An Underwater Multisensor Fusion Simultaneous Localization and Mapping System Based on Image Enhancement
Abstract
:1. Introduction
- •
- In this paper, an underwater image enhancement algorithm based on a generative adversarial network [29] is proposed. To improve the quality of underwater images, we designed a hybrid attention module, consisting of channel attention and spatial attention, and applied it to the generator to enhance the underwater image enhancement effect. Additionally, we constructed a multinomial loss function to improve training efficiency.
- •
- In this paper, a multisensor fusion SLAM algorithm is proposed, based on the VINS-Mono framework, incorporating DVL, and making corresponding improvements to its measurement preprocessing, initialization, and nonlinear optimization components. Additionally, to address the impact of grayscale changes caused by image enhancement on image matching, this paper proposes an underwater image matching algorithm based on a local matcher.
2. Materials and Methods
2.1. Underwater Image Enhancement Algorithm Based on Generative Adversarial Network
2.1.1. Channel Attention Module
2.1.2. Spatial Attention Module
Algorithm 1 Python code for feature separation. |
|
2.1.3. Loss Function
2.2. Underwater Multisensor Fusion SLAM Algorithm
2.2.1. DVL Tightly Coupled to SLAM Algorithm
2.2.2. Underwater Feature-Matching Algorithm Based on a Local Matcher
3. Results
3.1. Simulation Experiments
3.2. Physical Experiments
3.2.1. Open-Loop Experiment
3.2.2. Closed-Loop Experiment
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AUV | Autonomous Underwater Vehicle |
SLAM | Simultaneous Localization and Mapping |
DVL | Doppler Velocity Log |
MAE | Mean Absolute Error |
STD | Standard Deviation |
MEMS IMU | Micro-Electro-Mechanical System Inertial Measurement Unit |
EKF | Extended Kalman Filter |
PF | Particle Filter |
VIO | Visual Inertial Odometer |
GT | Ground Truth |
MEAN | Mean Error |
RMSE | Root Mean Square Error |
APE | Absolute Pose Error |
GPS | Global Positioning System |
ROS | Robot Operating System |
MAE | Mean Absolute Error |
References
- Li, Y.; Takahashi, S.; Serikawa, S. Cognitive ocean of things: A comprehensive review and future trends. Wirel. Netw. 2022, 28, 917. [Google Scholar] [CrossRef]
- Lusty, P.A.; Murton, B.J. Deep-ocean mineral deposits: Metal resources and windows into earth processes. Elements 2018, 14, 301–306. [Google Scholar] [CrossRef]
- Constable, S.; Kowalczyk, P.; Bloomer, S. Measuring marine self-potential using an autonomous underwater vehicle. Geophys. J. Int. 2018, 215, 49–60. [Google Scholar] [CrossRef]
- Wu, Y. Coordinated path planning for an unmanned aerial-aquatic vehicle (UAAV) and an autonomous underwater vehicle (AUV) in an underwater target strike mission. Ocean. Eng. 2019, 182, 162–173. [Google Scholar] [CrossRef]
- Johnson-Roberson, M.; Bryson, M.; Friedman, A.; Pizarro, O.; Troni, G.; Ozog, P.; Henderson, J.C. High-resolution underwater robotic vision-based mapping and three-dimensional reconstruction for archaeology. J. Field Robot. 2017, 34, 625–643. [Google Scholar] [CrossRef]
- Mogstad, A.A.; Ødegård, Ø.; Nornes, S.M.; Ludvigsen, M.; Johnsen, G.; Sørensen, A.J.; Berge, J. Mapping the historical shipwreck figaro in the high arctic using underwater sensor-carrying robots. Remote Sens. 2020, 12, 997. [Google Scholar] [CrossRef]
- Ma, L.; Gulliver, T.A.; Zhao, A.; Zeng, C.; Wang, K. An underwater bistatic positioning system based on an acoustic vector sensor and experimental investigation. Appl. Acoust. 2021, 171, 107558. [Google Scholar] [CrossRef]
- Zhao, S.; Wang, Z.; Nie, Z.; He, K.; Ding, N. Investigation on total adjustment of the transducer and seafloor transponder for GNSS/Acoustic precise underwater point positioning. Ocean. Eng. 2021, 221, 108533. [Google Scholar] [CrossRef]
- Hsu, H.Y.; Toda, Y.; Yamashita, K.; Watanabe, K.; Sasano, M.; Okamoto, A.; Inaba, S.; Minami, M. Stereo-vision-based AUV navigation system for resetting the inertial navigation system error. Artif. Life Robot. 2022, 27, 165–178. [Google Scholar] [CrossRef]
- Mu, X.; He, B.; Wu, S.; Zhang, X.; Song, Y.; Yan, T. A practical INS/GPS/DVL/PS integrated navigation algorithm and its application on Autonomous Underwater Vehicle. Appl. Ocean. Res. 2021, 106, 102441. [Google Scholar] [CrossRef]
- Chen, H.; Huang, H.; Qin, Y.; Li, Y.; Liu, Y. Vision and laser fused SLAM in indoor environments with multi-robot system. Assem. Autom. 2019, 39, 297–307. [Google Scholar] [CrossRef]
- Zhao, J.; Liu, S.; Li, J. Research and implementation of autonomous navigation for mobile robots based on SLAM algorithm under ROS. Sensors 2022, 22, 4172. [Google Scholar] [CrossRef] [PubMed]
- Peng, H.; Zhao, Z.; Wang, L. A Review of Dynamic Object Filtering in SLAM Based on 3D LiDAR. Sensors 2024, 24, 645. [Google Scholar] [CrossRef] [PubMed]
- Huang, B.; Zhao, J.; Liu, J. A survey of simultaneous localization and mapping with an envision in 6g wireless networks. arXiv 2019, arXiv:1909.05214. [Google Scholar]
- Shangguan, M.; Weng, Z.; Lin, Z.; Lee, Z.; Shangguan, M.; Yang, Z.; Sun, J.; Wu, T.; Zhang, Y.; Wen, C. Day and night continuous high-resolution shallow-water depth detection with single-photon underwater lidar. Opt. Express 2023, 31, 43950–43962. [Google Scholar] [CrossRef] [PubMed]
- Shangguan, M.; Yang, Z.; Lin, Z.; Lee, Z.; Xia, H.; Weng, Z. Compact Long-Range Single-Photon Underwater Lidar with High Spatial–Temporal Resolution. IEEE Geosci. Remote. Sens. Lett. 2023, 20, 1501905. [Google Scholar] [CrossRef]
- Macario Barros, A.; Michel, M.; Moline, Y.; Corre, G.; Carrel, F. A comprehensive survey of visual slam algorithms. Robotics 2022, 11, 24. [Google Scholar] [CrossRef]
- Chen, W.; Shang, G.; Ji, A.; Zhou, C.; Wang, X.; Xu, C.; Li, Z.; Hu, K. An overview on visual slam: From tradition to semantic. Remote Sens. 2022, 14, 3010. [Google Scholar] [CrossRef]
- Tena Ruiz, I.J. Enhanced Concurrent Mapping and Localisation Using Forward-Looking Sonar. Ph.D. Thesis, Heriot-Watt University, Edinburgh, UK, 2001. [Google Scholar]
- Choi, J.; Lee, Y.; Kim, T.; Jung, J.; Choi, H.T. EKF SLAM using acoustic sources for autonomous underwater vehicle equipped with two hydrophones. In Proceedings of the OCEANS 2016 MTS/IEEE Monterey, Monterey, CA, USA, 19–23 September 2016; pp. 1–4. [Google Scholar]
- Wang, W.; Cheng, B. Augmented EKF based SLAM system with a side scan sonar. In Proceedings of the 2020 12th International Conference on Intelligent Human-Machine Systems and Cybernetics (IHMSC), Hangzhou, China, 26–27 August 2020; IEEE: New York, NY, USA, 2020; Volume 1, pp. 71–74. [Google Scholar]
- Chen, L.; Yang, A.; Hu, H.; Naeem, W. RBPF-MSIS: Toward rao-blackwellized particle filter SLAM for autonomous underwater vehicle with slow mechanical scanning imaging sonar. IEEE Syst. J. 2019, 14, 3301–3312. [Google Scholar] [CrossRef]
- Zhang, Q.; Li, Y.; Ma, T.; Cong, Z.; Zhang, W. Bathymetric particle filter SLAM based on mean trajectory map representation. IEEE Access 2021, 9, 71725–71736. [Google Scholar] [CrossRef]
- Chen, F.; Zhang, B.; Zhao, Q. Multi-AUVs Cooperative SLAM Under Weak Communication. In Proceedings of the 2023 International Conference on Control, Robotics and Informatics (ICCRI), Shanghai, China, 26–28 May 2023; IEEE: New York, NY, USA, 2023; pp. 52–56. [Google Scholar]
- Joshi, B.; Bandara, C.; Poulakakis, I.; Tanner, H.G.; Rekleitis, I. Hybrid Visual Inertial Odometry for Robust Underwater Estimation. In Proceedings of the OCEANS 2023-MTS/IEEE US Gulf Coast, Biloxi, MS, USA, 25–28 September 2023; IEEE: New York, NY, USA, 2023; pp. 1–7. [Google Scholar]
- Yang, Y.F.; Qin, J.H.; Li, T. Study on the light scattering of suspended particles in seawater. J. Electron. Meas. Instrum. 2018, 32, 145–150. [Google Scholar]
- Zhai, C.C.; Han, X.Y.; Peng, Y.F. Research on light transmission characteristics of some inorganic salts in seawater. Laser Optoelectron. Prog. 2014, 52, 43–48. [Google Scholar]
- Qin, T.; Li, P.; Shen, S. VINS-Mono: A Robust and Versatile Monocular Visual-Inertial State Estimator. IEEE Trans. Robot 2018, 34, 1004–1020. [Google Scholar] [CrossRef]
- Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y. Generative adversarial networks. Commun. ACM 2020, 63, 139–144. [Google Scholar] [CrossRef]
- Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional Networks for Biomedical Image Segmentation. In Proceedings of the Medical Image Computing and Computer-Assisted Intervention–MICCAI 2015: 18th International Conference, Munich, Germany, 5–9 October 2015; Proceedings, Part III. Springer International Publishing: Cham, Switzerland, 2015; pp. 234–241. [Google Scholar]
- Zhao, H.; Gallo, O.; Frosio, I.; Kautz, J. Loss functions for image restoration with neural networks. IEEE Trans. Comput. Imaging 2016, 3, 47–57. [Google Scholar] [CrossRef]
- Forster, C.; Carlone, L.; Dellaert, F.; Scaramuzza, D. On-manifold preintegration for real-time visual–inertial odometry. IEEE Trans. Robot. 2016, 33, 1–21. [Google Scholar] [CrossRef]
- Tamgade, S.N.; Bora, V.R. Notice of Violation of IEEE Publication Principles: Motion Vector Estimation of Video Image by Pyramidal Implementation of Lucas Kanade Optical Flow. In Proceedings of the 2009 Second International Conference on Emerging Trends in Engineering & Technology, Nagpur, India, 16–18 December 2009; IEEE: New York, NY, USA, 2009; pp. 914–917. [Google Scholar]
- Fischler, M.A.; Bolles, R.C. Random sample consensus: A paradigm for model fitting with applications to image analysis and automated cartography. Commun. ACM 1981, 24, 381–395. [Google Scholar] [CrossRef]
- Rahman, S.; Quattrini Li, A.; Rekleitis, I. SVIn2: A multi-sensor fusion-based underwater SLAM system. Int. J. Robot. Res. 2022, 41, 1022–1042. [Google Scholar] [CrossRef]
- Schonberger, J.L.; Frahm, J.M. Structure-from-Motion Revisited. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 26 June–1 July 2016; IEEE: New York, NY, USA, 2016; pp. 4104–4113. [Google Scholar]
Subdataset | Algorithm | MEAN (m) | STD (m) | RMSE (m) |
---|---|---|---|---|
Bus subdataset | VINS-Mono * | - | - | - |
Our | 0.24 | 0.16 | 0.29 | |
Cave subdataset | VINS-Mono | 0.32 | 0.13 | 0.35 |
Our | 0.14 | 0.06 | 0.16 |
Algorithm | MAE (m) | STD (m) |
---|---|---|
VINS-Mono | 1.76 | 0.90 |
Our | 0.56 | 0.50 |
Algorithm | MAE (m) | STD (m) |
---|---|---|
VINS-Mono * | 2.32 | 2.01 |
Our | 0.84 | 0.48 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liang, Z.; Wang, K.; Zhang, J.; Zhang, F. An Underwater Multisensor Fusion Simultaneous Localization and Mapping System Based on Image Enhancement. J. Mar. Sci. Eng. 2024, 12, 1170. https://doi.org/10.3390/jmse12071170
Liang Z, Wang K, Zhang J, Zhang F. An Underwater Multisensor Fusion Simultaneous Localization and Mapping System Based on Image Enhancement. Journal of Marine Science and Engineering. 2024; 12(7):1170. https://doi.org/10.3390/jmse12071170
Chicago/Turabian StyleLiang, Zeyang, Kai Wang, Jiaqi Zhang, and Fubin Zhang. 2024. "An Underwater Multisensor Fusion Simultaneous Localization and Mapping System Based on Image Enhancement" Journal of Marine Science and Engineering 12, no. 7: 1170. https://doi.org/10.3390/jmse12071170
APA StyleLiang, Z., Wang, K., Zhang, J., & Zhang, F. (2024). An Underwater Multisensor Fusion Simultaneous Localization and Mapping System Based on Image Enhancement. Journal of Marine Science and Engineering, 12(7), 1170. https://doi.org/10.3390/jmse12071170