Study of Non-Linearities in Humpback Whale Song Units
Abstract
:1. Introduction
- -
- Frequency jumps: the fundamental frequency may change suddenly in the vocalization. This may happen more than once in the same vocalization.
- -
- Chaos: the chaotic mode is like an acoustic noise inside the vocalization.
- -
- Biphonation: vocalizations that simultaneously exhibit two fundamental frequencies.
- -
- Subharmonics: they occur at fractional intervals of the fundamental frequency.
2. Materials and Methods
2.1. Collection of Underwater Acoustic Recordings
2.2. Acoustic Dataset
- -
- In the Caribbean Sea, Dominican Republic (DR), off Samaná Bay, 2024. The recording time was 48 min 15 s.
- -
- In the North Pacific. Mexican Pacific, off Isla de Socorro (IS), 2001. The recording lasted 40 min 34 s.
- -
- In the Indian Ocean, Madagascar, off the Sainte Marie Channel, 2022. The 4 recordings M1, M2, M3, and M4, respectively, lasted 30 min 11 s, 28 min 28 s, 28 min 50 s, and 35 min 2 s.
2.3. Data Analysis
3. Results
Examples of Non-Linear Acoustic Features in SU
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Payne, R.; McVay, S. Songs of humpback whales: Humpbacks emit sounds in long, predictable patterns ranging over frequencies audible to humans. Science 1971, 173, 585–597. [Google Scholar] [CrossRef] [PubMed]
- Cholewiak, D.M.; Sousa-Lima, R.S.; Salvatore, C. Humpback whale song hierarchical structure: Historical context and discussion of current classification issues. Mar. Mammal Sci. 2013, 29, E312–E332. [Google Scholar] [CrossRef]
- Ridgway, S.H.; Carder, D.A.; Green, R.F.; Gaunt, A.S.; Gaunt, S.L.L.; Evans, W.E. Electromyographic and pressure events in the nasolaryngeal system of dolphins during sound production. In Animal Sonar Systems; Busnel, R.G., Fish, J.F., Eds.; Springer: Boston, MA, USA, 1980; pp. 239–249. [Google Scholar] [CrossRef]
- Cranford, T.W.; Amundin, M.; Norris, K.S. Functional morphology and homology in the odontocete nasal complex: Implications for sound generation. J. Morphol. 1996, 228, 223–285. [Google Scholar] [CrossRef]
- Reidenberg, J.S.; Laitman, J.T. Discovery of a low frequency sound source in Mysticeti (Baleen whales): Anatomical Establishment of a Vocal Fold Homolog. Anat. Rec. 2007, 290, 745–759. [Google Scholar] [CrossRef]
- Damien, J.; Adam, O.; Cazau, D.; White, P.; Laitman, J.T.; Reidenberg, J.S. Anatomy and functional morphology of the mysticete rorqual whale larynx: Phonation positions of the U-Fold. Anat. Rec. 2019, 302, 703–717. [Google Scholar] [CrossRef]
- Elemans, C.P.H.; Jiang, W.; Jensen, M.H.; Pichler, H.; Mussman, B.R.; Nattestad, J.; Wahlberg, M.; Zheng, X.; Xue, Q.; Fitch, W.T. Evolutionary novelties underlie sound production in baleen whales. Nature 2024, 627, 123–129. [Google Scholar] [CrossRef] [PubMed]
- Reidenberg, J.S. Chapter 3: Anatomy of Sound Production and Reception. In Book 2: Ethology and Behavioral Ecology of Mysticetes; Clark, C., Garland, E., Wursig, B., Eds.; Springer: Berlin/Heidelberg, Germany, 2022; pp. 45–69. [Google Scholar] [CrossRef]
- Adam, O.; Cazau, D.; Gandilhon, N.; Fabre, B.; Laitman, J.T.; Reidenberg, J.S. New acoustic model for humpback whale sound production. Appl. Acoust. 2013, 74, 1182–1190. [Google Scholar] [CrossRef]
- Cazau, D.; Adam, O.; Laitman, J.T.; Reidenberg, J.S. Understanding the intentional acoustic behavior of humpback whales: A production-based approach. J. Acoust. Soc. Am. 2013, 134, 2268–2273. [Google Scholar] [CrossRef]
- Dunlop, R.A.; Noad, M.J.; Cato, D.H.; Stokes, D. The social vocalization repertoire of east Australian migrating humpback whales (Megaptera novaeangliae). J. Acoust. Soc. Am. 2007, 122, 2893–2905. [Google Scholar] [CrossRef]
- Cazau, D.; Adam, O.; Aubin, T.; Laitman, J.T.; Reidenberg, J.S. A study of vocal nonlinearities in humpback whale songs: From production mechanisms to acoustic analysis. Sci. Rep. 2016, 6, 31660. [Google Scholar] [CrossRef] [PubMed]
- Tokuda, I.; Riede, T.; Neubauer, J.; Owren, M.J.; Herzel, H. Nonlinear analysis of irregular animal vocalizations. J. Acoust. Soc. Am. 2002, 111, 2908–2919. [Google Scholar] [CrossRef] [PubMed]
- Wilden, I.; Herzel, H.; Peters, G.; Tembrock, G. Subharmonics, biphonation and deterministic chaos in mammal vocalization. Bioacoustics 1998, 9, 71–196. [Google Scholar] [CrossRef]
- Reby, D.; Wyman, M.T.; Frey, R.; Passilongo, D.; Gilbert, J.; Locatelli, Y.; Charlton, B.D. Evidence of biphonation and source-filter interactions in the bugles of male North American wapiti (Cervus canadensis). J. Exp. Biol. 2016, 219, 1224–1236. [Google Scholar] [CrossRef] [PubMed]
- Gilbert, J.; Dalmont, J.-P.; Potier, R. Does the elephant trumpet like a trumpet? In Proceedings of the 20th International Congress on Acoustics (ICA 2010), Sydney, Australia, 23–27 August 2010. [Google Scholar]
- Beeck, V.C.; Heilmann, G.; Kerscher, M.; Stoeger, A.S. A novel theory of Asian elephant high-frequency squeak production. BMC Biol. 2021, 19, 121. [Google Scholar] [CrossRef]
- Fuchs, E.; Beeck, V.C.; Baotic, A.; Stoeger, A.S. Acoustic structure and information content of trumpets in female Asian elephants (Elephas maximus). PLoS ONE 2021, 16, e0260284. [Google Scholar] [CrossRef] [PubMed]
- Riede, T.; Owren, M.J.; Arcadi, A.C. Nonlinear acoustics in pant hoots of common chimpanzees (Pan troglodytes): Frequency jumps, subharmonics, biphonation, and deterministic chaos. Am. J. Primatol. 2004, 64, 277–291. [Google Scholar] [CrossRef] [PubMed]
- Fischer, J.; Hammerschmidt, K.; Cheney, D.L.; Seyfarth, R.M. Acoustic features of female chacma baboon barks. Ethology 2001, 107, 33–54. [Google Scholar] [CrossRef]
- Brown, C.H.; Alipour, F.; Berry, D.A.; Montequin, D. Laryngeal biomechanics and vocal communication in the squirrel monkey (Saimiri boliviensis). J. Acoust. Soc. Am. 2003, 113, 2114–2126. [Google Scholar] [CrossRef] [PubMed]
- Riede, T.; Herzel, H.; Mehwald, D.; Seidner, W.; Trumler, E.; Böhme, G.; Tembrock, G. Nonlinear phenomena and their anatomical basis in the natural howling of a female dog-wolf breed. J. Acoust. Soc. Am. 2000, 108, 1435–1442. [Google Scholar] [CrossRef] [PubMed]
- Volodin, I.A.; Volodina, E.V. Biphonation as a prominent feature of Dhole Cuon alpinus sounds. Bioacoustics 2002, 13, 105–120. [Google Scholar] [CrossRef]
- Frey, R.; Volodin, I.A.; Fritsch, G.; Volodina, E.V. Potential Sources of High Frequency and Biphonic Vocalization in the Dhole (Cuon alpinus). PLoS ONE 2016, 11, e0146330. [Google Scholar] [CrossRef]
- Mann, D.A.; O’Shea, T.J.; Nowacek, D.P. Nonlinear dynamics in manatee vocalizations. Mar. Mammal Sci. 2006, 22, 548–555. [Google Scholar] [CrossRef]
- Quick, N.; Callahan, H.; Read, A.J. Two-component calls in short-finned pilot whales (Globicephala macrorhynchus). Mar. Mammal Sci. 2018, 34, 155–168. [Google Scholar] [CrossRef]
- Papale, E.; Buffa, G.; Filiciotto, F.; Maccarrone, V.; Mazzola, S.; Ceraulo, M.; Giacoma, C.; Buscaino, G. Biphonic calls as signature whistles in a free-ranging bottlenose dolphin. Bioacoustics 2015, 24, 223–231. [Google Scholar] [CrossRef]
- Tyson, R.B.; Nowacek, D.P.; Miller, P.J.O. Nonlinear phenomena in the vocalizations of North Atlantic right whales (Eubalaena glacialis) and killer whales (Orcinus orca). J. Acoust. Soc. Am. 2007, 122, 1365–1373. [Google Scholar] [CrossRef] [PubMed]
- Filatova, O.A. Independent acoustic variation of the higher- and lower-frequency components of biphonic calls can facilitate call recognition and social affiliation in killer whales. PLoS ONE 2020, 15, e0236749. [Google Scholar] [CrossRef]
- Duarte de Figueiredo, L.; Maciel, I.; Viola, F.M.; Marcelo, A.; Savi, M.A.; Sheila, M.; Simão, S.M. Nonlinear features in whistles produced by the short-beaked common dolphin (Delphinus delphis) off southeastern Brazil. J. Acoust. Soc. Am. 2023, 153, 2436. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.-T.; Duan, P.-X.; Chen, M.; Mei, Z.-G.; Sun, X.-D.; Nong, Z.-W.; Liu, M.-H.; Akamatsu, T.; Wang, K.-X.; Wang, D. Vocalization of Bryde’s whales (Balaenoptera edeni) in the Beibu Gulf, China. Mar. Mammal Sci. 2022, 38, 1118–1139. [Google Scholar] [CrossRef]
- Tervo, O.M.; Christoffersen, M.F.; Parks, S.E.; Kristensen, R.M.; Madsen, P.T. Evidence for simultaneous sound production in the bowhead whale (Balaena mysticetus). J. Acoust. Soc. Am. 2011, 130, 2257–2262. [Google Scholar] [CrossRef]
- Mercado, E.; Schneider, J.; Pack, A.A.; Herman, L.M. Sound production by singing humpback whales. J. Acoust. Soc. Am. 2010, 127, 2678–2691. [Google Scholar] [CrossRef] [PubMed]
- Fitch, W.T.; Neubauer, J.; Herzel, H. Calls out of chaos: The adaptive significance of nonlinear phenomena in mammalian vocal production. Anim. Behav. 2002, 63, 407–418. [Google Scholar] [CrossRef]
- Au, W.W.L.; Pack, A.A.; Lammers, M.O.; Herman, L.M.; Deakos, M.H.; Andrews, K. Acoustic properties of humpback whale songs. J. Acoust. Soc. Am. 2006, 120, 1103–1110. [Google Scholar] [CrossRef] [PubMed]
- Dunlop, R.A.; Cato, D.H.; Noad, M.J. Non-song acoustic communication in migrating humpback whales (Megaptera novaeangliae). Mar. Mammal Sci. 2008, 24, 613–629. [Google Scholar] [CrossRef]
- Zoidis, A.M.; Smultea, M.A.; Frankel, A.S.; Hopkins, J.L.; Day, A.; McFarland, A.S.; Whitt, A.D.; Fertl, D. Vocalizations produced by humpback whale (Megaptera novaeangliae) calves recorded in Hawaii. J. Acoust. Soc. Am. 2008, 123, 1737–1746. [Google Scholar] [CrossRef] [PubMed]
- Stimpert, A.K.; Au, W.W.L.; Parks, S.E.; Hurst, T.; Wiley, D.N. Common humpback whale (Megaptera novaeangliae) sound types for passive acoustic monitoring. J. Acoust. Soc. Am. 2011, 129, 476–482. [Google Scholar] [CrossRef] [PubMed]
- Rekdahl, M.L.; Dunlop, R.A.; Noad, M.J.; Goldizen, A.W. Temporal stability and change in the social call repertoire of migrating humpback whales. J. Acoust. Soc. Am. 2013, 133, 1785–1795. [Google Scholar] [CrossRef]
- Rekdahl, M.L.; Tisch, C.; Cerchio, S.; Rosenbaum, H. Common nonsong social calls of humpback whales (Megaptera novaeangliae) recorded off northern Angola, southern Africa. Mar. Mammal Sci. 2017, 33, 365–375. [Google Scholar] [CrossRef]
- Fournet, M.E.; Szabo, A.; Mellinger, D.K. Repertoire and classification of non-song calls in Southeast Alaskan humpback whales (Megaptera novaeangliae). J. Acoust. Soc. Am. 2015, 137, 1–10. [Google Scholar] [CrossRef]
- Epp, M.V.; Fournet, M.E.H.; Davoren, G.K. Humpback whale call repertoire on a northeastern Newfoundland foraging ground. Mar. Mammal Sci. 2022, 38, 256–273. [Google Scholar] [CrossRef]
- Indeck, K.L.; Girola, E.; Torterotot, M.; Noad, M.J.; Dunlop, R.A. Adult female-calf acoustic communication signals in migrating east Australian humpback whales. Bioacoustics 2021, 30, 341–365. [Google Scholar] [CrossRef]
- Gandilhon, N.; Adam, O.; Cazau, D.; Laitman, J.T.; Reidenberg, J.S. Two new theoretical roles of the laryngeal sac of humpback whales. Mar. Mammal Sci. 2015, 31, 774–781. [Google Scholar] [CrossRef]
- Shevill, W.Z.; Watkins, W.A.; Ray, C. Analysis of underwater Odobenus calls with remarks on the development and function of the pharyngeal pouches. Zool. N. Y. Zool. Soc. 1966, 51, 103–106. [Google Scholar] [CrossRef]
- Damien, J. Functional Morphology of the Humpback Whale (Megaptera novaeangliae) Sound Production System: Anatomy and Modelling. Master’s Thesis, Southampton University, Southampton, UK, 2016. [Google Scholar]
- Reidenberg, J.S.; Laitman, J.T. Review of respiratory anatomy adaptations in whales. Anat. Rec. 2024, 1–35. [Google Scholar] [CrossRef] [PubMed]
- Mercado, E., 3rd; Perazio, C.E. All units are equal in humpback whale songs, but some are more equal than others. Anim. Cogn. 2022, 25, 149–177. [Google Scholar] [CrossRef] [PubMed]
- Cristiano, W.; Raimondi, T.; Valente, D.; De Gregorio, C.; Torti, V.; Ferrario, V.; Carugati, F.; Miaretsoa, L.; Mancini, L.; Gamba, M.; et al. Singing more, singing harsher: Occurrence of nonlinear phenomena in a primate’ song. Anim. Cogn. 2023, 26, 1661–1673. [Google Scholar] [CrossRef]
- Jiang, J.J.; Zhang, Y.; McGilligan, C. Chaos in voice, from modeling to measurement. J. Voice 2006, 20, 2–17. [Google Scholar] [CrossRef]
- Reidenberg, J.S. An Innovative Way for Whales to Sing. Nat. News Views 2024, 627, 40–42. [Google Scholar] [CrossRef]
- Vergez, C.; Almeida, A.; Caussé, R.; Rodet, X. Toward a Simple Physical Model of Double-Reed Musical Instruments: Influence of Aero-Dynamical Losses in the Embouchure on the Coupling Between the Reed and the Bore of the Resonator. Acta Acust. United Acust. 2003, 89, 964–973. [Google Scholar]
- Pénitot, A.; Schwarz, D.; Nguyen Hong Duc, P.; Cazau, D.; Adam, O. Bidirectional interactions with humpback whale singer using concrete sound elements. Front. Psychol. 2021, 12, 654314. [Google Scholar] [CrossRef]
- Aubin, T.; Jouventin, P.; Hildebrand, C. Penguins use the twovoice system to recognize each other. Proc. R. Soc. Lond. B Biol. Sci. 2000, 267, 1081–1087. [Google Scholar] [CrossRef] [PubMed]
- Volodina, E.V.; Volodin, I.A.; Isaeva, I.V.; Unck, C. Biphonation may function to enhance individual recognition in the dhole, Cuon alpinus. Ethology 2006, 112, 815–825. [Google Scholar] [CrossRef]
Site | Recorder | Hydrophone | Fs (kHz) | Code (bits) | Deployment | Recording Time (min s) | Mean Cycle Duration (min) | Number of Annotated SUs | % with Subharmonic Regime | % with Frequency Jump | % with Chaos | % with Biphonation |
---|---|---|---|---|---|---|---|---|---|---|---|---|
DR | Zoom F3 | Aquarian H2d | 96 | 32 | Boat, 10 m cable | 48 11 | 14.5 | 284 | 25.7 | 44.4 | 83.8 | 19.3 |
IS | Sony TC5-DM cassette recorder | CRT H1 | 16 | 16 | Boat, 15 m cable | 40 34 | 9.2 | 197 | 16.3 | 8.7 | 63.5 | 3.5 |
M1 | Zoom H5 | Aquarian H2d | 96 | 24 | Boat, 10 m cable | 30 11 | 13.3 | 776 | 22 | 23.7 | 66.7 | 10.9 |
M2 | Zoom H5 | Aquarian H2d | 96 | 24 | Boat, 10 m cable | 28 28 | 10 | 645 | 31.8 | 27.3 | 73.6 | 4.3 |
M3 | Zoom H5 | Aquarian H2d | 96 | 24 | Boat, 10 m cable | 28 50 | 11.6 | 578 | 58.4 | 38.9 | 79.9 | 10.5 |
M4 | Zoom H5 | Aquarian H2d | 96 | 24 | Boat, 10 m cable | 35 02 | 16.2 | 858 | 43.6 | 28.9 | 72.5 | 8.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Doh, Y.; Cazau, D.; Lamaj, G.; Mercado, E.; Reidenberg, J.S.; Jacobsen, J.K.; Perazio, C.E.; Ecalle, B.; Adam, O. Study of Non-Linearities in Humpback Whale Song Units. J. Mar. Sci. Eng. 2025, 13, 215. https://doi.org/10.3390/jmse13020215
Doh Y, Cazau D, Lamaj G, Mercado E, Reidenberg JS, Jacobsen JK, Perazio CE, Ecalle B, Adam O. Study of Non-Linearities in Humpback Whale Song Units. Journal of Marine Science and Engineering. 2025; 13(2):215. https://doi.org/10.3390/jmse13020215
Chicago/Turabian StyleDoh, Yann, Dorian Cazau, Giulia Lamaj, Eduardo Mercado, Joy S. Reidenberg, Jeff K. Jacobsen, Christina E. Perazio, Beverley Ecalle, and Olivier Adam. 2025. "Study of Non-Linearities in Humpback Whale Song Units" Journal of Marine Science and Engineering 13, no. 2: 215. https://doi.org/10.3390/jmse13020215
APA StyleDoh, Y., Cazau, D., Lamaj, G., Mercado, E., Reidenberg, J. S., Jacobsen, J. K., Perazio, C. E., Ecalle, B., & Adam, O. (2025). Study of Non-Linearities in Humpback Whale Song Units. Journal of Marine Science and Engineering, 13(2), 215. https://doi.org/10.3390/jmse13020215