Trajectory Tracking and Docking Control Strategy for Unmanned Surface Vehicles in Water-Based Search and Rescue Missions
Abstract
:1. Introduction
- (1)
- This paper proposes an ITATG method based on [28], which outputs a high-order continuously differentiable trajectory considering endpoint velocity and acceleration constraints, thus addressing the issue of discontinuity at waypoints. Compared to the trajectory in [28], the proposed trajectory generation method significantly alleviate the convex hull situation and make the generated trajectory significantly close to multi-segment polylines.
- (2)
- This paper presents an FTSOALOS guidance law that contains heading guidance and longitudinal velocity guidance. The FTSOALOS integrates FTSO for guaranteed positional error convergence within a fixed time around the origin. Moreover, considering the limitations of a constant forward line-of-sight distance during the actual operation of SRUSV, a variable forward line-of-sight distance strategy that changes with the positional error is designed to expedite the system’s convergence speed further.
- (3)
- A new FTETSMC strategy is proposed for SRUSV, which integrates a fixed-time sliding mode controller with a relative threshold event-triggering strategy. This strategy aims to alleviate network pressure and reduce actuator failure rates by reducing the number of actuator actions. Additionally, it considers the impact of external disturbances on control accuracy. A FOFTDO is proposed to observe external disturbances. The first-order form of this observer helps alleviate computational pressure on terminal devices.
2. Preliminaries, Lemma, and Problem Formulation
2.1. Preliminaries and Lemma
2.2. SRUSV Model
2.3. Control Objectives
3. ITATG Trajectory Generation Design
4. Fixed-Time LOS Guidance Law Design
4.1. Positional Error Dynamics
4.2. FTSO Design
4.3. FTSOALOS Guidance Law Design
5. FTETSMC Design
5.1. FOFTDO Design
5.2. Fixed-Time Intermediate Sliding Mode Controller Design
5.3. Relative Threshold Event-Triggered Controller Design
6. Simulation Studies
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
SRUSV | Search and Rescue Unmanned Surface Vehicle |
ITATG | Improved Time Allocation Trajectory Generation |
FTSOALOS | Fixed-Time Sideslip Angle Observer-based Adaptive Line-of-Sight |
FTSO | Fixed-Time Sideslip Angle Observer |
FOFTDO | First-Order Fixed-Time Disturbance Observer |
FTETSMC | Fixed-Time Event-Triggered Sliding Mode Control |
USVs | Unmanned Surface Vessels |
LOS | Line-of-Sight |
FESO | Fixed-time Extended State Observer |
FESO | Fixed-time Sliding Mode Control |
DP | Dynamic Positioning |
FFC | Finite-time Fault-tolerant Control |
ABFTSMC | Adaptive Backstepping Fast Terminal Sliding Mode Control |
AB | A* algorithm with the Bezier curve |
References
- Fossen, T.I. Handbook of Marine Craft Hydrodynamics and Motion Control; John Wiley & Sons: Hoboken, NJ, USA, 2011. [Google Scholar]
- Caharija, W.; Pettersen, K.Y.; Bibuli, M.; Calado, P.; Zereik, E.; Braga, J.; Gravdahl, J.T.; Sørensen, A.J.; Milovanović, M.; Bruzzone, G. Integral line-of-sight guidance and control of underactuated marine vehicles: Theory, simulations, and experiments. IEEE Trans. Control Syst. Technol. 2016, 24, 1623–1642. [Google Scholar] [CrossRef]
- Peng, Z.H.; Wang, J.; Wang, D.; Han, Q.L. An overview of recent advances in coordinated control of multiple autonomous surface vehicles. IEEE Trans. Ind. Inform. 2020, 17, 732–745. [Google Scholar] [CrossRef]
- Viadero-Monasterio, F.; García, J.; Meléndez-Useros, M.; Jiménez-Salas, M.; Boada, B.L.; López Boada, M.J. Simultaneous Estimation of Vehicle Sideslip and Roll Angles Using an Event-Triggered-Based IoT Architecture. Machines 2024, 12, 53. [Google Scholar] [CrossRef]
- Huang, H.B.; Gong, M.; Zhuang, Y.F.; Sharma, S.; Xu, D.G. A new guidance law for trajectory tracking of an underactuated unmanned surface vehicle with parameter perturbations. Ocean. Eng. 2019, 175, 217–222. [Google Scholar] [CrossRef]
- Viadero-Monasterio, F.; Nguyen, A.T.; Lauber, J.; Boada, M.J.L.; Boada, B.L. Event-triggered robust path tracking control considering roll stability under network-induced delays for autonomous vehicles. IEEE Trans. Intell. Transp. Syst. 2023, 24, 14743–14756. [Google Scholar] [CrossRef]
- Gonzalez-Garcia, A.; Castañeda, H. Adaptive integral terminal super-twisting with finite-time convergence for an unmanned surface vehicle under disturbances. Int. J. Robust Nonlinear Control 2022, 32, 10271–10291. [Google Scholar] [CrossRef]
- Liu, H.T.; Sun, N.; Ren, G. Finite-time fast nonsingular terminal sliding mode path-following control for underactuated marine surface vehicles with input saturation. Ocean. Eng. 2022, 262, 112327. [Google Scholar] [CrossRef]
- Fan, Y.S.; Qiu, B.B.; Liu, L.; Yang, Y. Global fixed-time trajectory tracking control of underactuated usv based on fixed-time extended state observer. ISA Trans. 2023, 132, 267–277. [Google Scholar] [CrossRef] [PubMed]
- Sui, B.; Zhang, J.Q.; Liu, Z.; Wei, J.B. Fixed-Time Trajectory Tracking Control of Fully Actuated Unmanned Surface Vessels with Error Constraints. J. Mar. Sci. Eng. 2024, 12, 584. [Google Scholar] [CrossRef]
- Yang, Y.; Guo, C.; Du, J.L. Robust adaptive NN-based output feedback control for a dynamic positioning ship using DSC approach. Sci. China Inf. Sci. 2014, 57, 254–266. [Google Scholar] [CrossRef]
- Fang, M.C.; Zhuo, Y.Z.; Lee, Z.Y. The application of the self-tuning neural network PID controller on the ship roll reduction in random waves. Ocean. Eng. 2010, 37, 529–538. [Google Scholar] [CrossRef]
- Hu, X.; Wei, X.J.; Zhang, H.F.; Xie, W.B.; Zhang, Q. Composite anti-disturbance dynamic positioning of vessels with modelling uncertainties and disturbances. Appl. Ocean. Res. 2020, 105, 102404. [Google Scholar] [CrossRef]
- Yang, H.L.; Deng, F.; He, Y.; Jiao, D.M.; Han, Z.L. Robust nonlinear model predictive control for reference tracking of dynamic positioning ships based on nonlinear disturbance observer. Ocean. Eng. 2020, 215, 107885. [Google Scholar] [CrossRef]
- Lin, Y.Y.; Du, J.L.; Li, J. Robust Adaptive Finite-time Fault-tolerant Control for Dynamic Positioning of Vessels. Int. J. Control Autom. Syst. 2021, 19, 3168–3178. [Google Scholar] [CrossRef]
- Mu, D.D.; Feng, Y.P.; Wang, G.F. State-unknown single parameter learning adaptive output feedback control for ship dynamic positioning. Ocean. Eng. 2022, 266, 112811. [Google Scholar] [CrossRef]
- Mu, D.D.; Feng, Y.P.; Wang, G.F.; Fan, Y.S.; Zhao, Y.S.; Sun, X.J. Ship Dynamic Positioning Output Feedback Control with Position Constraint Considering Thruster System Dynamics. J. Mar. Sci. Eng. 2023, 11, 94. [Google Scholar] [CrossRef]
- Xiao, J.F. Ship Dynamic Positioning Control Based on Nonlinear Fuzzy Algorithm for a Smart Port City. J. Test. Eval. 2023, 51, 1780–1792. [Google Scholar] [CrossRef]
- Chen, H.; Li, J.J.; Gao, N.; Han, J.A.; Aït-Ahmed, N.; Benbouzid, M. Adaptive backstepping fast terminal sliding mode control of dynamic positioning ships with uncertainty and unknown disturbances. Ocean. Eng. 2023, 281, 114925. [Google Scholar] [CrossRef]
- Gasparetto, A.; Boscariol, P.; Lanzutti, A.; Vidoni, R. Path planning and trajectory planning algorithms: A general overview. In Motion and Operation Planning of Robotid Systems: Background and Practical Approaches; Springer: Berlin/Heidelberg, Germany, 2015; pp. 3–27. [Google Scholar]
- Ahmed, Y.A.; Hasegawa, K. Automatic ship berthing using artificial neural network trained by consistent teaching data using nonlinear programming method. Eng. Appl. Artif. Intell. 2013, 26, 2287–2304. [Google Scholar] [CrossRef]
- Nguyen, V.S. Investigation on a novel support system for automatic ship berthing in marine practice. J. Mar. Sci. Eng. 2019, 7, 114. [Google Scholar] [CrossRef]
- Maki, A.; Sakamoto, N.; Akimoto, Y.; Nishikawa, H.; Umeda, N. Application of optimal control theory based on the evolution strategy (CMA-ES) to automatic berthing. J. Mar. Sci. Technol. 2020, 25, 221–233. [Google Scholar] [CrossRef]
- Sawada, R.; Hirata, K.; Kitagawa, Y.; Saito, E.; Ueno, M.; Tanizawa, K.; Fukuto, J. Path following algorithm application to automatic berthing control. J. Mar. Sci. Technol. 2021, 26, 541–554. [Google Scholar] [CrossRef]
- Yuan, S.Z.; Liu, Z.L.; Sun, Y.X.; Wang, Z.X.; Zheng, L.H. An event-triggered trajectory planning and tracking scheme for automatic berthing of unmanned surface vessel. Ocean. Eng. 2023, 273, 113964. [Google Scholar] [CrossRef]
- Sun, T.; Yin, Y.; Liu, C. Integrated trajectory planning into automatic berthing control of underactuated ship based on fuzzy-backstepping method. Ocean. Eng. 2024, 291, 116336. [Google Scholar] [CrossRef]
- Viadero-Monasterio, F.; Boada, B.L.; Zhang, H.; Boada, M.J.L. Integral-based event triggering actuator fault-tolerant control for an active suspension system under a networked communication scheme. IEEE Trans. Veh. Technol. 2023, 72, 13848–13860. [Google Scholar] [CrossRef]
- Richter, C.; Bry, A.; Roy, N. Polynomial trajectory planning for aggressive quadrotor flight in dense indoor environments. In Robotics Research: The 16th International Symposium ISRR; Springer: Berlin/Heidelberg, Germany, 2016; pp. 649–666. [Google Scholar]
- Lekkas, A.M.; Fossen, T.I. Integral los path following for curved paths based on a monotone cubic hermite spline parametrization. IEEE Trans. Control Syst. Technol. 2014, 22, 2287–2301. [Google Scholar] [CrossRef]
- Gao, F.; Wu, W.; Lin, Y.; Shen, S.J. Online safe trajectory generation for quadrotors using fast marching method and bernstein basis polynomial. In Proceedings of the 2018 IEEE International Conference on Robotics and Automation (ICRA), Brisbane, QLD, Australia, 21–25 May 2018; pp. 344–351. [Google Scholar]
- Polyakov, A. Nonlinear feedback design for fixed-time stabilization of linear control systems. IEEE Trans. Autom. Control 2011, 57, 2106–2110. [Google Scholar] [CrossRef]
- Zuo, Z.Y.; Tian, B.L.; Defoort, M.; Ding, Z.T. Fixed-time consensus tracking for multiagent systems with high-order integrator dynamics. IEEE Trans. Autom. Control 2017, 63, 563–570. [Google Scholar] [CrossRef]
- Zhang, H.C.; Li, B.; Xiao, B.; Yang, Y.S.; Ling, J. Nonsingular recursive-structure sliding mode control for high-order nonlinear systems and an application in a wheeled mobile robot. ISA Trans. 2022, 130, 553–564. [Google Scholar] [CrossRef]
- Basin, M.; Yu, P.; Shtessel, Y. Finite-and fixed-time differentiators utilising hosm techniques. IET Control Theory Appl. 2017, 11, 1144–1152. [Google Scholar] [CrossRef]
Name | Parameters |
---|---|
FTSO | , , |
, , | |
FTSOALOS | , , , |
, , , | |
FOFTDO | , , , |
FTETSMC | , , , |
, , | |
, , = 20,000, | |
, , | |
, |
Method | IAE | ITAE |
---|---|---|
FTETSMC + FTSOALOS | IAE() = 26.8 | ITAE() = 428 |
IAE() = 35.21 | ITAE() = 976.7 | |
FTSMC + FTLOS | IAE() = 71.8 | ITAE() = 2920 |
IAE() = 141.9 | ITAE() = 1306 | |
SMC + LOS | IAE() = 90.2 | ITAE() = 3259 |
IAE() = 160 | ITAE() = 2994 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bai, Y.; Wang, Y.; Wang, Z.; Zheng, K. Trajectory Tracking and Docking Control Strategy for Unmanned Surface Vehicles in Water-Based Search and Rescue Missions. J. Mar. Sci. Eng. 2024, 12, 1462. https://doi.org/10.3390/jmse12091462
Bai Y, Wang Y, Wang Z, Zheng K. Trajectory Tracking and Docking Control Strategy for Unmanned Surface Vehicles in Water-Based Search and Rescue Missions. Journal of Marine Science and Engineering. 2024; 12(9):1462. https://doi.org/10.3390/jmse12091462
Chicago/Turabian StyleBai, Yiming, Yiqi Wang, Zheng Wang, and Kai Zheng. 2024. "Trajectory Tracking and Docking Control Strategy for Unmanned Surface Vehicles in Water-Based Search and Rescue Missions" Journal of Marine Science and Engineering 12, no. 9: 1462. https://doi.org/10.3390/jmse12091462
APA StyleBai, Y., Wang, Y., Wang, Z., & Zheng, K. (2024). Trajectory Tracking and Docking Control Strategy for Unmanned Surface Vehicles in Water-Based Search and Rescue Missions. Journal of Marine Science and Engineering, 12(9), 1462. https://doi.org/10.3390/jmse12091462