The Complete Mitochondrial Genome of the Korean Endemic Polychaete Phyllodoce koreana (Lee & Jae, 1985) from Jindong Bay, Korea, with Additional Morphological and Ecological Features
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling Effort
2.2. DNA Sequencing, Mitochondrial Genome Assembly, and Annotation
2.3. Substitution Saturation and Phylogenetic Analysis
3. Results and Discussion
3.1. Additional Morphological Characteristics and Ecological Potential
3.2. Mitochondrial Genome Characterization
3.3. Phylogeny and Synteny
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rouse, G.; Pleijel, F.; Tilic, E. Annelida; Oxford University Press: Oxford, UK, 2022; p. 432. [Google Scholar]
- Glasby, C.; Biriukova, O.; Martin, P.; Dyne, G.; Utevsky, S.; Wilson, R. Annelida–diagnoses, descriptions and keys to family-level taxa. ARPHA Prepr. 2024, 5, e137961. [Google Scholar]
- Read, G.; Fauchald, K. (Eds.) World Polychaeta Database. Phyllodocidae Örsted, 1843. Accessed Through: World Register of Marine Species. Available online: https://www.marinespecies.org/aphia.php?p=taxdetails&id=931 (accessed on 16 October 2024).
- Pleijel, F. Phylogeny of Phyllodoce (Polychaeta, Phyllodocidae). Zool. J. Linn. Soc.-Lond. 1993, 108, 287–299. [Google Scholar] [CrossRef]
- Choi, H.; An, Y.K.; Lee, C.J.; Song, C.U.; Kim, E.J.; Lee, C.E.; Cho, S.-J.; Eyun, S. Genome assembly, gene content, and plastic gene expression responses to salinity changes in the Brackishwater Clam (Corbicula japonica) from a dynamic estuarine environment. J. Hazard. Mater. 2024, 483, 136627. [Google Scholar] [CrossRef] [PubMed]
- Borja, A.; Franco, J.; Pérez, V. A marine biotic index to establish the ecological quality of soft-bottom benthos within European estuarine and coastal environments. Mar. Pollut. Bull. 2000, 40, 1100–1114. [Google Scholar] [CrossRef]
- Pearson, T.; Rosenberg, R. Macrobenthic succession in relation to organic enrichment and pollution of the marine environment. Oceanogr. Mar. Biol. Annu. Rev. 1978, 16, 229–311. [Google Scholar]
- Dean, H.K. The use of polychaetes (Annelida) as indicator species of marine pollution: A review. Rev. Biol. Trop. 2008, 56, 11–38. [Google Scholar]
- Song, C.U.; Purnaningtyas, D.W.; Choi, H.; Jeon, D.; Kim, S.; Hwang, H.; Kim, C.G.; Lee, Y.H.; Eyun, S. Do red tide events promote an increase in zooplankton biodiversity? Environ. Pollut. 2024, 361, 124880. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.-H.; Jae, J.-G. Some phyllodocid polychaetes from Kwangyang Bay, Korea. Korean J. Syst. Zool. 1985, 1, 31–40. [Google Scholar]
- Muxika, I.; Borja, A.; Bonne, W. The suitability of the marine biotic index (AMBI) to new impact sources along European coasts. Ecol. Indic. 2005, 5, 19–31. [Google Scholar] [CrossRef]
- Seo, J.-Y.; Lim, H.-S.; Choi, J.-W. Threshold value of Benthic Pollution Index (BPI) for a muddy healthy benthic faunal community and its application to Jinhae Bay in the southern coast of Korea. Ocean. Sci. J. 2014, 49, 313–328. [Google Scholar] [CrossRef]
- Choi, J.-W.; Seo, J.-Y. Application of biotic indices to assess the health condition of benthic community in Masan Bay, Korea. Ocean. Polar Res. 2007, 29, 339–348. [Google Scholar] [CrossRef]
- Chen, X.; Li, M.; Liu, H.; Li, B.; Guo, L.; Meng, Z.; Lin, H. The complete mitochondrial genome of the polychaete, Goniada japonica (Phyllodocida, Goniadidae). Mitochondrial DNA Part A 2016, 27, 2850–2851. [Google Scholar] [CrossRef] [PubMed]
- Choi, H.; Gwon, Y.; An, Y.K.; Eyun, S. Positive Selection of Mitochondrial cytochrome b Gene in the Marine Bivalve Keenocardium buelowi (Bivalvia, Cardiidae). Animals 2024, 14, 2812. [Google Scholar] [CrossRef]
- Kim, S.L.; Choi, H.; Eyun, S.; Kim, D.; Yu, O.H. A new Branchipolynoe (Aphroditiformia: Polynoidae) scale worm from the Onnuri Deep-sea hydrothermal vent field, northern Central Indian Ridge. Zool. Stud. 2022, 61, e21. [Google Scholar]
- Huč, S.; Hiley, A.S.; McCowin, M.F.; Rouse, G.W. A Mitogenome-Based Phylogeny of Pilargidae (Phyllodocida, Polychaeta, Annelida) and Evaluation of the Position of Antonbruunia. Diversity 2024, 16, 134. [Google Scholar] [CrossRef]
- Kim, M.; Choi, H.; Kim, H.; Kang, J.; Jeong, H.G.; Eyun, S.; Kang, J.-H. Characterization of the Mitochondrial Genome, Ecological Distribution, and Morphological Features of the Marine Gastropod Mollusc Lophocochlias parvissimus (Gastropoda, Tornidae). J. Mar. Sci. Eng. 2023, 11, 2307. [Google Scholar] [CrossRef]
- Tilic, E.; Stiller, J.; Campos, E.; Pleijel, F.; Rouse, G.W. Phylogenomics resolves ambiguous relationships within Aciculata (Errantia, Annelida). Mol. Phylogenet. Evol. 2022, 166, 107339. [Google Scholar] [CrossRef]
- Nygren, A.; Pleijel, F. Chimaeras and the origins of the holopelagic annelids Typhloscolecidae and Lopadorhynchidae: A reply to Struck & Halanych (2010). Zool. Scr. 2011, 40, 112–114. [Google Scholar]
- Krueger, F. Trim Galore!: A Wrapper Around Cutadapt and FastQC to Consistently Apply Adapter and Quality Trimming to FastQ Files, with Extra Functionality for RRBS Data; Babraham Institute: Babraham, UK, 2015. [Google Scholar]
- Meng, G.; Li, Y.; Yang, C.; Liu, S. MitoZ: A toolkit for animal mitochondrial genome assembly, annotation and visuali-zation. Nucleic Acids Res. 2019, 47, e63. [Google Scholar] [CrossRef]
- Krzywinski, M.; Schein, J.; Birol, I.; Connors, J.; Gascoyne, R.; Horsman, D.; Jones, S.J.; Marra, M.A. Circos: An infor-mation aesthetic for comparative genomics. Genome Res. 2009, 19, 1639–1645. [Google Scholar] [CrossRef]
- Jeon, M.S.; Jeong, D.M.; Doh, H.; Kang, H.A.; Jung, H.; Eyun, S. A practical comparison of the next-generation sequencing platform and assemblers using yeast genome. Life Sci. Alliance 2023, 64, e202201744. [Google Scholar] [CrossRef] [PubMed]
- Choi, H.; Nam, J.; Yang, S.; Eyun, S. Highly contiguous genome assembly and gene annotation of the short-finned eel (Anguilla bicolor pacifica). Sci. Data 2024, 11, 952. [Google Scholar] [CrossRef]
- Xia, X.; Xie, Z.; Salemi, M.; Chen, L.; Wang, Y. An index of substitution saturation and its application. Mol. Phylogenet. Evol. 2003, 26, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Katoh, K.; Standley, D.M. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol. Biol. Evol. 2013, 30, 772–780. [Google Scholar] [CrossRef] [PubMed]
- Aylward, F. Introduction to Calculating dN/dS Ratios with codeml V. 2. 2018; Virginia Tech: Blacksburg, VI, USA, 2018. [Google Scholar]
- Lanfear, R.; Frandsen, P.B.; Wright, A.M.; Senfeld, T.; Calcott, B. PartitionFinder 2: New methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses. Mol. Biol. Evol. 2017, 34, 772–773. [Google Scholar] [CrossRef]
- Kozlov, A.M.; Darriba, D.; Flouri, T.; Morel, B.; Stamatakis, A. RAxML-NG: A fast, scalable and user-friendly tool for maximum likelihood phylogenetic inference. Bioinformatics 2019, 35, 4453–4455. [Google Scholar] [CrossRef] [PubMed]
- Huelsenbeck, J.P.; Ronquist, F. MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 2001, 17, 754–755. [Google Scholar] [CrossRef] [PubMed]
- Schneider, S.; Roessli, D.; Excoffier, L. Arlequin: A software for population genetics data analysis. User Man. Ver 2000, 2, 2496–2497. [Google Scholar]
- Uschakov, P. The polychaetous annelids of the families Phyllodocidae and Aphroditidae from the Yellow Sea. Arch. Chin. Inst. Oceanol. 1959, 1, 1–40. [Google Scholar]
- Linnaeus, C. Systema Naturae per regna tria Naturae, Secundum Classes, Ordines, Genera, Species; Cum Characteribus, Differentiis, Synonymis, locis, 12th ed.; Holmiae: Stockholm, Sweden, 1767; Volume 1. [Google Scholar]
- Seo, J.-Y.; An, S.-M.; Lim, D.-i.; Choi, J.-W. Seasonal variations in the community structures of macrobenthic fauna and their health status in an estuarine bay, Gwangyang Bay in Korea. Ocean. Sci. J. 2017, 52, 367–385. [Google Scholar] [CrossRef]
- Jung, R.-H. Spatial and seasonal patterns of polychaete community during the reclamation and dredging activities for the construction of the Pohang Steel Mill Company in Kwangyang Bay, Korea. Korean J. Fish. Aquat. Sci. 1997, 30, 730–743. [Google Scholar]
- Shin, H.C.; Koh, C.-H. Temporal and spatial variation of polychaete community in Kwangyang Bay, southern coast of Korea. J. Oceanol. Soc. Korea 1990, 25, 205–216. [Google Scholar]
- Seo, J.-Y.; Lim, H.-S.; Choi, J.-W. Distribution patterns of macrobenthic fauna communities in Deukryang Bay, one of the environment conservation areas of Korea. Ocean. Sci. J. 2014, 49, 97–113. [Google Scholar] [CrossRef]
- Kim, Y.-H.; Shin, H.-C. Spatial distribution of Benthic Polychaetous Communities in Deugryang Bay, Southern Coast of Korea. Sea J. Korean Soc. Oceanogr. 2002, 7, 20–31. [Google Scholar]
- Kim, D.; Kim, S.-W. Mechanism of oxygen-deficient water formation in Jindong Bay. J. Korean Soc. Oceanogr. 2003, 8, 177–186. [Google Scholar]
- Cho, Y.-S.; Hong, S.-J.; Lee, W.-C.; Kim, H.-C.; Kim, J.-B. Suitable site assessment using habitat suitability index for Styela clava and Styela plicata in Jindong Bay. J. Korean Soc. Mar. Environ. Saf. 2013, 19, 597–605. [Google Scholar] [CrossRef]
- Fisheries Research and Development Institute. The Development of Suitable Sites Selection and Rearrangement Technology for Warty Sea Squirt Aquaculture; National Fisheries Research and Development Institute: Busan, Republic of Korea, 2011; p. 20. [Google Scholar]
- Park, J.; Cho, Y.; Lee, W.-C.; Hong, S.; Kim, H.-C.; Kim, J.-B.; Park, J. Characteristics of carbon circulation for ascidian farm in Jindong Bay in summer and winter. J. Wetl. Res. 2012, 14, 211–221.41. [Google Scholar]
Phyllodoce koreana | ||
---|---|---|
Sequencing | Platform | Illumina NovaSeq 6000 |
Library kit | TruSeq DNA Nano | |
Read length (bp) | 151 × 2 | |
Insert size (bp) | 550 | |
Number of reads | 73,237,515 | |
Reads of over Q20 (%) | 99.1 | |
Number of bases (bp) | 11,058,864,765 | |
After data filtering | Number of reads | 73,237,515 |
Number of bases (bp) | 10,962,924,602 | |
Total length (bp) | 15,559 | |
Mitochondrial genome assembly | GC content (%) | 29.14 |
Number of protein-coding genes | 13 |
Gene | Position | Length (bp) | Initiation Codon | Stop Codon | Anticodon | Strand |
---|---|---|---|---|---|---|
tRNA-Ser (trnS) | 103–168 | 67 | TGA | + | ||
tRNA-Ala (trnA) | 169–232 | 65 | TGC | + | ||
tRNA-Leu (trnL) | 233–296 | 65 | TAA | + | ||
NADH dehydrogenase subunit 1 (ND1) | 297–1233 | 938 | ATG | TAA | + | |
tRNA-Ile (trnI) | 1231–1295 | 66 | GAT | + | ||
tRNA-Lys (trnK) | 1297–1361 | 66 | TTT | + | ||
NADH dehydrogenase subunit 3 (ND3) | 1362–1715 | 355 | ATG | TAG | + | |
tRNA-Ser (trnS) | 1719–1786 | 69 | TCT | + | ||
NADH dehydrogenase subunit 2 (ND2) | 1787–2777 | 992 | ATG | TAA | + | |
cytochrome c oxidase subunit I (COX1) | 2805–4340 | 1537 | ATG | TAA | + | |
tRNA-Asn (trnN) | 4343–4409 | 68 | GTA | + | ||
cytochrome c oxidase subunit II (COX2) | 4410–5099 | 691 | ATG | TAG | + | |
tRNA-Asp (trnD) | 5101–5164 | 65 | GTC | + | ||
ATP synthase F0 subunit 8 (ATP8) | 5165–5326 | 163 | ATG | TAG | + | |
tRNA-Tyr (trnY) | 5325–5389 | 66 | GTA | + | ||
cytochrome c oxidase subunit III (COX3) | 5391–6170 | 781 | ATG | TAA | + | |
tRNA-Gln (trnQ) | 6174–6242 | 70 | TTG | + | ||
NADH dehydrogenase subunit 6 (ND6) | 6243–6710 | 469 | ATG | TAG | + | |
cytochrome b (COB) | 6703–7848 | 1147 | ATG | TAA | + | |
tRNA-Trp (trnW) | 7847–7910 | 65 | TCA | + | ||
ATP synthase F0 subunit 6 (ATP6) | 7911–8606 | 697 | ATG | TAG | + | |
tRNA-Arg (trnR) | 8605–8671 | 68 | TCG | + | ||
tRNA-His (trnH) | 8682–8743 | 32 | GTG | + | ||
NADH dehydrogenase subunit 5 (ND5) | 8744–10,451 | 1709 | ATG | TAA | + | |
tRNA-Phe (trnF) | 10,452–10,516 | 66 | GAA | + | ||
tRNA-Glu (trnE) | 10,522–10,583 | 63 | TTC | + | ||
tRNA-Pro (trnP) | 10,585–10,648 | 65 | TGG | + | ||
tRNA-Thr (trnT) | 10,649–10,711 | 64 | TGT | + | ||
NADH dehydrogenase subunit 4L (ND4L) | 10,712–10,999 | 289 | ATG | TAA | + | |
NADH dehydrogenase subunit 4 (ND4) | 10,993–12,351 | 1360 | ATG | TAA | + | |
tRNA-Cys (trnC) | 12,351–12,414 | 65 | GCA | + | ||
tRNA-Gly (trnG) | 12,569–12,631 | 64 | TCC | + | ||
tRNA-Met (trnM) | 12,632–12,695 | 65 | CAT | + | ||
12S ribosomal RNA (s-rRNA) | 12,694–13,521 | 829 | + | |||
tRNA-Val (trnV) | 13,514–13,577 | 65 | TAC | + | ||
16S ribosomal RNA (l-rRNA) | 13,533–14,879 | 1348 | + | |||
tRNA-Leu (trnL) | 14,837–14,898 | 63 | TAG | + |
Order | Family | Genus | Species | Accession Number |
---|---|---|---|---|
Phyllodocida | Syllidae | Ramisyllis | Ramaryllis multicaudata | KR534502.1 |
Typosyllis | Typosyllis Antoni | KX752426.1 | ||
Aphroditidae | Aphrodita | Aphrodita australis | MN334532.1 | |
Polynoidae | Eunoe | Eunoe nodosa | MW557378.1 | |
Harmothoe | Harmothoe imbricata | MK858187.1 | ||
Nereididae | Hediste | Hediste diversicolor | MW377219.1 | |
Namalycastis | Namalycastis abiuma | KU351089.1 | ||
Nectoneanthes | Nectoneanthes oxypoda | OL782599.1 | ||
Nereis | Nereis pelagica | OL782598.1 | ||
Hesionidae | Leocrates | Leocrates chinensis | OP104125.1 | |
Sirsoe | Sirsoe methanicola | OM914591.1 | ||
Nephtyidae | Micronephthys | Micronephthys minuta | OR123448.1 | |
Phyllodocidae | Phyllodoce | Phyllodoce medipapillata | PP035857.1 | |
Phyllodoce koreana | PQ510072 | |||
Goniadidae | Goniada | Goniada japonica | KP867019.1 | |
Pilargidae | Pilargis | Pilargis verrucosa | OR123439.1 | |
Glyphohesione | Glyphohesione klatti | OR123443.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, D.-H.; Ryu, S.J.; Kim, J.R.; Eyun, S.-i.; Jeong, M.-K. The Complete Mitochondrial Genome of the Korean Endemic Polychaete Phyllodoce koreana (Lee & Jae, 1985) from Jindong Bay, Korea, with Additional Morphological and Ecological Features. J. Mar. Sci. Eng. 2025, 13, 223. https://doi.org/10.3390/jmse13020223
Kim D-H, Ryu SJ, Kim JR, Eyun S-i, Jeong M-K. The Complete Mitochondrial Genome of the Korean Endemic Polychaete Phyllodoce koreana (Lee & Jae, 1985) from Jindong Bay, Korea, with Additional Morphological and Ecological Features. Journal of Marine Science and Engineering. 2025; 13(2):223. https://doi.org/10.3390/jmse13020223
Chicago/Turabian StyleKim, Dae-Hun, So Jin Ryu, Jong Rae Kim, Seong-il Eyun, and Man-Ki Jeong. 2025. "The Complete Mitochondrial Genome of the Korean Endemic Polychaete Phyllodoce koreana (Lee & Jae, 1985) from Jindong Bay, Korea, with Additional Morphological and Ecological Features" Journal of Marine Science and Engineering 13, no. 2: 223. https://doi.org/10.3390/jmse13020223
APA StyleKim, D.-H., Ryu, S. J., Kim, J. R., Eyun, S.-i., & Jeong, M.-K. (2025). The Complete Mitochondrial Genome of the Korean Endemic Polychaete Phyllodoce koreana (Lee & Jae, 1985) from Jindong Bay, Korea, with Additional Morphological and Ecological Features. Journal of Marine Science and Engineering, 13(2), 223. https://doi.org/10.3390/jmse13020223