Counting of Underwater Static Objects Through an Efficient Temporal Technique
Abstract
:1. Introduction
- Low visibility: Underwater environments often have low visibility due to factors such as water turbidity, lighting conditions, and water depth. This can make it difficult for computer vision systems to accurately detect and track objects;
- Object occlusion: Objects in underwater environments may be partially or fully occluded by other objects, such as rocks or plants. This can make it difficult for computer vision systems to accurately count and track objects;
- Object variability: Objects in underwater environments can vary greatly in size, shape, and color, making it difficult for computer vision systems to accurately recognize and classify them;
- Data variability: Underwater images may vary in quality, resolution, and lighting conditions, which can affect the accuracy of computer vision systems;
- Limited training data: There may be a limited amount of training data available for specific underwater environments or species, which can limit the accuracy of computer vision systems;
- Motion blur: Objects in underwater environments may move quickly or unpredictably, causing motion blur in images and making it difficult for computer vision systems to accurately track them.
2. Background and Related Work
2.1. Background
2.2. Related Work
2.2.1. Object Counting in Images
2.2.2. Object Counting in Videos
2.2.3. Object Tracking
- BOOSTING Tracker
- MIL Tracker
- KCF Tracker
- TLD Tracker
- MEDIANFLOW Tracker
- MOSSE tracker
- CSRT tracker
- DeepSORT
- Object Tracking MATLAB
- MDNet
3. Proposed Methodology
3.1. Data Collection and Processing
3.2. Nephrops Burrow Detections
3.3. Tracking and Counting of Burrows
Tracking and Counting Algorithm
Algorithm 1: Tracking and Counting |
Input Data V, λ where V is an input video and λ is a threshold value for object overlapping Results N = {N1, N2, ..., Nn}, where N are the unique objects, NC is the count of unique burrows Begin
Foreach frame f ∈ Ido Foreach boundingbox b ∈ f do Indexfb = Get_Spatial_Value(b) if (flag) delta = Compare_Overlapping (Indexfb, Index(f−1)b) if delta < λ thsen Nfb++ endif endif endFor N.add(Nfb) flag = true endFor return N |
4. Experiments and Results
4.1. Quantitative Analysis
4.2. Qualitative Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Boominathan, L.; Kruthiventi, S.S.; Babu, R.V. Crowdnet: A deep convolutional network for dense crowd counting. In Proceedings of the 2016 ACM on Multimedia Conference, Amsterdam, The Netherlands, 15–19 October 2016; pp. 640–644. [Google Scholar]
- Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 1137–1149. [Google Scholar] [CrossRef]
- Modasshir, M.; Rahman, S.; Youngquist, O.; Rekleitis, I. Coral Identification and Counting with an Autonomous Underwater Vehicle. In Proceedings of the 2018 IEEE International Conference on Robotics and Biomimetics (ROBIO), Kuala Lumpur, Malaysia, 12–15 December 2018; pp. 524–529. [Google Scholar] [CrossRef]
- Wageeh, Y.; Mohamed, H.E.D.; Fadl, A.; Anas, O.; ElMasry, N.; Nabil, A.; Atia, A. YOLO fish detection with Euclidean tracking in fish farms. J. Ambient. Intell. Human Comput. 2021, 12, 5–12. [Google Scholar] [CrossRef]
- Tanaka, R.; Nakano, T.; Ogawa, T. Sequential Fish Catch Counter Using Vision-based Fish Detection and Tracking. In Proceedings of the OCEANS 2022—Chennai, Chennai, India, 21–24 February 2022; pp. 1–5. [Google Scholar] [CrossRef]
- Gaude, G.S.; Borkar, S. Fish Detection and Tracking for Turbid Underwater Video. In Proceedings of the 2019 International Conference on Intelligent Computing and Control Systems (ICCS), Madurai, India, 15–17 May 2019; pp. 326–331. [Google Scholar] [CrossRef]
- Rice, A.L.; Chapman, C.J. Observations on the burrows and borrowing of two mud-dwelling decapod crustaceans Nephrops norvegicus and Goneplax romboides. Mar. Biol. 1971, 10, 330–342. [Google Scholar] [CrossRef]
- Workshop on the Use of UWTV Surveys for Determining Abundance in Nephrops Stocks throughout European Waters. 2007, p. 198. Available online: https://www.ices.dk/sites/pub/CM%20Doccuments/CM-2007/ACFM/ACFM1407.pdf (accessed on 20 April 2022).
- Report of the Workshop and Training Course on Nephrops Burrow Identification (WKNEPHBID). Available online: https://archimer.ifremer.fr/doc/00586/69782/67673.pdf (accessed on 20 April 2022).
- 2016/SSGIEOM:34; Report of the Workshop on Nephrops Burrow Counting, WKNEPS 2016 Report 9–11 November 2016. ICES: Reykjavík, Iceland, 2016; p. 62.
- Leocadio, L.; Weetman, A.; Wieland, K. Using UWTV Surveys to Assess and Advise on Nephrops Stocks; ICES Cooperative Research Report, No. 340; ICES: Lorient, France, 2018; p. 49. [Google Scholar]
- Dalal, N.; Triggs, B. Histograms of oriented gradients for human detection. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR), San Diego, CA, USA, 20–25 June 2005; Volume 1, pp. 886–893. [Google Scholar]
- Dollár, P.; Appel, R.; Belongie, S.; Perona, P. Fast feature pyramids for object detection. IEEE Trans. Pattern Anal. Mach. Intell. 2014, 36, 1532–1545. [Google Scholar] [CrossRef] [PubMed]
- Dollar, P.; Tu, Z.; Perona, P.; Belongie, S. Integral channel features. In Proceedings of the BMVC, 2009, London, UK, 7–10 September; 2009. [Google Scholar]
- Felzenszwalb, P.F.; Girshick, R.B.; McAllester, D.; Ramanan, D. Object Detection with Discriminatively Trained Part-Based Models. IEEE Trans. Pattern Anal. Mach. Intell. 2010, 32, 1627–1645. [Google Scholar] [CrossRef] [PubMed]
- Song, H.A.; Lee, S.-Y. Hierarchical representation using NMF. In International Conference on Neural Information Processing; Lee, M., Hirose, A., Hou, Z.-G., Kil, R.M., Eds.; Springer: Berlin/Heidelberg, Germany, 2013; Volume 8226, pp. 466–473. [Google Scholar]
- Lempitsky, V. Zisserman, Learning to count objects in images. In Advances in Neural Information Processing Systems, Proceedings of the 24th Annual Conference on Neural Information Processing Systems, British Columbia, BC, Canada, 6 December 2010; Curran Associates, Inc.: San Francisco, CA, USA, 2010; pp. 1324–1332. [Google Scholar]
- Pham, V.-Q.; Kozakaya, T.; Yamaguchi, O.; Okada, R. COUNT Forest: CO-Voting Uncertain Number of Targets Using Random Forest for Crowd Density Estimation. In Proceedings of the 2015 IEEE International Conference on Computer Vision (ICCV), Santiago, Chile, 7–13 December 2015; pp. 3253–3261. [Google Scholar] [CrossRef]
- Xu, B.; Qiu, G. Crowd density estimation based on rich features and random projection forest. In Proceedings of the 2016 IEEE Winter Conference on Applications of Computer Vision (WACV), Lake Placid, NY, USA, 7–10 March 2016; pp. 1–8. [Google Scholar]
- Sam, D.B.; Surya, S.; Babu, R.V. Switching convolutional neural network for crowd counting. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 4031–4039. [Google Scholar]
- Zhang, Y.; Zhou, D.; Chen, S.; Gao, S.; Ma, Y. Single-image crowd counting via multi-column convolutional neural network. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 589–597. [Google Scholar]
- Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You only look once: Unified, real-time object detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 779–788. [Google Scholar]
- Gao, C.; Li, P.; Zhang, Y.; Liu, J.; Wang, L. People counting based on head detection combining adaboost and cnn in crowded surveillance environment. Neurocomputing 2016, 208, 108–116. [Google Scholar] [CrossRef]
- Girshick, R.; Donahue, J.; Darrell, T.; Malik, J. Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation. In Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Columbus, OH, USA, 23–28 June 2014; pp. 580–587. [Google Scholar] [CrossRef]
- Bochkovskiy, A.; Wang, C.Y.; Liao, H.Y.M. YOLOv4: Optimal Speed and Accuracy of Object Detection. arXiv 2020, arXiv:2004.10934. [Google Scholar]
- Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu, C.Y.; Berg, A.C. Ssd: Single shot multibox detector. In Proceedings of the European Conference on Computer Vision, Amsterdam, The Netherlands, 11–14 October 2016; pp. 21–37. [Google Scholar]
- Girshick, R. Fast R-CNN. In Proceedings of the IEEE International Conference on Computer Vision, Santiago, Chile, 7–13 December 2015; pp. 1440–1448. [Google Scholar] [CrossRef]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition. In Computer Vision—ECCV 2014; Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T., Eds.; ECCV: Milano, Italy, 2014. [Google Scholar]
- Lin, T.-Y.; Dollar, P.; Girshick, R.; He, K.; Hariharan, B.; Belongie, S. Feature pyramid networks for object detection. arXiv 2017, arXiv:1612.03144. https://arxiv.org/abs/1612.03144. [Google Scholar]
- Sermanet, P.; Eigen, D.; Zhang, X.; Mathieu, M.; Fergus, R.; LeCun, Y. Overfeat: Integrated recognition, localization and detection using convolutional networks. arXiv 2013, arXiv:1312.6229. [Google Scholar]
- Ross, T.-Y.L.P.G.; Dollar, G.K.H.P. Focal loss for dense object detection. arXiv 2017, arXiv:1708.02002. [Google Scholar]
- Tan, M.; Le, Q. Efficientnet: Rethinking Model Scaling for Convolutional Neural Networks. In International Conference on Machine Learning. 2019, pp. 6105–6114. Available online: http://proceedings.mlr.press/v97/tan19a.html (accessed on 24 December 2024).
- Redmon, J.; Farhadi, A. YOLO9000: Better, Faster, Stronger. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 6517–6525. [Google Scholar] [CrossRef]
- Farhadi, A.; Redmon, J. YOLOv3: An Incremental Improvement. arXiv 2018, arXiv:1804.02767. [Google Scholar]
- Wang, C.-Y.; Bochkovskiy, A.; Liao, H.-Y.M. Scaled-YOLOv4: Scaling Cross Stage Partial Network. In Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Nashville, TN, USA, 20–25 June 2021; pp. 13024–13033. [Google Scholar] [CrossRef]
- Huang, X.; Wang, X.; Lv, W.; Bai, X.; Long, X.; Deng, K.; Dang, Q.; Han, S.; Liu, Q.; Hu, X.; et al. PP-YOLOv2: A Practical Object Detector. arXiv 2021, arXiv:2104.10419. [Google Scholar]
- Zhang, M.; Wang, C.; Yang, J.; Zheng, K. Research on Engineering Vehicle Target Detection in Aerial Photography Environment based on YOLOX. In Proceedings of the 2021 14th International Symposium on Computational Intelligence and Design (ISCID), Hangzhou, China, 11–12 December 2021; pp. 254–256. [Google Scholar] [CrossRef]
- Li, D.; Miao, Z.; Peng, F.; Wang, L.; Hao, Y.; Wang, Z.; Chen, T.; Li, H.; Zheng, Y. Automatic counting methods in aquaculture: A review. J. World Aquac. Soc. 2020, 52, 269–283. [Google Scholar] [CrossRef]
- Solahudin, M.; Slamet, W.; Dwi, A.S. Vaname (Litopenaeus vannamei) shrimp fry counting based on image processing method. Earth Environ. Sci. 2018, 147, 2014. [Google Scholar] [CrossRef]
- Labuguen, R.T.; Volante, E.J.P.; Causo, A.; Bayot, R.; Peren, G.; Macaraig, R.M.; Libatique, N.J.C.; Tangonan, G.L. Automated fish fry counting and schooling behavior analysis using computer vision. In Proceedings of the 2012 IEEE 8th International Colloquium on Signal Processing and its Applications, Malacca, Malaysia, 23–25 March 2012; pp. 255–260. [Google Scholar]
- Jing, D.; Han, J.; Wang, X.; Wang, G.; Tong, J.; Shen, W.; Zhang, J. A method to estimate the abundance of fish based on dual-frequency identification sonar (DIDSON) imaging. Fish. Sci. 2017, 83, 685–697. [Google Scholar] [CrossRef]
- Newbury, P.F.; Culverhouse, P.F.; Pilgrim, D.A. Automatic fish population counting by artificial neural network. Aquaculture 1995, 133, 45–55. [Google Scholar] [CrossRef]
- Fan, L.; Liu, Y. Automate fry counting using computer vision and multi-class least squares support vector machine. Aquaculture 2013, 380, 91–98. [Google Scholar] [CrossRef]
- Lau, P.Y.; Correia, P.L.; Fonseca, P.; Campos, A. Estimating Norway lobster abundance from deep-water videos: An automatic approach. IET Image Process. 2012, 6, 22–30. [Google Scholar] [CrossRef]
- Sharif, M.H.; Galip, F.; Guler, A.; Uyaver, S. A simple approach to count and track underwater fishes from videos. In Proceedings of the 2015 18th International Conference on Computer and Information Technology (ICCIT), Dhaka, Bangladesh, 21–23 December 2015; pp. 347–352. [Google Scholar]
- Chuang, M.C.; Hwang, J.N.; Williams, K.; Towler, R. Tracking live fish from low-contrast and low-frame-rate stereo videos. IEEE Transactions on Circuits and Systems for Video Technology. IEEE Trans. Circuits Syst. Video Technol. 2015, 25, 167–179. [Google Scholar] [CrossRef]
- Huang, T.W.; Hwang, J.N.; Romain, S.; Wallace, F. Fish tracking and segmentation from stereo videos on the wild sea surface for electronic monitoring of rail fishing. IEEE Trans. Circuits Syst. Video Technol. 2019, 29, 3146–3158. [Google Scholar] [CrossRef]
- Spampinato; ChenBurger, J.; Nadarajan, G.; Fisher, B. Detecting, tracking and counting fish in low quality unconstrained underwater videos. In Proceedings of the International Conference on Computer Vision Theory & Applications, Lisboa, Portugal, 5–8 February 2009; Volume s2, pp. 514–519. [Google Scholar]
- Available online: https://ehsangazar.com/object-tracking-with-opencv-fd18ccdd7369 (accessed on 24 December 2024).
- Mohamed, H.E.-D.; Fadl, A.; Anas, O.; Wageeh, Y.; ElMasry, N.; Nabil, A.; Atia, A. MSR-YOLO: Method to Enhance Fish Detection and Tracking in Fish Farms. Procedia Comput. Sci. 2020, 170, 539–546. [Google Scholar] [CrossRef]
- Li, X.; Wei, Z.; Huang, L.; Nie, J.; Zhang, W.; Wang, L. Real-Time Underwater Fish Tracking Based on Adaptive Multi-Appearance Model. In Proceedings of the 2018 25th IEEE International Conference on Image Processing (ICIP), Athens, Greece, 7–10 October 2018; pp. 2710–2714. [Google Scholar] [CrossRef]
- Bewley, A.; Ge, Z.; Ott, L.; Ramos, F.; Upcroft, B. Simple online and real-time tracking. In Proceedings of the 2016 IEEE International Conference on Image Processing (ICIP2016), Phoenix, AZ, USA, 25–28 September 2016; pp. 3464–3468. [Google Scholar]
- Microsoft CSE Group. Visual Object Tagging Tool (VOTT), an Electron App for Building End to End Object Detection Models from Images and Videos, v2.2.0. Available online: https://github.com/microsoft/VoTT (accessed on 3 June 2020).
- Available online: https://dev.to/afrozchakure/all-you-need-to-know-about-yolo-v3-you-only-look-once-e4m (accessed on 25 December 2024).
- Naseer, A.; Nava, E.; Villa, Y. Nephrops Norvegicus Burrows Detection and Classification from Underwater Videos Using Deep Learning Techniques. Universidad de Malaga, Malaga, Spain. Available online: https://hdl.handle.net/10630/31403 (accessed on 4 April 2024).
Approach | Year | Date set | Detection Algorithm | Tracking Algorithm |
---|---|---|---|---|
Identification and Counting of Coral [3] | 2018 | - | RetinaNet | OpenCV KCF tracker |
Detection and Fish Tracking [50] | 2020 | 400 goldfish images | YOLOv3 | Optical flow |
Detection and fish Tracking [4] | 2021 | 2000 images of golden fish | YOLOv3 | Optical flow |
Fish Tracking and Counting [5] | 2022 | 13,789 images of fishes | YOLOv3 | SORT |
Fish Tracking [6] | 2019 | Custom dataset | Hybrid Algoriyhm | Kalman Filter |
Temporal Segments | Burrow Count (Ground Truth) | Proposed Tracking and Counting | Total Count | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
RF09_Min1 | 10 | Frame No | 161 | 362 | 464 | 624 | 676 | 1040 | 1050 | 1440 | - | - | - | 10 |
Burrow Count | 1 | 2 | 2 | 1 | 1 | 1 | 1 | 1 | - | - | - | |||
RF09_Min2 | 16 | Frame No | 92 | 114 | 210 | 230 | 290 | 309 | 360 | 393 | 502 | 1020 | 1070 | 16 |
Burrow Count | 1 | 1 | 1 | 3 | 2 | 2 | 2 | 1 | 1 | 1 | 1 | |||
RF09_Min3 | 11 | Frame No | 1 | 180 | 350 | 421 | 576 | 675 | 1154 | 1450 | - | - | - | 11 |
Burrow Count | 1 | 1 | 1 | 1 | 1 | 2 | 3 | 1 | - | - | ||||
RF09_Min4 | 9 | Frame No | 160 | 410 | 810 | 996 | 1102 | 1165 | 1349 | 1390 | - | - | - | 9 |
Burrow Count | 1 | 1 | 1 | 2 | 1 | 1 | 1 | 1 | - | - | - | |||
RF09_Min5 | 14 | Frame No | 224 | 290 | 776 | 870 | 940 | 1130 | 1230 | 1250 | 1270 | 1315 | - | 14 |
Burrow Count | 1 | 2 | 2 | 1 | 1 | 1 | 2 | 1 | 1 | 2 | - | |||
RF09_Min6 | 10 | Frame No | 320 | 510 | 630 | 665 | 718 | 730 | 1097 | 1111 | 1460 | - | - | 10 |
Burrow Count | 1 | 1 | 1 | 2 | 1 | 1 | 1 | 1 | 1 | - | - | |||
RF09_Min7 | 13 | Frame No | 460 | 539 | 775 | 805 | 825 | 856 | 900 | 920 | 1035 | 1225 | 1400 | 13 |
Burrow Count | 1 | 1 | 2 | 1 | 1 | 1 | 1 | 2 | 1 | 1 | 1 | |||
RF09_Min8 | 6 | Frame No | 76 | 274 | 320 | 657 | 885 | 1360 | - | - | - | - | - | 6 |
Burrow Count | 1 | 1 | 1 | 1 | 1 | 1 | - | - | - | - | - | |||
RF09_Min9 | 18 | Frame No | 49 | 66 | 454 | 466 | 484 | 516 | 760 | 780 | 793 | 830 | 1335 | 18 |
Burrow Count | 1 | 2 | 1 | 1 | 3 | 2 | 1 | 2 | 3 | 1 | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Naseer, A.; Nava, E. Counting of Underwater Static Objects Through an Efficient Temporal Technique. J. Mar. Sci. Eng. 2025, 13, 205. https://doi.org/10.3390/jmse13020205
Naseer A, Nava E. Counting of Underwater Static Objects Through an Efficient Temporal Technique. Journal of Marine Science and Engineering. 2025; 13(2):205. https://doi.org/10.3390/jmse13020205
Chicago/Turabian StyleNaseer, Atif, and Enrique Nava. 2025. "Counting of Underwater Static Objects Through an Efficient Temporal Technique" Journal of Marine Science and Engineering 13, no. 2: 205. https://doi.org/10.3390/jmse13020205
APA StyleNaseer, A., & Nava, E. (2025). Counting of Underwater Static Objects Through an Efficient Temporal Technique. Journal of Marine Science and Engineering, 13(2), 205. https://doi.org/10.3390/jmse13020205