Polymetallic Ore Mining Impact Assessment on the Benthic Hydrobiocenosis of the Small Estuaries on the Arctic Islands
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Field Observations
2.2. Sample Collection and Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Holland, E.A.; Garschagen, M.; Adler, C.; Crate, S.; Jacot des Combes, H.; Glavovic, B.; Harper, S.; Kofinas, G.; O’Donoghue, S.; Orlove, B. Special Report on Oceans and Cryosphere in a Changing Climate; Cambridge University Press: Cambridge, UK, 2022. [Google Scholar]
- Evengård, B.; Larsen, J.N.; Paasche, Ø. The New Arctic; Springer: Berlin, Germany, 2015. [Google Scholar]
- Schintu, M.; Marras, B.; Durante, L.; Meloni, P.; Contu, A. Macroalgae and DGT as Indicators of Available Trace Metals in Marine Coastal Waters near a Lead–Zinc Smelter. Environ. Monit. Assess. 2010, 167, 653–661. [Google Scholar] [CrossRef]
- Sánchez-Quiles, D.; Marbà, N.; Tovar-Sánchez, A. Trace Metal Accumulation in Marine Macrophytes: Hotspots of Coastal Contamination Worldwide. Sci. Total Environ. 2017, 576, 520–527. [Google Scholar] [CrossRef] [PubMed]
- Bartsch, A.; Pointner, G.; Nitze, I.; Efimova, A.; Jakober, D.; Ley, S.; Högström, E.; Grosse, G.; Schweitzer, P. Expanding Infrastructure and Growing Anthropogenic Impacts along Arctic Coasts. Environ. Res. Lett. 2021, 16, 115013. [Google Scholar] [CrossRef]
- Wittenburg, P.V. Ore Deposits of Vaygach and Amderma Islands; Izd-vo Glavsevmorputi: Leningrad and Moscow, Russia, 1940. [Google Scholar]
- Malinin, V.N.; Vaynovsky, P.A.; Mitina, Y.V. About the warming of the arctic of the 20-40s. In Hydrometeorology and Ecology: Scientific and Educational Achievements and Perspectives; Himizdat: St. Petersburg, Russia, 2018; pp. 422–426. (In Russian) [Google Scholar]
- Thomassen, B. The Black Angel Lead-Zinc Mine 1973–90. Rapp. Grønlands Geol. Undersøgelse 1991, 152, 46–50. [Google Scholar] [CrossRef]
- Mikhailov, V.N.; Gorin, S.L. New Definitions, Regionalization, and Typification of River Mouth Areas and Estuaries as Their Parts. Water Resour. 2012, 39, 247–260. [Google Scholar] [CrossRef]
- Lisitsyn, A.P. A marginal filter of the oceans. Oceanology 1994, 34, 735–747. (In Russian) [Google Scholar]
- Alekseyevskiy, N.I.; Magritskiy, D.V.; Mikhailov, V.N. Anthropogenic and natural changes of hydrological restrictions for nature use in the Russian Arctic region river deltas. Water Sect. Russ. Probl. Technol. Manag. 2015, 14–31. [Google Scholar] [CrossRef]
- McClelland, J.W.; Holmes, R.M.; Dunton, K.H.; Macdonald, R.W. The Arctic Ocean Estuary. Estuaries Coasts 2012, 35, 353–368. [Google Scholar] [CrossRef]
- Dolotov, Y.S.; Filatov, N.N.; Petrov, M.P.; Tolstikov, A.V.; Платoнoв, A.V.; Shevchenko, V.P.; Novigatskii, A.N.; Politova, N.V.; Filippov, A.S.; Kutcheva, I.P. On the Character of Natural Processes at High and Low Tides in the Estuaries of the Karelian Coast of the White Sea. Oceanology 2004, 44, 735–743. [Google Scholar]
- Zakharova, E.A.; Savenko, V.S. Biogenic elements in the estuaries of small rivers of the Kandalaksha Bay of the White Sea. Lomonosov Geogr. J. 1993, 64–67. (In Russian) [Google Scholar]
- Alabyan, A.M.; Panchenko, E.D.; Alekseeva, A.A. Hydrodynamic features of small tidal estuaries of the White Sea basin. Lomonosov. Geogr. J. 2018, 39–48. (In Russian). Available online: https://elibrary.ru/download/elibrary_35160750_32848489.pdf (accessed on 4 September 2024).
- Callaway, R.; Grenfell, S.; Lønborg, C. Small Estuaries: Ecology, Environmental Drivers and Management Challenges. Estuar. Coast. Shelf Sci. 2014, 150, 193–195. [Google Scholar] [CrossRef]
- Ploeg, K.; Seemann, F.; Wild, A.-K.; Zhang, Q. Glacio-Nival Regime Creates Complex Relationships between Discharge and Climatic Trends of Zackenberg River, Greenland (1996–2019). Climate 2021, 9, 59. [Google Scholar] [CrossRef]
- Zhang, S.M.; Mu, C.C.; Li, Z.L.; Dong, W.W.; Wang, X.Y.; Wu, X.D.; Стрелецкая, И.Д.; Гребенец, В.И.; Сoкратoв, С.А.; Кизякoв, А.И. Export of Nutrients and Suspended Solids from Major Arctic Rivers and Their Response to Permafrost Degradation. Adv. Clim. Chang. Res. 2021, 12, 466–474. [Google Scholar] [CrossRef]
- Rawlins, M.A. Increasing Freshwater and Dissolved Organic Carbon Flows to Northwest Alaska’s Elson Lagoon. Environ. Res. Lett. 2021, 16, 105014. [Google Scholar] [CrossRef]
- Gauthier, P.T.; Blewett, T.A.; Garman, E.R.; Schlekat, C.E.; Middleton, E.T.; Suominen, E.; Crémazy, A. Environmental Risk of Nickel in Aquatic Arctic Ecosystems. Sci. Total Environ. 2021, 797, 148921. [Google Scholar] [CrossRef]
- Tang, Z.; Liu, X.; Niu, X.; Yin, H.; Liu, M.; Zhang, D.; Guo, H. Ecological Risk Assessment of Aquatic Organisms Induced by Heavy Metals in the Estuarine Waters of the Pearl River. Sci. Rep. 2023, 13, 9145. [Google Scholar] [CrossRef]
- Dorofeev, D.S.; Glazov, P.M.; Litvin, K.E. Present status of the barnacle goose (Branta leucopsis) on Vaygach island. Casarca 2018, 13–27. (In Russian). Available online: https://elibrary.ru/download/elibrary_35592788_49050576.pdf (accessed on 4 September 2024).
- Krasnov, Y.V.; Shklyarevich, G.A.; Sukhotin, A.A. Feeding Habits of Common Eiders Somateria mollissima on the Western Coast of Vaygach Island. Dokl. Biol. Sci. 2014, 459, 341–343. [Google Scholar] [CrossRef]
- Semenova, L.M. Distribution and zoogeography of ostracods (Crustacea, Ostracoda) in waterbodies of the Novaya Zemlya archipelago and island Vaigach. Inland Water Biol. 2003, 20–26. (In Russian). Available online: https://elibrary.ru/item.asp?id=17194978 (accessed on 4 September 2024).
- Shevchenko, V.P.; Politova, N.V.; Aibulatov, N.A. Elemental composition of mosses and lichens on Vaygach Island as an indicator of the loss of matter from the atmosphere. Arct. Antarct. Collect. Artic. 2004, 37, 228–238. (In Russian) [Google Scholar]
- Lipka, O.; Pavlova, A.; Sorokina, E.; Zenin, E. Will a forest grow on Vaygach Island? Ustojchivoe Lesopolz. 2013, 36, 28–30. (In Russian) [Google Scholar]
- Stishov, M.S.; Lipka, O.N.; Postnova, A.I.; Kokorin, A.O.; Sutkaytis, O.K.; Nikiforov, V.V.; Elias, V.V.; Shvarts, E.A.; Zhbanova, P.I.; Krasnopolskiy, V.G.; et al. The role of climate change and anthropogenic impact in ecosystem dynamics at Vaygach island. Probl. Reg. Ekol. 2013, 132–138. (In Russian). Available online: https://elibrary.ru/download/elibrary_20800739_75737740.pdf (accessed on 4 September 2024).
- Kokryatkaya, N.M.; Shevchenko, V.P.; Titova, K.V.; Вахрамеева, E.A.; Aliev, R.A.; Grigoriev, V.A.; Savelieva, L.A.; Maksimov, F.E.; Kuznetsov, V.Y. Early diagenesis of bottom sediments of freshwater lakes of the Vaygach island. Arct. Antarct. Res. 2020, 66, 534–554. (In Russian) [Google Scholar] [CrossRef]
- Troyanskaya, A.F.; Velyamidova, A.V. Persistent Organic Pollutants in Subarctic Lakes in the Extreme North of European Russia. Water Resour. 2017, 44, 635–644. [Google Scholar] [CrossRef]
- Shevchenko, V.P.; Politova, N.V.; Aibulatov, N.A.; Gordeev, V.Y.; Zernova, V.V.; Korneeva, G.A.; Matyushenko, V.A. Features of the distribution of suspended matter and enzymatic activity in the coastal waters of Vaygach Island. Arct. Antarct. Collect. Artic. 2004, 37, 211–227. (In Russian) [Google Scholar]
- Lomakina, A.N.; Evdokimova, V.P. Mineral nitrogen compounds content in cryogenic Arctic soils. Eurasian Union Sci. 2019, 60, 18–21. (In Russian) [Google Scholar]
- GEBCO Bathymetric Compilation Group. The GEBCO_2022 Grid—A Continuous Terrain Model of the Global Oceans and Land; GEBCO: Hurst, TX, USA, 2022. [Google Scholar] [CrossRef]
- Mikhailov, V.N. Principles of Typification and Zoning of River Mouth Areas (Analytical Review). Water Resour. 2004, 31, 1–11. [Google Scholar] [CrossRef]
- Tukey, J.W. Exploratory Data Analysis; Addison-Wesley: Boston, MA, USA, 1977; Volume 2. [Google Scholar]
- Mosteller, F.; Tukey, J.W. Data Analysis and Regression. A Second Course in Statistics; Addison-Wesley: Boston, MA, USA, 1977. [Google Scholar]
- Mikulinskaya, S.M.; Rozhkov, V.A. Processing of Small Samples. In Regime-Forming Factors, Information Base and Methods of Its Analysis; Gidrometeoizdat: Leningrad, Russia, 1989; pp. 167–176. (In Russian) [Google Scholar]
- Rudnick, R.; Gao, S. Composition of the Continental Crust. In Treatise on Geochemistry; Elsevier: Amsterdam, The Netherlands, 2003; Chapter 3.01; Volume 3, pp. 1–64. [Google Scholar]
- Yushin, N.; Jakhu, R.; Chaligava, O.; Grozdov, D.; Zinicovscaia, I. Natural and Anthropogenic Radionuclides Concentration with Heavy Metals Analysis of the Sediments Collected around Novaya Zemlya. Mar. Pollut. Bull. 2023, 194, 115346. [Google Scholar] [CrossRef]
- Sattarova, V.V.; Aksentov, K.I.; Ivanov, M.V.; Alatortsev, A.V.; Kim, D.V.; Obrezkova, M.S. Distribution and Assessment of Trace Metals in Modern Bottom Sediments in the Southwestern Chukchi Sea. Mar. Pollut. Bull. 2022, 180, 113797. [Google Scholar] [CrossRef]
- Perner, K.; Leipe, T.; Dellwig, O.; Kuijpers, A.; Mikkelsen, N.; Andersen, T.J.; Harff, J. Contamination of Arctic Fjord Sediments by Pb–Zn Mining at Maarmorilik in Central West Greenland. Mar. Pollut. Bull. 2010, 60, 1065–1073. [Google Scholar] [CrossRef]
- TR CU 021/2011 Technical Regulations of the Customs Union of the Eurasian Economic Union “On the Safety of Food Products” (as Amended on 14 July 2021). Available online: https://schmidt-export.com/eac-certification/tr-cu-0212011-on-safety-food (accessed on 4 September 2024).
- Voskoboinikov, G.M.; Nikulina, A.L.; Salakhov, D.O.; Shakhverdov, V.A. Content of trace metals in the brown algae Saccharina latissima from the Barents and Greenland Seas. Nauka Yuga Ross. 2019, 15, 39–44. (In Russian) [Google Scholar] [CrossRef]
- Kovekovdova, L.T.; Khristoforova, N.К. Trace elements in marine macrophytes of the Russian far east. Achiev. Life Sci. 2011, 41–60. (In Russian). Available online: https://elibrary.ru/download/elibrary_17262223_61750771.pdf (accessed on 4 September 2024).
- Holdt, S.L.; Kraan, S. Bioactive Compounds in Seaweed: Functional Food Applications and Legislation. J. Appl. Phycol. 2011, 23, 543–597. [Google Scholar] [CrossRef]
- Ignatova, T.A.; Podkorytova, A.V.; Berezina, M.O. Red Algae Palmaria palmata: Biological and Chemical-Technological Characteristics, Recommendations for Its Use as a Source of Nutrients in Human Nutrition. Food Ind. 2023, 8, 134–151. (In Russian) [Google Scholar] [CrossRef]
- Voskoboynikov, G.M. Heavy Metals in Brown Seaweeds of the Northern Seas of Russia. In Study and Use of Therapeutic and Prophylactic Drugs Based on Natural Biologically Active Substances; Eskulap: St. Petersburg, Russia, 2000; pp. 74–78. (In Russian) [Google Scholar]
- Safyanov, G.A. Ocean Coastal Zone of the in the 20th Century; Mysl: Moscow, Russia, 1978. [Google Scholar]
- Boé, J.; Hall, A.; Qu, X. September Sea-Ice Cover in the Arctic Ocean Projected to Vanish by 2100. Nat. Geosci. 2009, 2, 341–343. [Google Scholar] [CrossRef]
- Ho, Y. Metals in Ulva lactuca in Hong Kong Intertidal Waters. Bull. Mar. Sci. 1990, 47, 79–85. [Google Scholar]
- Haritonidis, S.; Malea, P. Seasonal and Local Variation of Cr, Ni and Co Concentrations in Ulva Rigida C. Agardh and Enteromorpha linza (Linnaeus) from Thermaikos Gulf, Greece. Environ. Pollut. 1995, 89, 319–327. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, X.V.; Tran, M.H.; Papenbrock, J. Different Organs of Enhalus acoroides (Hydrocharitaceae) Can Serve as Specific Bioindicators for Sediment Contaminated with Different Heavy Metals. S. Afr. J. Bot. 2017, 113, 389–395. [Google Scholar] [CrossRef]
- Zhang, L.; Wu, Y.; Jiang, Z.; Ren, Y.; Li, J.; Lin, J.; Ni, Z.; Huang, X. Identification of Anthropogenic Source of Pb and Cd within Two Tropical Seagrass Species in South China: Insight from Pb and Cd Isotopes. Ecotoxicol. Environ. Saf. 2024, 270, 115917. [Google Scholar] [CrossRef]
Statistics | Al | As | Cu | Mn | Ni | Pb | Zn |
---|---|---|---|---|---|---|---|
Krasnaya and Varkulyakha Rivers both (N = 10) | |||||||
Min | 610–5400 | ||||||
Average value | 2815 | 1.27 | 1.01 | 77.6 | 4.71 | 0.36 | 9.83 |
Standard deviation | 1819 | 0.61 | 1.19 | 70.5 | 3.57 | 0.39 | 7.27 |
Median | 3250 | 1.10 | 0.58 | 50.0 | 5.25 | 0.13 | 10.25 |
Three-average value | 2919 | 1.18 | 0.59 | 54.6 | 4.92 | 0.24 | 9.98 |
Lower quartile (C25%) | 928 | 0.70 | 0.20 | 35.3 | 1.73 | 0.13 | 3.15 |
Upper quartile (C75%) | 4250 | 1.83 | 0.99 | 83.0 | 7.45 | 0.59 | 16.25 |
Interquartile range (H) | 3323 | 1.13 | 0.79 | 47.8 | 5.73 | 0.46 | 13.10 |
Maximum value | 5400 | 2.10 | 3.30 | 210.0 | 9.10 | 1.00 | 19.00 |
Minimum value | 610 | 0.58 | ≤0.25 | 18.0 | ≤0.25 | ≤0.25 | 1.20 |
Krasnaya River only (N = 5) | |||||||
Average value | 2794 | 1.15 | 0.89 | 78.0 | 4.41 | 0.30 | 9.96 |
Maximum value | 4400 | 1.90 | 3.10 | 200.0 | 9.10 | 0.99 | 19.00 |
Minimum value | 670 | 0.58 | ≤0.25 | 19.0 | ≤0.25 | ≤0.25 | 1.02 |
Varkulyakha River only (N = 5) | |||||||
Average value | 2836 | 1.38 | 1.14 | 77.2 | 5.01 | 0.42 | 9.70 |
Maximum value | 5400 | 2.10 | 3.30 | 210.0 | 8.90 | 1.00 | 19.00 |
Minimum value | 610 | 0.60 | ≤0.25 | 18.0 | ≤0.25 | ≤0.25 | 1.20 |
According to data from other sources | |||||||
Around Novaya Zemlya, Yushin et al. [38] | - | - | 5.95–28.37 | - | 14.07–45.72 | 9.07–17.39 | 25.15–84.57 |
The Chukchi Sea, Sattarova et al. [39] | - | 15.90 | 16.50 | - | 41.00 | 15.96 | 82.70 |
Spitsbergen, 2007, Perner et al. [40] | - | 17–36 | - | - | - | 180–2325 | 379–4600 |
Statistics | Al | As | Cu | Mn | Ni | Pb | Zn |
---|---|---|---|---|---|---|---|
Krasnaya and Varkulyakha Rivers both (N = 4) | |||||||
Average value | 1013 | 8.18 | 1.47 | 432.3 | 4.25 | 0.83 | 28.50 |
Standard deviation | 633 | 5.04 | 0.72 | 302.5 | 0.33 | 1.05 | 16.13 |
Median | 1060 | 7.15 | 1.25 | 400.0 | 4.15 | 0.40 | 25.50 |
Three-average value | 1048 | 7.41 | 1.31 | 408.1 | 4.18 | 0.51 | 26.25 |
Lower quartile (25%) | 548 | 5.05 | 1.05 | 294.8 | 4.00 | 0.29 | 18.25 |
Upper quartile (75%) | 1525 | 10.28 | 1.68 | 537.5 | 4.40 | 0.95 | 35.75 |
Interquartile range | 978 | 5.23 | 0.63 | 242.8 | 0.40 | 0.66 | 17.50 |
Maximum value | 1600 | 15.00 | 2.50 | 830.0 | 4.70 | 2.40 | 50.00 |
Minimum value | 330 | 3.40 | 0.89 | 99.0 | 4.00 | ≤0.25 | 13.00 |
According to data from other sources | |||||||
The median concentration of elements in algae of different systematic groups, Sánchez-Quiles et al., 2017 [4] | - | 13.90 | 7.43 | 41.90 | 4.40 | 4.60 | 37.30 |
MPC * | - | 5.0 | - | - | - | 0.5 | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Miskevich, I.V.; Lokhov, A.S.; Moseev, D.S.; Kotova, E.I. Polymetallic Ore Mining Impact Assessment on the Benthic Hydrobiocenosis of the Small Estuaries on the Arctic Islands. J. Mar. Sci. Eng. 2024, 12, 1570. https://doi.org/10.3390/jmse12091570
Miskevich IV, Lokhov AS, Moseev DS, Kotova EI. Polymetallic Ore Mining Impact Assessment on the Benthic Hydrobiocenosis of the Small Estuaries on the Arctic Islands. Journal of Marine Science and Engineering. 2024; 12(9):1570. https://doi.org/10.3390/jmse12091570
Chicago/Turabian StyleMiskevich, Igor V., Alexey S. Lokhov, Dmitry S. Moseev, and Ekaterina I. Kotova. 2024. "Polymetallic Ore Mining Impact Assessment on the Benthic Hydrobiocenosis of the Small Estuaries on the Arctic Islands" Journal of Marine Science and Engineering 12, no. 9: 1570. https://doi.org/10.3390/jmse12091570
APA StyleMiskevich, I. V., Lokhov, A. S., Moseev, D. S., & Kotova, E. I. (2024). Polymetallic Ore Mining Impact Assessment on the Benthic Hydrobiocenosis of the Small Estuaries on the Arctic Islands. Journal of Marine Science and Engineering, 12(9), 1570. https://doi.org/10.3390/jmse12091570