Population Genetic Structure with Mitochondrial DNA of the Chub Mackerel Scomber japonicus in Korean Coastal Waters
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection
2.2. DNA Extraction, Amplification, and Sequencing
2.3. Data Analysis
3. Results
4. Discussion
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Collette, B.B.; Nauen, C.E. Scombrids of the world: An annotated and illustrated catalogue of tunas, mackerels, bonitos and related species known to date. In FAO Species Catalogue; FAO: Rome, Italy, 1983; Volume 125, pp. 1–137. [Google Scholar]
- Yamada, U.; Tagawa, M.; Kishida, S.; Honjo, K. Fishes of the East China Sea and the Yellow Sea; Seikai Regional Fisheries Research Laboratory: Nagasaki, Japan, 1986; pp. 1–501. [Google Scholar]
- Kurota, H.; Kitajima, S.; Goto, T.; Sassa, C.; Tanaka, S.; Hiramatsu, K.; Muko, S.; Yasuda, T.; Yamada, A.; Yamada, H.; et al. Fisheries biology and population dynamics of Tsushima Warm Current stock of chub mackerel Scomber japonicus. Bull. Jpn. Soc. Fish. Oceanogr. 2019, 83, 237–251. [Google Scholar]
- KOSIS: Korea Statistical Information Service, Fishery Production Trend Survey. 2024. Available online: https://kosis.kr/statHtml/statHtml.do?orgId=101&tblId=DT_1EW0005&conn_path=I2 (accessed on 7 December 2024).
- Kim, M.J.; Yoon, S.Y.; Ji, H.S.; Bang, M.K.; Kim, C.S.; Kang, H.J. CPUE standardization considering spatio-temporal and envi–ronmental variables of chub mackerel Scomber japonicus in Korean waters. Korean J. Fis. Aquat. Sci. 2024, 57, 589–597. [Google Scholar]
- Makwana, M.; Patnaik, U. Vulnerability of marine fisheries to sea surface temperature and cyclonic events: Evidences across coastal India. Reg. Stud. Mar. Sci. 2021, 48, 102002. [Google Scholar] [CrossRef]
- NIFS: National Institute of Fisheries Science. Annual Report for Climate Change Trends in Fisheries; NIFS: National Institute of Fisheries Science: Busan, Republic of Korea, 2024; pp. 1–87.
- KLIC: Korea Law Information Center. Enforcement Decree of the Fishery Resources Management Act. 2024. Available online: https://www.law.go.kr/LSW/main.html (accessed on 20 January 2025).
- Hwang, H.K.; Kim, D.H.; Park, M.W.; Yoon, S.J.; Lee, Y.H. Effects of water temperature and salinity on the egg and larval of chub mackerel Scomber japonicus. Aquaculture 2008, 21, 234–238. [Google Scholar]
- NFRDI: National Fisheries Research and Development Institute. Ecology and Fishing Grounds for Some Major Fish in Korean Waters; Yemunsa Publ. Co.: Pusan, Republic of Korea, 2005; pp. 1–383.
- Kim, S.; Cho, H.Y. Ichthyoplankton detection proportion and margin of error for the Scomber japonicus in Korean coastal seas. Ocean Polar Res. 2017, 39, 73–84. [Google Scholar] [CrossRef]
- Kim, S.R.; Kim, J.J.; Stockhausen, W.T.; Kim, C.S.; Kang, S.; Cha, H.K.; Ji, H.S.; Jang, S.H.; Baek, H.J. Characteristics of the eggs and larval distribution and transport process in the early life stage of the chub mackerel Scomber japonicus near Korean waters. Korean J. Fish. Aquat. Sci. 2019, 52, 666–684. [Google Scholar]
- Choi, Y.; Zhang, C.; Lee, J.; Kim, J.; Cha, H. Stock assessment and management implications of chub mackerel, Scomber japonicus in Korean waters. J. Korean Soc. Fish. Res. 2004, 6, 90–100. [Google Scholar]
- Cheng, J.; Han, Z.; Song, N.; Gao, T.; Yanagimoto, T.; Carlos, A.S. Effects of Pleistocene glaciation on the phylogeographic and demographic histories of chub mackerel Scomber japonicus in the North-western Pacific. Mar. Freshw. Res. 2018, 69, 514–524. [Google Scholar] [CrossRef]
- Yan, S.; Catanese, G.; Christopher, L.B.; Wang, M.; Yang, C.; Yang, T. Phylogeographic study on the chub mackerel (Scomber japonicus) in the Northwestern Pacific indicates the Late Pleistocene population isolation. Mar. Ecol. 2015, 36, 753–765. [Google Scholar] [CrossRef]
- Cheng, J.; Yanagimoto, T.; Song, N.; Gao, T. Population genetic structure of chub mackerel Scomber japonicus in the Northwestern Pacific inferred from microsatellite analysis. Mol. Biol. Rep. 2015, 42, 373–382. [Google Scholar] [CrossRef] [PubMed]
- Lunt, D.H.; Whipple, L.E.; Hyman, B.C. Mitochondrial DNA variable number of tandem repeats (VNTRs): Utility and problems in molecular ecology. Mol. Ecol. 1998, 7, 1441–1455. [Google Scholar] [CrossRef] [PubMed]
- Avise, J.C. Phylogeography: The History and Formation of Species; Harvard University Press: Cambridge, UK, 2000; pp. 1–464. [Google Scholar]
- Buonnacorsi, V.P.; McDowell, J.R.; Graves, J.E. Reconciling patterns of inter-ocean molecular variance from four classes of molecular markers in blue marlin (Makaira nigricans). Mol. Ecol. 2001, 10, 1179–1196. [Google Scholar] [CrossRef] [PubMed]
- Steinke, D.; Hanner, R. The FISH-BOL collaborators’ protocol. Mitochondrial DNA 2011, 22 (Suppl. S1), 10–14. [Google Scholar] [CrossRef] [PubMed]
- Meyer, A.; Kocher, T.D.; Basasibwaki, P.; Wilson, A.C. Monophyletic origin of Lake Victoria cichlid fishes suggested by mitochondrial DNA sequences. Nature 1990, 347, 550–553. [Google Scholar] [CrossRef] [PubMed]
- Atanassov, I.; Ivanova, P.; Panayotova, M.; Tsekov, A.; Rusanov, K. Mitochondrial control region DNA variation in turbot populations from the Bulgarian and Romanian Black Sea coasts. Biotechnol. Biotechnol. Equip. 2011, 25, 2627–2633. [Google Scholar] [CrossRef]
- Hall, T.A. BioEdit: A User-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp. Ser. 1999, 41, 95–98. [Google Scholar]
- Tamura, K.; Peterson, D.; Peterson, N.; Stecher, G.; Nei, M.; Kumar, S. MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol. 2011, 28, 2731–2739. [Google Scholar] [CrossRef] [PubMed]
- Teacher, A.G.F.; Griffiths, D.J. Hapstar: Automated haplotype network layout and visualization. Mol. Ecol. Resour. 2011, 11, 151–153. [Google Scholar] [CrossRef] [PubMed]
- Excoffier, L.; Lischer, H.E.L. Arlequin suite ver 3.5: A new series of programs to perform population genetics analyses under Linux and Windows. Mol. Ecol. Resour. 2010, 10, 564–567. [Google Scholar] [CrossRef] [PubMed]
- Tajima, F. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 1989, 123, 585–595. [Google Scholar] [CrossRef]
- Fu, Y.X. Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics 1997, 147, 915–925. [Google Scholar] [CrossRef]
- Rogers, A.R.; Harpending, H. Population growth makes waves in the distribution of pairwise genetic difference. Mol. Biol. Evol. 1992, 9, 552–569. [Google Scholar] [PubMed]
- Bermingham, E.S.; McCaverty, A.; Martin, P. Fish biogeography and molecular clocks: Perspectives from the Panamanian Isthmus. In Molecular Systematics of Fishes; Kocher, T., Stepien, C., Eds.; Academic Press: New York, NY, USA, 1997; pp. 113–126. [Google Scholar]
- Bowen, B.W.; Bass, A.L.; Rocha, L.A.; Grant, W.S.; Robertson, D.R. Phylogeography of the trumpet fishes (Aulostomus): Ring species complex on a global scale. Evolution 2001, 55, 1029–1039. [Google Scholar] [CrossRef] [PubMed]
- Shui, B.N.; Han, Z.Q.; Gao, T.X.; Miao, Z.Q.; Yanagimoto, T. Mitochondrial DNA variation in the East China Sea and Yellow Sea populations of Japanese spanish mackerel Scomberomorus niphonius. Fish. Sci. 2009, 75, 593–600. [Google Scholar] [CrossRef]
- Song, N.; Jia, N.; Yanagimoto, T.; Lin, L.; Gao, T. Genetic differentiation of Trachurus japonicus from the Northwestern Pacific based on the mitochondrial DNA control region. Mitochondrial DNA 2013, 24, 705–712. [Google Scholar] [CrossRef] [PubMed]
- Gwak, W.S.; Lee, Y.D.; Nakayama, K. Population structure and sequence divergence in the mitochondrial DNA control region of gizzard shad Konosirus punctatus in Korea and Japan. Ichthyol. Res. 2014, 62, 379–385. [Google Scholar] [CrossRef]
- Rodrigues, R.; Schneider, H.; Santos, S.; Vallinoto, M.; Sain-Paul, U.; Sampaio, I. Low levels of genetic diversity depicted from mitochondrial DNA sequences in a heavily exploited marine fish (Cynoscion acoupa, Sciaenidae) from the Northern coast of Brazil. Genet. Mol. Biol. 2008, 31, 487–492. [Google Scholar] [CrossRef]
- Wang, W.; Ma, C.; Chen, W.; Zhang, H.; Kang, W.; Ni, Y.; Ma, L. Population genetic diversity of Chinese sea bass (Lateolabrax maculatus) from southeast coastal regions of China based on mitochondrial COI gene sequences. Biochem. Syst. Ecol. 2017, 71, 114–120. [Google Scholar] [CrossRef]
- Grant, W.S.; Bowen, B.W. Shallow population histories in deep evolutionary lineages of marine fishes: Insights from sardines and anchovies and lessons for conservation. J. Hered. 1998, 89, 415–426. [Google Scholar] [CrossRef]
- Durand, J.D.; Collet, A.; Chow, S.; Guinand, B.; Borsa, P. Nuclear and mitochondrial DNA markers indicate unidirectional gene flow of Indo-Pacific to Atlantic bigeye tuna (Thunnus obesus) populations, and their admixture off southern Africa. Mar. Biol. 2005, 147, 313–322. [Google Scholar] [CrossRef]
- Yang, T.; Wang, Z.; Liu, Y.; Gao, T. Population genetics and molecular phylogeography of Thamnaconus modestus (Tetraodontiformes, Monachanthidae) in northwestern Pacific inferred from variation of the mtDNA control region. Aquat. Living Resour. 2019, 32, 18. [Google Scholar] [CrossRef]
- Gao, T.; Ying, Y.; Yang, Q.; Song, N.; Xiao, Y. The mitochondrial markers provide new insights into the population demographic history of Coilia nasus with two ecotypes (anadromous and freshwater). Front. Mar. Sci. 2020, 7, 576161. [Google Scholar] [CrossRef]
- NOAA (National Oceanic and Atmospheric Administration). Fish Watch: Pacific Mackerel. 2015. Available online: http://www.fishwatch.gov/profiles/pacific-mackerel (accessed on 7 December 2024).
- Comes, H.P.; Kadereit, J.W. The effect of quaternary climatic changes on plant distribution and evolution. Trends Plant Sci. 1998, 3, 432–438. [Google Scholar] [CrossRef]
- Xu, X.; Oda, M. Surface-water evolution of the eastern east China Sea during the Last 36,000 Years. Mar. Geol. 1999, 156, 285–304. [Google Scholar] [CrossRef]
- Kitamura, A.; Takano, O.; Takata, H.; Omote, H. Late Pliocene-early Pleistocene aleoceanographic evolution of the Japan Sea. Palaeogeography 2001, 172, 81–98. [Google Scholar] [CrossRef]
- Shirai, S.M.; Kuranaga, R.; Sugiyama, H.; Higuchi, M. Population structure of the sailfin sandfish, Arctoscopus japonicus (Trichodontidae), in the Sea of Japan. Ichthyol. Res. 2006, 53, 357–368. [Google Scholar] [CrossRef]
- Ward, R.D.; Woodwark, M.; Skibinski, D.O.F. A comparison of genetic diversity levels in marine, freshwater and anadromous fishes. J. Fish Biol. 1994, 44, 213–232. [Google Scholar] [CrossRef]
- Barasa, J.E.; Abila, R.; Grobler, J.P.; Agaba, M.; Chemoiwa, E.J.; Kaunda-Arara, B. High genetic diversity and population differentiation in Clarias gariepinus of Yala Swamp: Evidence from mitochondrial DNA sequences. J. Fish. Biol. 2016, 89, 2557–2570. [Google Scholar] [CrossRef] [PubMed]
- Nielsen, E.E.; Nielsen, P.H.; Meldrup, D.; Hansen, M.M. Genetic population structure of turbot (Scophthalmus maximus L.) supports the presence of multiple hybrid ones for marine fishes in the transition zone between the Baltic Sea and the North Sea. Mol. Ecol. 2004, 13, 585–595. [Google Scholar] [CrossRef] [PubMed]
- Bekkevold, D.; Dahlgren, T.G.; Clausen, L.A.; Torstensen, E.; Mosegaard, H.; Carvalho, G.R.; Christensen, T.B.; Norlinder, E.; Ruzzante, D.E. Environmental correlates of population differentiation in Atlantic herring. Evolution 2005, 59, 2656–2668. [Google Scholar]
- Ouchi, A.; Hamasaki, S. Population analysis of the common mackerel, Scomber japonicus, based on catch statistics and biological information in the western Japan Sea and the East China Sea. Bull. Seikai Reg. Fish. Res. Lab. 1979, 53, 125–152. [Google Scholar]
- Gwak, W.S.; Nakayama, K. Genetic variation and population structure of the Pacific cod Gadus macrocephalus in Korean waters revealed by mtDNA and msDNA markers. Fish. Sci. 2011, 77, 945–952. [Google Scholar] [CrossRef]
- Choo, H.S. The Variations of oceanic conditions and the distribution of eggs and larvae of anchovy in the southern sea of Korea in summer. J. Korean Fish. Soc. 2002, 35, 77–85. [Google Scholar]
- Li, S.Y.; Chen, X.; Chen, C.; Ge, J.; Ji, R.; Tian, R.; Xue, P.; Xu, L. Dispersal and survival of chub mackerel (Scomber japonicus) larvae in the East China Sea. Ecol. Modell. 2014, 283, 70–84. [Google Scholar] [CrossRef]
- Cameron, R.A. Introduction to the invertebrate larval biology workshop: A brief background. Bull. Mar. Sci. 1986, 32, 145–161. [Google Scholar]
Zone | Locations (Abbreviation) | Collection Date | N | TL (SD) | Nh | S | h (SD) | π (SD) |
---|---|---|---|---|---|---|---|---|
West Sea | Boryeong (SJB) | 12 May 2013 | 32 | 25.3 (5.2) | 18 | 20 | 0.948 (0.023) | 0.012 (0.007) |
South Sea | Geomundo (SJG) | 29 May 2013 | 32 | 27.2 (6.3) | 27 | 20 | 0.986 (0.012) | 0.016 (0.008) |
East Sea | Kangrung (SJK) | 12 April 2013 | 32 | 25.9 (5.9) | 28 | 17 | 0.990 (0.010) | 0.016 (0.008) |
Clade 1 | - | - | 61 | 40 | 22 | 0.972 (0.011) | 0.011 (0.006) | |
Clade 2 | - | - | 35 | 26 | 22 | 0.980 (0.013) | 0.008 (0.004) |
Clade 1 | |||||||
---|---|---|---|---|---|---|---|
Haplotype | SJG | SJK | SJB | Haplotype | SJG | SJK | SJB |
SJG004 | 1 | 0 | 0 | SJB019 | 0 | 0 | 1 |
SJG005 | 1 | 0 | 0 | SJB025 | 0 | 0 | 1 |
SJG006 | 1 | 0 | 0 | SJB027 | 0 | 0 | 3 |
SJG007 | 2 | 0 | 0 | SJB028 | 1 | 0 | 2 |
SJG008 | 1 | 0 | 0 | SJB029 | 0 | 0 | 1 |
SJG009 | 1 | 0 | 0 | SJB032 | 1 | 2 | 6 |
SJG010 | 1 | 0 | 0 | Clade 2 | |||
SJG012 | 1 | 0 | 0 | Haplotype | SJG | SJK | SJB |
SJG013 | 1 | 0 | 0 | SJG019 | 2 | 0 | 0 |
SJG015 | 1 | 0 | 0 | SJG023 | 1 | 0 | 0 |
SJG016 | 1 | 0 | 0 | SJG024 | 1 | 0 | 0 |
SJG017 | 1 | 0 | 0 | SJG026 | 1 | 0 | 0 |
SJG020 | 1 | 0 | 0 | SJG028 | 1 | 0 | 0 |
SJG022 | 2 | 0 | 0 | SJG029 | 1 | 0 | 0 |
SJG025 | 3 | 0 | 0 | SJK004 | 0 | 1 | 0 |
SJG030 | 1 | 0 | 0 | SJK006 | 0 | 1 | 0 |
SJG031 | 1 | 0 | 0 | SJK008 | 0 | 1 | 0 |
SJG032 | 1 | 0 | 0 | SJK009 | 0 | 2 | 0 |
SJK001 | 0 | 1 | 0 | SJK011 | 0 | 1 | 0 |
SJK007 | 0 | 1 | 0 | SJK013 | 0 | 1 | 0 |
SJK012 | 0 | 1 | 0 | SJK016 | 0 | 1 | 0 |
SJK015 | 0 | 1 | 0 | SJK018 | 0 | 1 | 0 |
SJK019 | 0 | 1 | 0 | SJK025 | 0 | 1 | 0 |
SJK021 | 0 | 1 | 0 | SJK028 | 0 | 1 | 0 |
SJK022 | 0 | 2 | 0 | SJK032 | 0 | 1 | 0 |
SJK023 | 0 | 1 | 0 | SJB002 | 0 | 0 | 2 |
SJK024 | 0 | 1 | 0 | SJB003 | 0 | 0 | 1 |
SJK026 | 0 | 1 | 0 | SJB005 | 0 | 0 | 1 |
SJK027 | 0 | 1 | 0 | SJB015 | 0 | 0 | 1 |
SJK029 | 0 | 1 | 0 | SJB018 | 0 | 0 | 1 |
SJK030 | 0 | 1 | 0 | SJB020 | 0 | 0 | 1 |
SJB006 | 0 | 0 | 1 | SJB021 | 1 | 1 | 3 |
SJB010 | 0 | 0 | 1 | SJB024 | 0 | 1 | 2 |
SJB017 | 0 | 2 | 3 | SJB030 | 0 | 0 | 1 |
Neutrality Test | Mismatch Distribution | ||||
---|---|---|---|---|---|
Location | Tajima’s D | Fu’s Fs | SSD | Hri | τ |
SJB | 0.189 | −7.020 * | 0.011 | 0.020 | 7.863 |
SJG | 1.234 | −16.209 * | 0.007 | 0.026 | 7.080 |
SJK | 2.144 | −18.172 * | 0.009 | 0.014 | 6.451 |
Clade 1 | −0.104 | −25.593 * | 0.001 | 0.013 | 5.314 |
Clade 2 | −1.285 | −25.593 * | 0.003 | 0.036 | 3.361 |
Location | SJB | SJG | SJK |
---|---|---|---|
SJB | 0.008 | 0.029 | |
SJG | 0.075 | 0.007 | |
SJK | 0.053 | 0.058 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gwak, W.-S. Population Genetic Structure with Mitochondrial DNA of the Chub Mackerel Scomber japonicus in Korean Coastal Waters. J. Mar. Sci. Eng. 2025, 13, 252. https://doi.org/10.3390/jmse13020252
Gwak W-S. Population Genetic Structure with Mitochondrial DNA of the Chub Mackerel Scomber japonicus in Korean Coastal Waters. Journal of Marine Science and Engineering. 2025; 13(2):252. https://doi.org/10.3390/jmse13020252
Chicago/Turabian StyleGwak, Woo-Seok. 2025. "Population Genetic Structure with Mitochondrial DNA of the Chub Mackerel Scomber japonicus in Korean Coastal Waters" Journal of Marine Science and Engineering 13, no. 2: 252. https://doi.org/10.3390/jmse13020252
APA StyleGwak, W.-S. (2025). Population Genetic Structure with Mitochondrial DNA of the Chub Mackerel Scomber japonicus in Korean Coastal Waters. Journal of Marine Science and Engineering, 13(2), 252. https://doi.org/10.3390/jmse13020252