across a Smooth Dike Crest. Water 2019, 11, 2197. [Google Scholar] [CrossRef]
- Formentin, S.M.; Zanuttigh, B. Semi-automatic detection of the overtopping waves and reconstruction of the overtopping flow characteristics at coastal structures. Coast. Eng. 2019, 152, 103533. [Google Scholar] [CrossRef]
- Whittaker, C.N.; Fitzgerald, C.J.; Raby, A.C.; Taylor, P.H.; Borthwick, A.G.L. Extreme coastal responses using focused wave groups: Overtopping and horizontal forces exerted on an inclined seawall. Coast. Eng. 2018, 140, 292–305. [Google Scholar] [CrossRef]
- Tromans, P.; Anaturk, A.R.; Hagemeijer, P. A new model for the kinematics of large ocean waves-application as a design wave. In Proceedings of the First International Offshore and Polar Engineering Conference, Edinburgh, UK, 11–16 August 1991. [Google Scholar]
- Hann, M.; Greaves, D.; Raby, A.C.; Howey, B. Use of constrained focused waves to measure extreme loading of a taut moored floating wave energy converter. Ocean. Eng. 2018, 148, 33–42. [Google Scholar] [CrossRef]
- Hunt-Raby, A.C.; Borthwick, A.G.L.; Stansby, P.K.; Taylor, P.H. Experimental measurement of focused wave group and solitary wave overtopping. J. Hydraul. Res. 2011, 49, 450–464. [Google Scholar] [CrossRef]
- Hofland, B.; Wenneker, I.; Van Steeg, P. Short Test Durations for Wave Overtopping Experiments. In Proceedings of the 5th International Conference on The Application of Physical Modelling to Port and Coastal Protection (CoastLab14), Varna, Bulgaria, 29 September—2 October 2014. [Google Scholar]
- Whittaker, C.N.; Fitzgerald, C.J.; Raby, A.C.; Taylor, P.H.; Orszaghova, J.; Borthwick, A.G.L. Optimisation of focused wave group runup on a plane beach. Coast. Eng. 2017, 121, 44–55. [Google Scholar] [CrossRef]
- Ropero-Giralda, P.; Crespo, A.J.; Tagliafierro, B.; Altomare, C.; Domínguez, J.M.; Gómez-Gesteira, M.; Viccione, G. Efficiency and survivability analysis of a point-absorber wave energy converter using DualSPHysics. Renew. Energy 2020, 162, 1763–1776. [Google Scholar] [CrossRef]
- Tagliafierro, B.; Karimirad, M.; Altomare, C.; Göteman, M.; Martínez-Estévez, I.; Capasso, S.; Domínguez, J.M.; Viccione, G.; Gómez-Gesteira, M.; Crespo, A.J. Numerical validations and investigation of a semi-submersible floating offshore wind turbine platform interacting with ocean waves using an SPH framework. Appl. Ocean. Res. 2023, 141, 103757. [Google Scholar] [CrossRef]
- Zhu, G.; Shahroozi, Z.; Zheng, S.; Göteman, M.; Engström, J.; Greaves, D. Experimental study of interactions between focused waves and a point absorber wave energy converter. Ocean. Eng. 2023, 287, 115815. [Google Scholar] [CrossRef]
- Whittaker, C.N.; Fitzgerald, C.J.; Raby, A.C.; Taylor, P.H. The average shape of large waves in the coastal zone. Coast. Eng. 2016, 114, 253–264. [Google Scholar] [CrossRef]
- Craciunescu, C.C.; Christou, M. Wave breaking energy dissipation in long-crested focused wave groups based on JONSWAP spectra. Appl. Ocean. Res. 2020, 99, 102144. [Google Scholar] [CrossRef]
- Xiao, L.; Fang, K.; Huang, M.; Wang, D.; Liu, Z. Focused wave group propagation over fringing reef and its impact on the vertical wall mounted on a reef flat: Experiment and RANS modeling. Ocean. Eng. 2023, 289, 116150. [Google Scholar] [CrossRef]
- Mortimer, W.; Calvert, R.; Antonini, A.; Greaves, D.; Raby, A.; Van Den Bremer, T.S. Implications of second-order wave generation for physical modelling of force and run-up on a vertical wall using wave groups. Coast. Eng. 2023, 180, 104259. [Google Scholar] [CrossRef]
- Altomare, C.; Gironella, X.; Marzeddu, A.; Viñes Recasens, M.; Mösso, C.; Sospedra, J. Impact of focused wave groups on pier structures: A case study of severe breaking waves at Pont del Petroli during storm Gloria. Front. Built Environ. 2024, 10, 1372906. [Google Scholar] [CrossRef]
- Orszaghova, J.; Taylor, P.H.; Borthwick, A.G.L.; Raby, A.C. Importance of second-order wave generation for focused wave group run-up and overtopping. Coast. Eng. 2014, 94, 63–79. [Google Scholar] [CrossRef]
- Mortimer, W.; Raby, A.; Antonini, A.; Greaves, D.; Van Den Bremer, T.S. Correct generation of the bound set-down for surface gravity wave groups in laboratory experiments of intermediate to shallow depth. Coast. Eng. 2022, 174, 104121. [Google Scholar] [CrossRef]
- Heller, V. Scale effects in physical hydraulic engineering models. J. Hydraul. Res. 2011, 49, 293–306. [Google Scholar] [CrossRef]
- Pearson, J.; Bruce, T.; Allsop, N.W.H.; Gironella, X. Violent wave overtopping—Measurements at large and small scale. In Proceedings of the 28th International Conference of Coastal Engineering (ASCE), Wales, UK, 19 November 2002; p. 12. [Google Scholar]
- Schüttrumpf, O.; Oumeraci, H. Layer thicknesses and velocities of wave overtopping flow at seadikes. Coast. Eng. 2005, 52, 473–495. [Google Scholar] [CrossRef]
- Yuhi, M.; Mase, H.; Kim, S.; Umeda, S.; Altomare, C. Refinement of integrated formula of wave overtopping and runup modeling. Ocean. Eng. 2021, 220, 108350. [Google Scholar] [CrossRef]
- Lashley, C.H.; Van Der Meer, J.; Bricker, J.D.; Altomare, C.; Suzuki, T.; Hirayama, K. Formulating Wave Overtopping at Vertical and Sloping Structures with Shallow Foreshores Using Deep-Water Wave Characteristics. J. Waterw. Port Coast. Ocean. Eng. 2021, 147, 04021036. [Google Scholar] [CrossRef]
- Hofland, B.; Chen, X.; Altomare, C.; Oosterlo, P. Prediction formula for the spectral wave period T m-1,0 on mildly sloping shallow foreshores. Coast. Eng. 2017, 123, 21–28. [Google Scholar] [CrossRef]
- Svendsen, I.A. Mass flux and undertow in a surf zone. Coast. Eng. 1984, 8, 347–365. [Google Scholar] [CrossRef]
- Ibrahim, M.S.I.; Baldock, T.E. Swash overtopping on plane beaches—Reconciling empirical and theoretical scaling laws using the volume flux. Coast. Eng. 2020, 157, 103668. [Google Scholar] [CrossRef]
- Altomare, C.; Laucelli, D.B.; Mase, H.; Gironella, X. Determination of Semi-Empirical Models for Mean Wave Overtopping Using an Evolutionary Polynomial Paradigm. J. Mar. Sci. Eng. 2020, 8, 570. [Google Scholar] [CrossRef]
- Astorga-Moar, A.; Baldock, T.E. Assessment of wave overtopping models for fringing reef fronted beaches. Coast. Eng. 2023, 186, 104395. [Google Scholar] [CrossRef]
- Altomare, C.; Suzuki, T.; Chen, X.; Verwaest, T.; Kortenhaus, A. Wave overtopping of sea dikes with very shallow foreshores. Coast. Eng. 2016, 116, 236–257. [Google Scholar] [CrossRef]
- Goda, Y. Derivation of unified wave overtopping formulas for seawalls with smooth, impermeable surfaces based on selected CLASH datasets. Coast. Eng. 2009, 56, 385–399. [Google Scholar] [CrossRef]
- Franco, C.; Franco, L. Overtopping Formulas for Caisson Breakwaters with Nonbreaking 3D Waves. J. Waterw. Port Coast. Ocean. Eng. 1999, 125, 98–108. [Google Scholar] [CrossRef]
- Besley, P. Overtopping of Seawalls: Design and Assessment Manual; Environment Agency: Bristol, UK, 1999. [Google Scholar]
- Lykke Andersen, T.; Burcharth, H.F.; Gironella, X. Single wave overtopping volumes and their travel distance for rubble mound breakwaters. In Coastal Structures 2007; World Scientific Publishing Company: Venice, Italy, 2009; pp. 1241–1252. [Google Scholar] [CrossRef]
- Mares-Nasarre, P.; Molines, J.; Gómez-Martín, M.E.; Medina, J.R. Individual wave overtopping volumes on mound breakwaters in breaking wave conditions and gentle sea bottoms. Coast. Eng. 2020, 159, 103703. [Google Scholar] [CrossRef]
- Romano, A.; Bellotti, G.; Briganti, R.; Franco, L. Uncertainties in the physical modelling of the wave overtopping over a rubble mound breakwater: The role of the seeding number and of the test duration. Coast. Eng. 2015, 103, 15–21. [Google Scholar] [CrossRef]
- Goda, Y. Random Seas and Design of Maritime Structures, 2nd ed.; World Scientific: Singapore, 2000. [Google Scholar] [CrossRef]
- Buccino, M.; Di Leo, A.; Tuozzo, S.; Còrdova Lopez, L.F.; Calabrese, M.; Dentale, F. Wave overtopping of a vertical seawall in a surf zone: A joint analysis of numerical and laboratory data. Ocean. Eng. 2023, 288, 116144. [Google Scholar] [CrossRef]
- Tuozzo, S.; Calabrese, M.; Buccino, M. An overtopping formula for shallow water vertical seawalls by SWASH. Appl. Ocean. Res. 2024, 148, 104009. [Google Scholar] [CrossRef]
Wave Gauge | WG0 | WG1 | WG2 | WG3 | WG4 | WG5 * | WG6 * | WG7 * | AWG0 * |
---|---|---|---|---|---|---|---|---|---|
Distance from the wavemaker (m) | 4.00 | 4.15 | 4.36 | 4.65 | 5.23 | 6.56 | 7.67 | 8.64 | 9.58 |
Parameter | Dike 1:2 | Dike 1:0.5 | Vertical Dike |
---|---|---|---|
Hm0 (m) | 0.0456–0.0712 | 0.0498–0.0760 | 0.0468–0.0726 |
Tm−1,0 (s) | 1.32–1.82 | 1.48–1.82 | 1.42–1.82 |
xf (m) (relative to the wavemaker) | 6.56, 7.66, 8.64, 9.58 | ||
xf,t (m) (relative to the dike toe) | 0.64, 1.58, 2.55, 3.66 | ||
φ (°) | 0, 90, 180, 270 | ||
h (m) (at the wavemaker) | 0.28, 0.29, 0.30, 0.31 | 0.28, 0.30, 0.31 | 0.28, 0.29, 0.30, 0.31 |
No. data | 155 | 70 | 99 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Altomare, C.; Gironella, X. Characterization of Overtopping Volumes from Focused Wave Groups over Smooth Dikes with an Emerged Toe: Insights from Physical Model Tests. J. Mar. Sci. Eng. 2024, 12, 1143. https://doi.org/10.3390/jmse12071143
Altomare C, Gironella X. Characterization of Overtopping Volumes from Focused Wave Groups over Smooth Dikes with an Emerged Toe: Insights from Physical Model Tests. Journal of Marine Science and Engineering. 2024; 12(7):1143. https://doi.org/10.3390/jmse12071143
Chicago/Turabian StyleAltomare, Corrado, and Xavi Gironella. 2024. "Characterization of Overtopping Volumes from Focused Wave Groups over Smooth Dikes with an Emerged Toe: Insights from Physical Model Tests" Journal of Marine Science and Engineering 12, no. 7: 1143. https://doi.org/10.3390/jmse12071143
APA StyleAltomare, C., & Gironella, X. (2024). Characterization of Overtopping Volumes from Focused Wave Groups over Smooth Dikes with an Emerged Toe: Insights from Physical Model Tests. Journal of Marine Science and Engineering, 12(7), 1143. https://doi.org/10.3390/jmse12071143