Impact of Pore Structure on Seepage Capacity in Tight Reservoir Intervals in Shahejie Formation, Bohai Bay Basin
Abstract
:1. Introduction
2. Regional Geology
3. Samples and Experiments
3.1. Samples
3.2. Experiments
3.2.1. Helium Expansion Method
3.2.2. Nitrogen Pressure Pulse Method
3.2.3. Micro-CT Scanning
3.2.4. High-Pressure Mercury Intrusion Method
4. Results and Discussion
4.1. Pore–Throat Characteristics
4.1.1. Micron-Scale Pore–Throat Characteristics
4.1.2. Nano-Scale Pore–Throat Characteristics
4.2. Permeability Characteristics
4.2.1. Pore–Throat Distribution
4.2.2. Capillary Pressure
4.2.3. Micro-Crack
5. Conclusions
- (1)
- Reservoir pores in the study area exhibit significant heterogeneity, characterized by predominantly small pore sizes, clustered distributions, and numerous isolated pores. Micro-scale pore diameters range from 0 to 600 μm, with a majority falling within 0–20 μm and few exceeding 40 μm. The distribution curve of pore diameters reveals two distinct types: a unimodal distribution concentrated in the 200–400 μm range, conducive to hydrocarbon accumulation, and a bimodal distribution peaking at 40–80 μm and 400–600 μm. Nano-scale pore distribution spans 0.004 to 0.4 μm, displaying a unimodal curve that significantly contributes to reservoir storage capacity.
- (2)
- Large micro-scale pores within the reservoir require small throats to establish effective flow channels. However, the presence of well-developed micro-scale pores is not the principal factor influencing reservoir flow. In rocks with well-developed micro-scale pore structures, permeability remains low. Mercury injection experiments indicate that in low-permeability reservoirs, sub-micron- and nano-scale pores predominantly govern permeability. Well-developed nano-scale pores with favorable structures serve as efficient flow conduits. Critical pore–throat sizes influencing filtration range from 0.025 to 0.4 μm, representing a relatively coarse category within nano-scale pore throats. Additionally, micro-cracks within the reservoir rock notably enhance permeability.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zou, C.N.; Yang, Z.; Zhu, R.K.; Zhang, G.S.; Hou, L.H.; Wu, S.T.; Tao, S.Z.; Yuan, X.J.; Dong, D.Z.; Wang, Y.M.; et al. Petro China research institute of petroleum exploration & Development. Acta Geol. Sin. 2015, 89, 979–1007. [Google Scholar]
- Sun, Z.; Wang, J. Analysis of reservoir damage and microscopic seepage simulation in low permeability oil and gas reservoirs based on pore topology structure. J. Eng. Res. 2024, in press. [Google Scholar] [CrossRef]
- Li, N.; Zhu, S.; Li, Y.; Zhao, J.; Long, B.; Chen, F.; Wang, E.; Feng, W.; Hu, Y.; Wang, S.; et al. Fracturing-flooding technology for low permeability reservoirs: A review. Petroleum 2024, 10, 202–215. [Google Scholar] [CrossRef]
- Jamil, M.; Siddiqui, N.A.; Usman, M.; Wahid, A.; Umar, M.; Ahmed, N.; Haq, I.U.; El-Ghali, M.A.K.; Imran, Q.S.; Rahman, A.H.A.; et al. Facies analysis and distribution of Late Palaeogene deep-water massive sandstones in submarine-fan lobes, NW Borneo. Geol. J. 2022, 57, 4489–4507. [Google Scholar] [CrossRef]
- Jia, C.; Zheng, M.; Zhang, Y. Unconventional hydrocarbon resources in China and the prospect of exploration and development. Pet. Explor. Dev. 2012, 39, 129–136. [Google Scholar] [CrossRef]
- Ma, N.; Li, C.; Wang, F.; Liu, Z.; Zhang, Y.; Jiang, L.; Shu, Y.; Du, D. Laboratory Study on the Oil Displacement Process in Low-Permeability Cores with Different Injection Fluids. ACS Omega 2022, 7, 8013–8022. [Google Scholar] [CrossRef]
- Zhang, H.; Chen, G.; Zhu, Y.S.; Dang, Y.C.; Chen, J.; Wang, H.L.; Si, Y.; Bai, C.; Li, X. Quantitative characterization of microscopic pore throat structure in tight sandstone oil reservoirs: A case study of Chang7 reservoir in Xin’anbian oil field, Ordos Basin. Pet. Geol. Exp. 2017, 39, 112–119. [Google Scholar]
- Feng, Z.; Yin, C.; Lu, J.; Zhu, Y. Formation and accumulation of tight sandy conglomerate gas: A case from the Lower Cretaceous Yingcheng Formation of Xujiaweizi fault depression, Songliao Basin. Pet. Explor. Dev. 2013, 40, 696–703. [Google Scholar] [CrossRef]
- Zou, C.; Yang, Z.; Hou, L.; Zhu, R.; Cui, J.; Wu, S.; Lin, S.; Guo, Q.; Wang, S.; Li, D. Geological characteristics and “sweet area” evaluation for tight oil. Petrol. Sci. 2015, 12, 606–617. [Google Scholar] [CrossRef]
- Qiao, J.; Zeng, J.; Jiang, S.; Feng, S.; Feng, X.; Guo, Z.; Teng, J. Heterogeneity of reservoir quality and gas accumulation in tight sandstone reservoirs revealed by pore structure characterization and physical simulation. Fuel 2019, 253, 1300–1316. [Google Scholar] [CrossRef]
- Xi, K.; Cao, Y.; Haile, B.G.; Zhu, R.; Jahren, J.; Bjørlykke, K.; Zhang, X.; Hellevang, H. How does the pore-throat size control the reservoir quality and oiliness of tight sandstones? The case of the Lower Cretaceous Quantou Formation in the southern Songliao Basin, China. Mar. Petrol. Geol. 2016, 76, 1–15. [Google Scholar] [CrossRef]
- Wang, W.; Lu, S.; Chen, X.; Li, X.; Li, J.; Tian, W. A new method for grading and assessing the potential of tight sand gas resources: A case study of the Lower Jurassic Shuixigou Group in the Turpan-Hami Basin, NW China. Pet. Explor. Dev. 2015, 42, 66–73. [Google Scholar] [CrossRef]
- Kong, X.; Xiao, D.; Jiang, S.; Lu, S.; Sun, B.; Wang, J. Application of the combination of high-pressure mercury injection and nuclear magnetic resonance to the classification and evaluation of tight sandstone reservoirs: A case study of the Linxing Block in the Ordos Basin. Nat. Gas Ind. B 2020, 7, 433–442. [Google Scholar] [CrossRef]
- Zhang, Y.; Yang, S.; Zhang, Z.; Li, Q.; Deng, H.; Chen, J.; Geng, W.; Wang, M.; Chen, Z.; Chen, H. Multiscale pore structure characterization of an ultra-deep carbonate gas reservoir. J. Petrol. Sci. Eng. 2022, 208, 109751. [Google Scholar] [CrossRef]
- Clarkson, C.R.; Freeman, M.; He, L.; Agamalian, M.; Melnichenko, Y.B.; Mastalerz, M.; Bustin, R.M.; Radliński, A.P.; Blach, T.P. Characterization of tight gas reservoir pore structure using USANS/SANS and gas adsorption analysis. Fuel 2012, 95, 371–385. [Google Scholar] [CrossRef]
- Gu, X.; Pu, C.; Khan, N.; Wu, F.; Huang, F.; Xu, H. The visual and quantitative study of remaining oil micro-occurrence caused by spontaneous imbibition in extra-low permeability sandstone using computed tomography. Fuel 2019, 237, 152–162. [Google Scholar] [CrossRef]
- Loucks, R.G.; Reed, R.M.; Ruppel, S.C.; Jarvie, D.M. Morphology, Genesis, and Distribution of Nanometer-Scale Pores in Siliceous Mudstones of the Mississippian Barnett Shale. J. Sediment. Res. 2009, 79, 848–861. [Google Scholar] [CrossRef]
- Katz, A.J.; Thompson, A.H. Fractal sandstone pores: Implications for conductivity and pore formation. Phys. Rev. Lett. 1985, 54, 1325. [Google Scholar] [CrossRef] [PubMed]
- Ramstad, T.; Berg, C.F.; Thompson, K. Pore-Scale Simulations of Single- and Two-Phase Flow in Porous Media: Approaches and Applications. Transp. Porous Media 2019, 130, 77–104. [Google Scholar] [CrossRef]
- Sheng, J.; Yang, X.X.; Li, G.; Xu, L.; Li, Y.N.; Wang, J.R.; Zhang, C.Y.; Cui, H.D. Application of Multiscale X-CT imagine digital core technique on observing Micro-pore structure of carbonate reservoirs. Geoscience 2019, 33, 653–661. [Google Scholar]
- He, B.; Wu, W.; Yang, M. Evaluation of pore structure of low permeability glutenite reservoir by 3D digital core technology. Unconv. Oil Gas 2023, 10, 15–21. [Google Scholar]
- Du, S.; Shi, Y. Concise extraction and characterization of the pore-throat network in unconventional hydrocarbon reservoirs: A new perspective. Petrol. Sci. 2023, 21, 1474–1487. [Google Scholar] [CrossRef]
- Wei, J.; Zhou, X.; Shamil, S.; Yuriy, K.; Yang, E.; Yang, Y.; Wang, A. High-pressure mercury intrusion analysis of pore structure in typical lithofacies shale. Energy 2024, 295, 130879. [Google Scholar] [CrossRef]
- Reingruber, H.; Zankel, A.; Mayrhofer, C.; Poelt, P. Quantitative characterization of microfiltration membranes by 3D reconstruction. J. Membr. Sci. 2011, 372, 66–74. [Google Scholar] [CrossRef]
- Iraji, S.; De Almeida, T.R.; Munoz, E.R.; Basso, M.; Vidal, A.C. The impact of heterogeneity and pore network characteristics on single and multi-phase fluid propagation in complex porous media: An X-ray computed tomography study. Petrol. Sci. 2024, 21, 1719–1738. [Google Scholar] [CrossRef]
- Vergés, E.; Tost, D.; Ayala, D.; Ramos, E.; Grau, S. 3D pore analysis of sedimentary rocks. Sediment. Geol. 2011, 234, 109–115. [Google Scholar] [CrossRef]
- Fu, J.; Thomas, H.R.; Li, C. Tortuosity of porous media: Image analysis and physical simulation. Earth-Sci. Rev. 2021, 212, 103439. [Google Scholar] [CrossRef]
- Lai, J.; Wang, S.; Wang, G.W.; Shi, Y.J.; Zhao, T.P.; Pang, X.J.; Fan, X.C.; Qin, Z.Q.; Fan, X.Q. Pore structure and fractal characteristics of Ordovician Majiagou carbonate reservoirs in Ordos Basin, China. AAPG Bull. 2019, 103, 2573–2596. [Google Scholar] [CrossRef]
- Saafan, M.; Ganat, T.; Mohyaldinn, M.; Chen, X. A fractal model for obtaining spontaneous imbibition capillary pressure curves based on 2D image analysis of low-permeability sandstone. J. Petrol. Sci. Eng. 2022, 208, 109747. [Google Scholar] [CrossRef]
- Wu, Y.; Liu, C.; Ouyang, S.; Luo, B.; Zhao, D.; Sun, W.; Awan, R.S.; Lu, Z.; Li, G.; Zang, Q. Investigation of pore-throat structure and fractal characteristics of tight sandstones using HPMI, CRMI, and NMR methods: A case study of the lower Shihezi Formation in the Sulige area, Ordos Basin. J. Petrol. Sci. Eng. 2022, 210, 110053. [Google Scholar] [CrossRef]
- Ma, B.; Chen, S.; Yan, W.; Lin, C.; Zhang, H.; Sun, Z.; Zheng, J.; Wu, S.; Wang, J. Pore structure evaluation of low permeability clastic reservoirs based on sedimentation diagenesis: A case study of the Chang 8 reservoirs in the Zhenbei region, Ordos Basin. J. Petrol. Sci. Eng. 2021, 196, 107841. [Google Scholar]
- Cao, B.; Sun, W.; Li, J. Reservoir petrofacies—A tool for characterization of reservoir quality and pore structures in a tight sandstone reservoir: A study from the sixth member of Upper Triassic Yanchang Formation, Ordos Basin, China. J. Petrol. Sci. Eng. 2021, 199, 108294. [Google Scholar] [CrossRef]
- Bai, B.; Zhu, R.K.; Wu, S.T.; Yang, W.J.; Gelb, J.; Gu, A.; Zhang, X.X.; Su, L. Multi-scale method of Nano(Micro)-CT study on microscopic pore structure of tight sandstone of Yangchang Formation, Ordos Basin. Pet. Explor. Dev. 2013, 40, 329–333. [Google Scholar] [CrossRef]
- Bi, L.; Xiao, L.; Wang, M.; Yang, Y.; Lei, N.; Zhang, H.F. Microscopic pore structure and seepage characteristics of Chang 3 reservoir in Chenghua area of Ordos Basin. Pet. Geol. Eng. 2024, 38, 13–19. [Google Scholar]
- Labani, M.M.; Rezaee, R.; Saeedi, A.; Hinai, A.A. Evaluation of pore size spectrum of gas shale reservoirs using low pressure nitrogen adsorption, gas expansion and mercury porosimetry: A case study from the Perth and Canning Basins, Western Australia. J. Petrol. Sci. Eng. 2013, 112, 7–16. [Google Scholar] [CrossRef]
- Clarkson, C.R.; Solano, N.; Bustin, R.M.; Bustin, A.M.M.; Chalmers, G.R.L.; He, L.; Melnichenko, Y.B.; Radliński, A.P.; Blach, T.P. Pore structure characterization of North American shale gas reservoirs using USANS/SANS, gas adsorption, and mercury intrusion. Fuel 2013, 103, 606–616. [Google Scholar] [CrossRef]
- Wang, J.; Wu, S.; Li, Q.; Zhang, J.; Guo, Q. Characterization of the pore-throat size of tight oil reservoirs and its control on reservoir physical properties: A case study of the Triassic tight sandstone of the sediment gravity flow in the Ordos Basin, China. J. Petrol. Sci. Eng. 2020, 186, 106701. [Google Scholar] [CrossRef]
- Zhang, F.; Jiang, Z.; Sun, W.; Li, Y.; Zhang, X.; Zhu, L.; Wen, M. A multiscale comprehensive study on pore structure of tight sandstone reservoir realized by nuclear magnetic resonance, high pressure mercury injection and constant-rate mercury injection penetration test. Mar. Petrol. Geol. 2019, 109, 208–222. [Google Scholar] [CrossRef]
- Peng, C.S. Differentiation of mechanisms and models of hydrocarbon accumulation in Chenjiazhuang uplift and its north slope. Pet. Geol. Recovery Effic. 2011, 18, 16–20. [Google Scholar]
- Wang, C.Y. Favorable Reservoir Distribution Regulations ofPalaeogene in Northern Slope of Chenjiazhuang Uplift. Master’s Thesis, China University of Petroleum (East China), Qingdao, China, 2016. [Google Scholar]
- Jonathan, C. Evenick. Evaluating the lacustrine Shahejie Formation source rock potential in the Bohai Bay Basin using a simplified regional basin model. J. Nat. Gas Geosci. 2023, 8, 279–291. [Google Scholar]
- Song, M.S. The exploration status and outlook of Jiyang depression. China Pet. Explor. 2018, 23, 11–17. [Google Scholar]
- Tian, R.; Xian, B.; Wu, Q.; Shu, Q.; Liu, J.; Zhang, W.; Wang, Z.; Li, Q.; Rahman, N.U.; Gao, Y.; et al. Turbidite system controlled by fault interaction and linkage on a slope belt of rift basin: Zhanhua depression, Bohai Bay Basin, China. Mar. Petrol. Geol. 2023, 155, 106377. [Google Scholar] [CrossRef]
- Lala, A.M.S.; El-Sayed, N.A.A. Controls of pore throat radius distribution on permeability. J. Petrol. Sci. Eng. 2017, 157, 941–950. [Google Scholar] [CrossRef]
- Chen, X.; Zhou, K.; Jiang, P.; Zhao, X.; Yao, G. Identification, characterization, and up-scaling of pore structure facies in the low permeability reservoirs: Insight into reservoir quality evaluation and sweet-spots analysis. Mar. Petrol. Geol. 2024, 162, 106646. [Google Scholar] [CrossRef]
- Yang, Y.; Xiao, W.; Zheng, L.; Lei, Q.; Qin, C.; He, Y.; Liu, S.; Li, M.; Li, Y.; Zhao, J.; et al. Pore throat structure heterogeneity and its effect on gas-phase seepage capacity in tight sandstone reservoirs: A case study from the Triassic Yanchang Formation, Ordos Basin. Petrol. Sci. 2023, 20, 2892–2907. [Google Scholar] [CrossRef]
- Xiang, M.; Xu, S.; We, Y.; Gou, Q.; Li, B. Influence of tectonic preservation conditions on the nanopore structure of shale reservoir: A case study of Wufeng-Longmaxi Formation shale in western Hubei area, south China. Petrol Sci. 2024, 21, 2203–2217. [Google Scholar] [CrossRef]
- Blunt, M.J.; Bijeljic, B.; Dong, H.; Gharbi, O.; Iglauer, S.; Mostaghimi, P.; Paluszny, A.; Pentland, C. Pore-scale imaging and modelling. Adv. Water Resour. 2013, 51, 197–216. [Google Scholar] [CrossRef]
- Wang, M.; Yu, Q. Pore structure characterization of Carboniferous shales from the eastern Qaidam Basin, China: Combining helium expansion with low-pressure adsorption and mercury intrusion. J. Petrol. Sci. Eng. 2017, 152, 91–103. [Google Scholar] [CrossRef]
- Li, K. Analytical derivation of Brooks–Corey type capillary pressure models using fractal geometry and evaluation of rock heterogeneity. J. Petrol. Sci. Eng. 2010, 73, 20–26. [Google Scholar] [CrossRef]
- Wang, L.; Lei, X.; Zhang, Q.; Yao, G.; Sui, B.; Chen, X.; Wang, M.; Zhou, Z.; Wang, P.; Peng, X. Experimental study of the effects of a multistage pore-throat structure on the seepage characteristics of sandstones in the Beibuwan Basin: Insights into the flooding mode. Petrol. Sci. 2024, 21, 1044–1061. [Google Scholar] [CrossRef]
- Gong, Y.; Liu, S.; Zhu, R.; Liu, K.; Tang, Z.; Jiang, L. Lower limit of tight oil flowing porosity: Application of high-pressure mercury intrusion in the fourth Member of Cretaceous Quantou Formation in southern Songliao Basin, NE China. Pet. Explor. Dev. 2015, 42, 745–752. [Google Scholar] [CrossRef]
- Wu, H.; Zhang, C.L.; Ji, Y.L.; Liu, R.E.; Cao, S.; Chen, S.; Zhang, Y.Z.; Wang, Y.; Du, W.; Liu, G. Pore-throat size characterization of tight sandstone and its control on reservoir physical properties:a case study of Yanchang Formation, eastern Gansu, Ordos Basin. Acta Pet. Sin. 2017, 38, 876–887. [Google Scholar]
- Yang, F.; Ning, Z.F.; Hu, C.P.; Wang, B.; Peng, K.; Liu, H.Q. Characterization of microscopic pore structure in shanle reservoirs. Acta Pet. Sin. 2013, 34, 301–311. [Google Scholar]
- Zhao, X.; Sun, M.; Ukaomah, C.F.; Ostadhassan, M.; Cui, Z.; Liu, B.; Pan, Z. Pore connectivity and microfracture characteristics of Longmaxi shale in the Fuling gas field: Insights from mercury intrusion capillary pressure analysis. Gas Sci. Eng. 2023, 119, 205134. [Google Scholar] [CrossRef]
- King, H.E., Jr.; Eberle, A.P.R.; Walters, C.C.; Kliewer, C.E.; Ertas, D.; Huynh, C. Pore Architecture and Connectivity in Gas Shale. Energy Fuel 2015, 29, 1375–1390. [Google Scholar] [CrossRef]
- Wang, F.; Yang, K.; You, J.; Lei, X. Analysis of pore size distribution and fractal dimension in tight sandstone with mercury intrusion porosimetry. Results Phys. 2019, 13, 102283. [Google Scholar] [CrossRef]
- Cai, Y.; Li, Y.; Ge, S.L.; Ding, Y.C. The microscopic pore structure characteristics of ultra-deep low permeability clastic reservoirs—By taking the lower member of Kepingtage Formation in Shuntuoguole Region of central Tarim Basin for example. J. Oil Gas Technol. 2014, 36, 12–17. [Google Scholar]
- Li, H.Y.; Yue, D.L.; Zhang, X.J. Characteristics of pore structure and reservoir evaluation of low permeability reservoir in Sulige gas filed. Earth Sci. Front. 2012, 19, 133–140. [Google Scholar]
- Liu, X.; Wang, J.; Ge, L.; Hu, F.; Li, C.; Li, X.; Yu, J.; Xu, H.; Lu, S.; Xue, Q. Pore-scale characterization of tight sandstone in Yanchang Formation Ordos Basin China using micro-CT and SEM imaging from nm- to cm-scale. Fuel 2017, 209, 254–264. [Google Scholar] [CrossRef]
- Yang, Z.; Tang, Y.; Guo, X.; Huang, L.; Chang, Q. Diagenesis and reservoir space types of alkaline lake-type shale in Fengcheng Formation of Mahu Sag, Junggar Basin, China. Arab. J. Geosci. 2021, 14, 2356. [Google Scholar]
- Cai, L.; Xiao, G.; Lu, S.; Wang, J.; Wu, Z. Spatial-temporal coupling between high-quality source rocks and reservoirs for tight sandstone oil and gas accumulations in the Songliao Basin, China. Int. J. Min. Sci. Technol. 2019, 29, 387–397. [Google Scholar] [CrossRef]
Well | Number | Depth | Formation | Lithology | Diameter, mm | Length, mm | Density, g/cm3 | Porosity, % | Permeability, mD |
---|---|---|---|---|---|---|---|---|---|
K119-14 | 1–4 | 2529.6 | Es3 | sandstone | 25.1 | 52.18 | 2.539 | 7.85 | 0.0369 |
1–4–Z | 2529.6 | Es3 | sandstone | 25 | 38.08 | 2.428 | 11.74 | 0.0834 | |
1–32 | 2529.6 | Es3 | sandstone | 37.89 | 40.52 | 2.541 | 0.85 | 0.04079 | |
K119-2 | 1–1 | 2181.8 | Es3 | sandstone | 25 | 59.3 | 2.516 | 7.68 | 0.1358 |
K119-8 | 1–6 | 2370–2377 | Es3 | sandstone | 25 | 53.48 | 2.593 | 4.62 | 0.0764 |
1–6–Z | 2370–2377 | Es3 | sandstone | 24.5 | 43.14 | 2.582 | 4.69 | 0.0964 | |
1–13 | 2370–2377 | Es3 | sandstone | 37.86 | 55 | 2.587 | 1.61 | 0.04489 | |
K71-1 | 1–2 | 1439.5–1449.5 | Ng | sandstone | 25.26 | 40.1 | 2.563 | 2.05 | 0.1309 |
1–2–Z | 1439.5–1449.5 | Ng | sandstone | 25.12 | 60.1 | 2.571 | 2.49 | 0.0384 | |
1–8 | 1439.5–1449.5 | Ng | sandstone | 25.24 | 34.25 | 2.574 | 1.56 | 0.0624 | |
1–25 | 1439.5–1449.5 | Ng | sandstone | 38 | 54.18 | 2.587 | 2.16 | 0.0358 | |
1–20 | 1439.5–1449.5 | Ng | sandstone | 38.1 | 54.8 | 2.545 | 2.75 | 0.0756 | |
1–21 | 1439.5–1449.5 | Ng | sandstone | 38.16 | 42.74 | 2.585 | 2.96 | 0.21734 | |
C 311 | 2–1 | 1250.5 | Ng | siltstone | 24.421 | 48.635 | 2.538 | 6.665 | 7.2046 |
C 372 | 2–2 | 1248.7 | Ng | siltstone | 24.283 | 50.855 | 2.614 | 2.34 | 0.0607 |
2–3 | 1254.6 | Ng | sandstone | 24.578 | 43.595 | 2.55 | 3.392 | 0.2034 | |
2–4–1 | 1256.7 | Ng | siltstone | 24.561 | 44.235 | 2.594 | 2.302 | 0.0914 | |
2–4–2 | 1256.7 | Ng | siltstone | 24.574 | 43.895 | 2.612 | 2.278 | 0.0845 | |
C 98 | 2–5 | 2773.2 | Es3 | siltstone | 24.299 | 43.27 | 2.215 | 14.308 | 4.3016 |
2–6 | 2776.5 | Es3 | siltstone | 24.479 | 50.485 | 2.275 | 13.135 | 0.9793 | |
2–6–Z | 2776.5 | Es3 | siltstone | 24.459 | 13.42 | 2.201 | 16.024 | 0.2379 | |
2–6–1 | 2776.5 | Es3 | siltstone | 24.462 | 45.425 | 2.296 | 15.425 | 0.8464 | |
2–6–2 | 2776.5 | Es3 | siltstone | 24.454 | 12.855 | 2.245 | 14.845 | 0.8742 | |
C 137 | 2–7 | 2353.6 | Es3 | sandstone | 24.273 | 43.735 | 1.998 | 20.884 | 113.598 |
2–8 | 2335.6 | Es3 | sandstone | 23.982 | 43.4 | 2.058 | 19.146 | 391.196 | |
Y 633 | 2–9 | 2734.3 | Es3 | mudstone | 24.576 | 48.635 | 2.393 | 8.597 | 6.5225 |
2–9–Z | 2734.3 | Es3 | mudstone | 24.384 | 21.715 | 2.429 | 6.947 | 0.0389 | |
2–10 | 2731.25 | Es3 | sandstone | 24.263 | 24.66 | 2.405 | 7.657 | 0.5902 | |
L 353 | 2–11–1 | 2433.9 | Es3 | sandstone | 24.127 | 26.905 | 1.997 | 23.531 | 47.167 |
2–11–2 | 2433.9 | Es3 | sandstone | 24.215 | 25.985 | 2.035 | 22.845 | 50.134 |
Sample | Density/g/cm3 | Porosity/% | Permeability/% |
---|---|---|---|
4 | 2.539 | 7.85 | 0.0369 |
4-Z | 2.428 | 11.74 | 0.0834 |
6 | 2.593 | 4.62 | 0.0764 |
6-Z | 2.582 | 4.69 | 0.0964 |
Sample | Lithology | Porosity/% (He) | Porosity/% (CT) |
---|---|---|---|
4 | sandstone | 7.85 | 3.11 |
4-Z | sandstone | 11.74 | 1.18 |
6 | sandstone | 4.62 | 3.79 |
6-Z | sandstone | 4.69 | 2.54 |
Sample | Ra | Rp | SP | SKP | KP | ɸ | a | Pcd | Smax | Sr | We |
---|---|---|---|---|---|---|---|---|---|---|---|
4 | 0.540 | 0.176 | 2.497 | −1.000 | 0.490 | 8.253 | 0.326 | 1.362 | 43.622 | 36.027 | 17.412 |
4-Z | 0.538 | 0.239 | 2.628 | −1.000 | 0.467 | 10.018 | 0.443 | 1.365 | 36.733 | 30.530 | 16.888 |
6 | 0.134 | 0.035 | 1.311 | 0.206 | 1.302 | 0.092 | 0.261 | 5.504 | 94.182 | 59.357 | 36.976 |
6-Z | 0.134 | 0.037 | 1.307 | 0.167 | 1.202 | 0.082 | 0.275 | 5.501 | 96.578 | 58.773 | 39.145 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, S.; Cao, Y.; Huang, Q.; Yu, H.; Chen, W.; Zhong, Y.; Chen, W. Impact of Pore Structure on Seepage Capacity in Tight Reservoir Intervals in Shahejie Formation, Bohai Bay Basin. J. Mar. Sci. Eng. 2024, 12, 1496. https://doi.org/10.3390/jmse12091496
Zhu S, Cao Y, Huang Q, Yu H, Chen W, Zhong Y, Chen W. Impact of Pore Structure on Seepage Capacity in Tight Reservoir Intervals in Shahejie Formation, Bohai Bay Basin. Journal of Marine Science and Engineering. 2024; 12(9):1496. https://doi.org/10.3390/jmse12091496
Chicago/Turabian StyleZhu, Shaogong, Yudong Cao, Qiangtai Huang, Haotong Yu, Weiyan Chen, Yujie Zhong, and Wenchao Chen. 2024. "Impact of Pore Structure on Seepage Capacity in Tight Reservoir Intervals in Shahejie Formation, Bohai Bay Basin" Journal of Marine Science and Engineering 12, no. 9: 1496. https://doi.org/10.3390/jmse12091496
APA StyleZhu, S., Cao, Y., Huang, Q., Yu, H., Chen, W., Zhong, Y., & Chen, W. (2024). Impact of Pore Structure on Seepage Capacity in Tight Reservoir Intervals in Shahejie Formation, Bohai Bay Basin. Journal of Marine Science and Engineering, 12(9), 1496. https://doi.org/10.3390/jmse12091496