An Improved High-Realism Turbulence Simulation of Ocean Scenes in a Maritime Simulator
Abstract
:1. Introduction
1.1. Motivation
1.2. Related Work
1.2.1. Physical-Based Fluid Simulation
1.2.2. Turbulence Restoring Method
2. Simulation Model
2.1. Governing Equation and SPH Discretization
2.2. Hybrid Smoothed Particle Hydrodynamics Solver
Algorithm 1. HYSPH Model |
for all particle i do |
search neighborhood of particle i |
calculate densities and factors |
calculate non-pressure forces |
while |
for all particle i do |
calculate densities and constraints |
if do |
calculate |
for all particle i do |
calculate |
update position |
update and |
calculate |
while |
for all particle i do |
calculate |
calculate |
update |
update and |
3. High-Realism Turbulence Simulation with Micropolar Fluid Model
3.1. Conservation of Linear and Angular Momentum and Incompressibility
3.2. Constitutive Equations
3.3. Equation of Motion and Discretization
Algorithm 2. Micropolar Fluid Model |
for all particle i do |
find neighbors |
for all particle i do |
compute density |
for all particle i do |
compute non-pressure forces |
compute transfer forces |
compute transfer torque |
compute time step size according to CFL |
for all particle i do |
for all particle i do |
enforce incompressibility using pressure solver |
update |
for all particle i do |
4. Results and Discussion
4.1. Performance of HYSPH Model
4.2. Analysis of Turbulence Model Effects
4.3. Analysis of Coupling Effect of Marine Scene
5. Conclusions and Future Work
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A. The Abbreviations of Proper Nouns (Sort by the Order of Appearance in the Text)
Abbreviation | Proper Noun |
CFD | Computer Fluid Dynamics |
SPH | Smoothed Particle Dynamics |
GPU | Graphics Processing Unit |
WCSPH | Weakly Compressed SPH |
PCISPH | Predictive-Corrective Incompressible SPH |
PPE | Pressure Poisson Equation |
IISPH | Implicit Incompressibility SPH |
DFSPH | Divergence-Free SPH |
PBF | Position-Based Fluids |
NBFLIP | Narrow Band FLIP |
MPS | Moving Particle Semi-implicit |
HYSPH | Hybrid SPH |
VCSPH | Vorticity Confinement SPH |
MPSPH | Micropolar Fluids SPH |
Appendix B. The Explanation of Key Variables
Variables | Explanation | Variables | Explanation |
Density of fluid particle | Dynamic viscosity | ||
Velocity of fluid particle | Smoothing kernel function | ||
Stress tensor of fluid | Lagrangian Multiplier | ||
Stress of external body force | Isotropic microinertia coefficient | ||
Pressure of fluid particle | Kinematic transfer coefficient | ||
Angular velocity |
References
- Shabro, V.; Torres-Verdín, C.; Javadpour, F.; Sepehrnoori, K. Finite-difference approximation for fluid-flow simulation and calculation of permeability in porous media. Transp. Porous Media 2012, 94, 775–793. [Google Scholar] [CrossRef]
- Li, H. The finite element method. In Graded Finite Element Methods for Elliptic Problems in Nonsmooth Domains; Springer: Berlin/Heidelberg, Germany, 2022; pp. 1–12. [Google Scholar]
- Koschier, D.; Bender, J.; Solenthaler, B.; Teschner, M. A survey on SPH methods in computer graphics. In Computer Graphics Forum; Wiley: Hoboken, NJ, USA, 2022; pp. 737–760. [Google Scholar]
- Pfefferkorn, R.; Betsch, P. Hourglassing-and locking-free mesh distortion insensitive Petrov–Galerkin EAS element for large deformation solid mechanics. Int. J. Numer. Methods Eng. 2023, 124, 1307–1343. [Google Scholar] [CrossRef]
- Gingold, R.A.; Monaghan, J.J. Smoothed particle hydrodynamics: Theory and application to non-spherical stars. Mon. Not. R. Astron. Soc. 1977, 181, 375–389. [Google Scholar] [CrossRef]
- Monaghan, J.J. Simulating free surface flows with SPH. J. Comput. Phys. 1994, 110, 399–406. [Google Scholar] [CrossRef]
- Stam, J.; Fiume, E. Depicting fire and other gaseous phenomena using diffusion processes. In Proceedings of the 22nd Annual Conference on Computer Graphics and Interactive Techniques, Los Angeles, CA, USA, 15 September 1995; pp. 129–136. [Google Scholar]
- Müller, M.; Charypar, D.; Gross, M. Particle-based fluid simulation for interactive applications. In Proceedings of the 2003 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, San Diego, CA, USA, 26–27 July 2003; pp. 154–159. [Google Scholar]
- Becker, M.; Teschner, M. Weakly compressible SPH for free surface flows. In Proceedings of the 2007 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, San Diego, CA, USA, 2–4 August 2007; pp. 209–217. [Google Scholar]
- Solenthaler, B.; Pajarola, R. Predictive-corrective incompressible SPH. ACM Trans. Graph. 2009, 28, 1–6. [Google Scholar] [CrossRef]
- Bender, J.; Koschier, D. Divergence-free smoothed particle hydrodynamics. In Proceedings of the 14th ACM SIGGRAPH/Eurographics Symposium on Computer Animation, Los Angeles, CA, USA, 7–9 August 2015; pp. 147–155. [Google Scholar]
- Ihmsen, M.; Cornelis, J.; Solenthaler, B.; Horvath, C.; Teschner, M. Implicit incompressible SPH. IEEE Trans. Vis. Comput. Graph. 2014, 20, 426–435. [Google Scholar] [CrossRef]
- Macklin, M.; Müller, M. Position based fluids. ACM Trans. Graph. 2013, 32, 1–12. [Google Scholar] [CrossRef]
- Boyd, L.; Bridson, R. MultiFLIP for energetic two-phase fluid simulation. ACM Trans. Graph. 2012, 31, 16. [Google Scholar] [CrossRef]
- Ferstl, F.; Ando, R.; Wojtan, C.; Westermann, R.; Thuerey, N. Narrow band FLIP for liquid simulations. In Computer Graphics Forum; Wiley: Hoboken, NJ, USA, 2016; pp. 225–232. [Google Scholar]
- Li, H.; Ren, H.; Duan, X.; Wang, C. An Improved Meshless Divergence-Free PBF Framework for Ocean Wave Modeling in Marine Simulator. Water 2020, 12, 1873. [Google Scholar] [CrossRef]
- Liu, K.; Liu, Y.; Li, S.; Chen, H.; Chen, S.; Arikawa, T.; Shi, Y. Coupling SPH with a mesh-based Eulerian approach for simulation of incompressible free-surface flows. Appl. Ocean Res. 2023, 138, 103673. [Google Scholar] [CrossRef]
- Roy, B.; Poulin, P. A hybrid Eulerian-DFSPH scheme for efficient surface band liquid simulation. Comput. Graph. 2018, 77, 194–204. [Google Scholar] [CrossRef]
- Shobeyri, G. Simulating Free Surface Flows Using a New Incompressible SPH Model Improved by MPS Method. Arab. J. Sci. Eng. 2023, 49, 4513–4526. [Google Scholar] [CrossRef]
- Ihmsen, M.; Orthmann, J.; Solenthaler, B.; Kolb, A.; Teschner, M. SPH fluids in computer graphics. In Eurographics 2014—State of the Art Reports; The Eurographics Association: Aire-la-Ville, Switzerland, 2014. [Google Scholar] [CrossRef]
- Cornelis, J.; Ihmsen, M.; Peer, A.; Teschner, M. IISPH-FLIP for incompressible fluids. Comput. Graph. Forum 2014, 33, 255–262. [Google Scholar] [CrossRef]
- Lentine, M.; Aanjaneya, M.; Fedkiw, R. Mass and momentum conservation for fluid simulation. In Proceedings of the 2011 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, Vancouver, BC, Canada, 5–7 August 2011; pp. 91–100. [Google Scholar]
- Mercier, O.; Beauchemin, C.; Thuerey, N.; Kim, T.; Nowrouzezahrai, D. Surface turbulence for particle-based liquid simulations. ACM Trans. Graph. (TOG) 2015, 34, 1–10. [Google Scholar] [CrossRef]
- Park, S.I.; Kim, M.J. Vortex fluid for gaseous phenomena. In Proceedings of the 2005 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, Los Angeles, CA, USA, 29–31 July 2005; pp. 261–270. [Google Scholar]
- Zhang, X.; Bridson, R.; Greif, C. Restoring the missing vorticity in advection-projection fluid solvers. ACM Trans. Graph. 2015, 34, 1–8. [Google Scholar] [CrossRef]
- Edwards, E.; Bridson, R. Detailed water with coarse grids: Combining surface meshes and adaptive discontinuous galerkin. ACM Trans. Graph. (TOG) 2014, 33, 1–9. [Google Scholar] [CrossRef]
- Chu, M.; Thuerey, N. Data-driven synthesis of smoke flows with CNN-based feature descriptors. ACM Trans. Graph. (TOG) 2017, 36, 1–14. [Google Scholar] [CrossRef]
- Sato, S.; Dobashi, Y.; Kim, T.; Nishita, T. Example-based turbulence style transfer. ACM Trans. Graph. 2018, 37, 1–9. [Google Scholar] [CrossRef]
- Jang, T.; Kim, H.; Bae, J.; Seo, J.; Noh, J. Multilevel vorticity confinement for water turbulence simulation. Vis. Comput. 2010, 26, 873–881. [Google Scholar] [CrossRef]
- Angelidis, A.; Neyret, F. Simulation of smoke based on vortex filament primitives. In Proceedings of the 2005 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, Los Angeles, CA, USA, 29–31 July 2005; pp. 87–96. [Google Scholar]
- Eberhardt, S.; Weissmann, S.; Pinkall, U.; Thuerey, N. Hierarchical vorticity skeletons. In Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation, Los Angeles, CA, USA, 28–30 July 2017; pp. 1–11. [Google Scholar]
- Pfaff, T.; Thuerey, N.; Gross, M. Lagrangian vortex sheets for animating fluids. ACM Trans. Graph. (TOG) 2012, 31, 1–8. [Google Scholar] [CrossRef]
- Selle, A.; Rasmussen, N.; Fedkiw, R. A vortex particle method for smoke, water and explosions. In ACM SIGGRAPH 2005 Papers; Association for Computing Machinery: New York, NY, USA, 2005; pp. 910–914. [Google Scholar]
- Weißmann, S.; Pinkall, U. Filament-based smoke with vortex shedding and variational reconnection. In ACM SIGGRAPH 2010 Papers; Association for Computing Machinery: New York, NY, USA, 2010; pp. 1–12. [Google Scholar]
- Golas, A.; Narain, R.; Sewall, J.; Krajcevski, P.; Dubey, P.; Lin, M. Large-scale fluid simulation using velocity-vorticity domain decomposition. ACM Trans. Graph. (TOG) 2012, 31, 1–9. [Google Scholar] [CrossRef]
- Zhu, B.; Yang, X.; Fan, Y. Creating and Preserving Vortical Details in SPH Fluid. Comput. Graph. Forum 2010, 29, 2207–2214. [Google Scholar] [CrossRef]
- Wang, X.; Liu, S.; Ban, X.; Xu, Y.; Zhou, J.; Kosinka, J. Robust turbulence simulation for particle-based fluids using the Rankine vortex model. Vis. Comput. 2020, 36, 2285–2298. [Google Scholar] [CrossRef]
- Lukaszewicz, G. Micropolar Fluids. Modeling and Simulation in Science, Engineering and Technology; Birkhäuser Boston Inc.: Boston, MA, USA, 1999. [Google Scholar]
- Bender, J.; Koschier, D.; Kugelstadt, T.; Weiler, M. Turbulent Micropolar SPH Fluids with Foam. IEEE Trans. Vis. Comput. Graph. 2019, 25, 2284–2295. [Google Scholar] [CrossRef]
- Müller, M.; Heidelberger, B.; Hennix, M.; Ratcliff, J. Position based dynamics. J. Vis. Commun. Image Represent. 2007, 18, 109–118. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, T.; Ren, H.; Li, H.; Yang, X. An Improved High-Realism Turbulence Simulation of Ocean Scenes in a Maritime Simulator. J. Mar. Sci. Eng. 2024, 12, 1498. https://doi.org/10.3390/jmse12091498
Zhu T, Ren H, Li H, Yang X. An Improved High-Realism Turbulence Simulation of Ocean Scenes in a Maritime Simulator. Journal of Marine Science and Engineering. 2024; 12(9):1498. https://doi.org/10.3390/jmse12091498
Chicago/Turabian StyleZhu, Tianhui, Hongxiang Ren, Haijiang Li, and Xiao Yang. 2024. "An Improved High-Realism Turbulence Simulation of Ocean Scenes in a Maritime Simulator" Journal of Marine Science and Engineering 12, no. 9: 1498. https://doi.org/10.3390/jmse12091498
APA StyleZhu, T., Ren, H., Li, H., & Yang, X. (2024). An Improved High-Realism Turbulence Simulation of Ocean Scenes in a Maritime Simulator. Journal of Marine Science and Engineering, 12(9), 1498. https://doi.org/10.3390/jmse12091498