Biobanking of a Marine Invertebrate Model Organism: The Sea Urchin
Abstract
:1. Introduction
2. Principles of Cryopreservation
- Selection of the right CPA: It is necessary to know or study the toxic effects and toxicity thresholds of the different chemical compounds in order to select the right CPA or combinations of CPAs to be used in cryopreservation, as well as the temperature of addition and equilibration.
- The addition and removal of CPAs: Factors such as membrane permeability, temperature, and osmotic excursions effects need to be taken into account.
- Selecting the volume of the sample: The volume of the sample will affect the cooling and thawing rates and will also determine which programmable freezer to use and the liquid nitrogen storage needs.
- Choosing/designing the right cryopreservation protocol: Determining the cooling rate/s, the temperature of seeding, the thawing rate and the ending point of the cooling are important key points.
- Correct storage without temperature fluctuations: Samples should be continuously stored below their glass transition temperature; temperature excursions out of this range will result in recrystallization of the ice, a process in which large ice crystals grow at the expense of smaller ones, causing leading to reduced cell viability or even cell destruction.
3. Biobanking of Model Organisms
3.1. Cryopreservation of Sea Urchin Gametes, Embyros and Larvae–Historical Landmark Events
Species | Cell | Paper | Cryopreservation Protocol | Survival Assessment |
---|---|---|---|---|
Hemicentrotus pulcherrimus | Embryos | Asahina and Takahashi [35,36] | Me2SO 1.5 M. Cooling rates 10–40 °C·min−1. Thawing in air 15 °C·min−1 | 10% Development to larvae |
Larvae | Asahina and Takahashi [31] | Me2SO 1 M. Cooling rates 10–40 °C·min−1. Thawing in air 15 °C·min−1 | 90% Survival | |
Strongylocentrotus nudus | Larvae | Asahina and Takahashi [59] | EG 1.5 M. Cooling rate 10 °C·min−1.Thawing rate 7 °C·min−1 | 90% Active swimming |
Strongylocentrotus intermedius | Embryos | Asahina and Takahashi [36,59] | EG 1.5 M. Cooling rate 10 °C·min−1. Thawing rate 7 °C·min−1 | 90% Active swimming |
Gakhova et al. [60] | Me2SO 1–1.5 M. Cooling rate 6–8 °C·min−1. Thawing in water bath 19 °C | ≥90% survival | ||
Naidenko et al. [33] | Me2SO 1.5 M. Acording to Gakhova et al. (1988) * | 0.1%–0.2% Development to 2nd generation | ||
Naidenko et al. [34] | Me2SO 1 M + 1 mg·mL−1 Antioxidant. Acording to Gakhova et al. (1988) * | 60% swimming post-thaw, 1% develop. | ||
Odintsova et al. [61] | 0.84 M Me2SO + 40 mM TRE + 0.15% (w/v) Antiox. Cooling rate 7 °C·min−1. Thaw in water bath 10–15 °C | 40% survival | ||
Larvae | Asahina and Takahashi [59] | EG 1.5 M. Cooling rate 10 °C·min−1. Thawing rate 7 °C·min−1 | 90% Development | |
Naidenko et al. [34] | Me2SO 1 M + 1 mg·mL−1 Antiox., Acording to Gakhova et al. (1988) * | 20% Active Swimming | ||
Anthocidaris crassispina | Sperm | Wu et al. [62] | According to H. Kurokura et al. (1989) * | 10% Motility |
Loxechinus albus | Larvae | Barros et al. [35] | Me2SO 1 M. Two step cooling rate 3:10 °C·min−1. Thawing in water bath 15 °C 30 s | 77% Survival after 24 h., 55% Survival after 21 d |
Tetrapigus niger | Sperm | Barros et al. [35,36] | Me2SO 1.2 M. Two step cooling rate 6:25 °C·min−1. Thawing in water bath 17 °C 12 s | 96% Fertilization, 56% Development after 24 h |
Strongylocentrotus droebachiensis | Sperm | Dunn and McLachlan [63] | 1.7 M Me2SO. Cooling rate 5 °C·min−1. Thawing at room temperature 45 min. | Motility score 4 of 10 |
Evechinus chloroticus | Sperm | Adams et al. [37] | 0.35–1.06 M Me2SO. Cooling rate 50 °C·min−1. Thawing in water bath 15 °C 30 s | 85% Fertilization |
Larvae | Adams et al. [38] | Me2SO 1.5 M. Cooling rate 2.5 °C·min−1. Thawing in water bath 15 °C 30 s | 91% Motility | |
Paracentrotus lividus | Sperm | Fabbrocinni et al. [64] | 1 M Me2SO. Cooling rate 20 °C·min−1. Thawing rate 15 °C·min−1 | 90% motility, 50% Normal Larvae |
Oocytes | Paredes and Bellas [43] | Me2SO NOEC:0.5 M, EG NOEC:1 M, PG NOEC: 0.68 M | Toxicity tests of CPAs | |
Embryos | Bellas and Paredes [39], Paredes and Bellas [10,21] | Me2SO 1.5 M + 0.04 M TRE. 1 °C·min−1. Thawing in water bath 18 °C | 50%–80% Normal larvae after 96 h. 25% settlement | |
Pseudocentrotus depressus | Sperm | Kurokura et al. [65] | 1.4 M Me2SO. Cooling rate 6 °C·min−1. Thawing rate 10–15 °C·min−1 | 13%–33% Fertilization |
Species | CPA | T (°C) | Lp (μm/min/atm) | Ps (10−3 cm/min) |
---|---|---|---|---|
Evechinus chloroticus | Water | 20 | 0.191 ± 0.001 | |
10 | 0.097 ± 0.007 | |||
Me2SO 1.5 M | 20 | 0.169 ± 0.009 | 0.295 ± 0.022 | |
10 | 0.072 ± 0.004 | 0.071 ± 0.009 | ||
EG 1.5 M | 20 | 0.167 ± 0.010 | 0.261 ± 0.037 | |
10 | 0.057 ± 0.003 | 0.055 ± 0.006 | ||
PG 1.5 M | 20 | 0.153 ± 0.008 | 0.526 ± 0.042 | |
10 | 0.070 ± 0.004 | 0.066 ± 0.006 | ||
Arbacia punctulata | Water | 21 | 0.107 | |
12 | 0.043 | |||
EG 0.5 M | 20.3 | n/a | 0.32 ± n/a | |
10.2 | n/a | 0.09 ± n/a |
3.2. Cryopreservation and Cryoinjuries
3.3. Sea Urchin Cell and Membrane Characteristics
4. Conclusions
Acknowledgments
Conflicts of Interest
References
- World Registry of Marine Species (WORMS). Available online: http://www.marinespecies.org/ (accessed on 30 January 2015).
- Boudouresque, C.F.; Verlaque, M. Ecology of Paracentrotus lividus. In Edible Sea Urchins: Biology and Ecology, 2nd ed.; Lawrence, J., Ed.; Elsevier: Amsterdam, The Netherlands, 2007; pp. 243–285. [Google Scholar]
- Lawrence, J.M. Developments in Aquaculture and Fisheries Science. In Sea Urchins: Biology and Ecology, 3rd ed.; Elsevier: Amsterdam, The Netherlands, 2007; Volume 38. [Google Scholar]
- Gilbert, S.F. Early development of sea urchins. In Developmental Biology, 9th ed.; Sinuauer Associates, Inc.: Sunderland, MA, USA, 2000. [Google Scholar]
- Kominami, T.; Takata, H. Gastrulation in the sea urchin embryo: A model system for analyzing the morphogenesis of a monolayered epithelium. Dev. Growth Differ. 2004, 46, 309–326. [Google Scholar] [CrossRef] [PubMed]
- Epel, D.; Cole, B.; Hamdoun, A.; Thurber, R.V. The sea urchin embryo as a model for studying efflux transporters: Roles and energy cost. Mar. Environ. Res. 2006, 62, S1–S4. [Google Scholar] [CrossRef] [PubMed]
- Beiras, R.; Fernandez, N.; Bellas, J.; Besada, V.; Gonzalez-Quijano, A.; Nunes, T. Integrative assessment of marine pollution in Galician estuaries using sediment chemistry, mussel bioaccumulation, and embryo-larval toxicity bioassays. Chemosphere 2003, 52, 1209–1224. [Google Scholar] [CrossRef]
- Bellas, J.; Fernandez, N.; Lorenzo, I.; Beiras, R. Integrative assessment of coastal pollution in Ría coastal system (Galicia, NW Spain): Correspondence between sediment chemistry and toxicity. Chemosphere 2008, 72, 826–835. [Google Scholar] [CrossRef] [PubMed]
- Dinnel, P.A.; Link, J.M.; Stober, Q.J.; Letorneau, M.W.; Roberts, W.E. Comparatives sensitivity of sea urchin sperm bioassays to metals and pesticides. Arch. Environ. Contam. Toxicol. 1989, 18, 748–755. [Google Scholar] [CrossRef] [PubMed]
- Paredes, E.; Bellas, J. The use of cryopreserved sea urchin embryos (Paracentrotus lividus) in marine quality assessment. Chemosphere 2015, 128, 278–283. [Google Scholar] [CrossRef] [PubMed]
- Andrew, N.L.; Ballesteros, Y.E.; Bazhin, A.G.; Creaser, E.P.; Barnes, D.K.A.; Botsford, L.W.A.; Bradbury, A.; Campbell, J.D.; Dixon, S.; Eirnarsson, P.K.; et al. Status and Management of world sea urchin fisheries. In Oceanography and Marine Biology: An Annual Review; Barnes, H., Gibson, R.N., Barnes, M., Atkingson, R.J.A., Eds.; Taylor and Francis: Abingdon, UK, 2002; Volume 40, pp. 343–426. [Google Scholar]
- James, P.J. A comparison of roe enhancement of the sea urchin Evechinus chloroticus in sea-based and land-based cages. Aquaculture 2006, 253, 290–300. [Google Scholar] [CrossRef]
- George, S.B.; Lawrence, J.M.; Lawrence, A.L.; Smiley, J.; Plank, L. Carotenoids in the adult diet enhance egg and juvenile production in the sea urchin Lytechinus variegatus. Aquaculture 2001, 199, 353–369. [Google Scholar] [CrossRef]
- George, S.B.; Lawrence, J.M.; Lawrence, L.A. Complete larval development of the sea urchin Lytechinus variegatus fed artificial feed. Aquaculture 2004, 242, 217–228. [Google Scholar] [CrossRef]
- Fernandez, C. Effect of diet on the biochemical composition of Paracentrotus lividus (Echinodermata: Echinoidea) under natural and rearing condition (Effect of diet on Biochemical composition of urchins). Comp. Biochem. Physiol. 1997, 118, 1377–1384. [Google Scholar] [CrossRef]
- Christiansen, J.S.; Siikavuopio, S.I. The relationship between feed intake and gonad growth of single and stocked green sea urchin (Strongylocentrotus droebachiensis) in raceway culture. Aquaculture 2007, 262, 163–167. [Google Scholar] [CrossRef]
- Fernandez, C.; Boudouresque, C.F. Nutrition of the sea urchin Paracentrotus lividus (Echinodermata; Echinoidea) fed different artificial food. Mar. Ecol. Prog. Ser. 2000, 152, 131–141. [Google Scholar] [CrossRef]
- Akiyama, T.; Unuma, T.; Yamamoto, T. Optimun protein level in a purified diet for young red sea urchin Pseudocentrotus depressus. Fish. Sci. 2001, 67, 361–363. [Google Scholar] [CrossRef]
- Shpigel, M.; McBride, S.C.; Marciano, S.; Ron, S.; Ben-Amotz, A. Improving gonad color and somatic index in the European sea urchin Paracentrotus lividus. Aquaculture 2005, 245, 101–109. [Google Scholar] [CrossRef]
- Gonzalez-Henriquez, N.; Grimon, M.; Catoira, J.L. Cultivo exterior para la repoblación de Paracentotus lividus en las Islas Canarias. Abstr. Congr. Nac. Acuic. 2009, 2, 44–45. [Google Scholar]
- Paredes, E.; Bellas, J. Sea urchin (Paracentrotus lividus) cryopreserved embryos survival and growth: Effects of cryopreservation parameters and reproductive seasonality. CryoLetters 2014, 35, 482–494. [Google Scholar] [PubMed]
- Adams, S.L.; Smith, J.F.; Tervit, H.R.; McGowan, L.T.; Roberts, R.D.; Achim, R.J.; King, N.G.; Gale, S.L.; Webb, S.C. Cryopreservation of molluscan sperm: Oyster (Crassostrea gigas, Thunberg), mussel (Perna canaliculus) and abalone (Haliotis iris). In Cryopreservation in Aquatic Species, 2nd ed.; The World Aquaculture Society: Baton Rouge, LA, USA, 2011. [Google Scholar]
- Zhang, T. Cryopreservation of gametes and embryos of aquatic species. In Life in the Frozen State; Fuller, B.J., Lane, N., Benson, E.E., Eds.; CRC Press: Boca Raton, FL, USA, 2004; pp. 415–136. [Google Scholar]
- Mims, S.D.; Tsvetkova, L.I.; Wayman, W.R.; Horváth, A.; Urbányi, B.; Gomelsky, B. Cryopreservation of Sturgeon and Paddlefish sperm. In Cryopreservation of Aquatic Species, 2nd ed.; Tiersch, T.R., Green, C.C., Eds.; World Aquaculture Society: Baton Rouge, LA, USA, 2011; pp. 366–380. [Google Scholar]
- Lahnsteiner, F. Cryopreservation protocols for sperm of Salmonid fishes. In Cryopreservation of Aquatic Species, 2nd ed.; Tiersch, T.R., Green, C.C., Eds.; World Aquaculture Society: Baton Rouge, LA, USA, 2011; pp. 409–420. [Google Scholar]
- Lin, T.-T.; Chao, N.-H. Cryopreservation of eggs and embryos of shellfish. In Cryopreservation of Aquatic Species, 2nd ed.; Tiersch, T.R., Green, C.C., Eds.; World Aquaculture Society: Baton Rouge, LA, USA, 2011; pp. 604–615. [Google Scholar]
- Paniagua-Chavez, C.G.; Buchanan, J.T.; Supan, J.E.; Tiersch, T.R. Cryopreservation of sperm and larvae of the eastern oyster. In Cryopreservation of Aquatic Species, 2nd ed.; Tiersch, T.R., Green, C.C., Eds.; World Aquaculture Society: Baton Rouge, LA, USA, 2011; pp. 595–603. [Google Scholar]
- Anchordoguy, T.; Crowe, J.H.; Griffin, F.J.; Clark, W.H., Jr. Cryopreservation of sperm from the marine shrimp Sicyona ingestis. Cryobiology 1988, 25, 238–243. [Google Scholar] [CrossRef]
- Gwo, J.C.; Lin, C.H. Preliminary experiments on the cryopreservation of penaeid shrimp (Penaeus japonicus) embryos, nauplii and zoea. Theriogenology 1998, 49, 1289–1299. [Google Scholar] [CrossRef]
- Vuthiphandchai, V.; Nimrat, S.; Kotcharat, S.; Bart, A.N. Development of cryopreservation protocol for long-term storage of black tiger shrimp (Pennaeus monodon) spermatophores. Theriogenology 2007, 68, 1192–1199. [Google Scholar] [CrossRef] [PubMed]
- Asahina, E.; Takahashi, T. Survival of sea urchin spermatozoa and embryos at very low temperatures. Cryobiology 1977, 14. [Google Scholar] [CrossRef]
- Asahina, E.; Takahashi, T. Freezing tolerance in embryos and spermatozoa of the sea urchin. Cryobiology 1978, 15, 122–127. [Google Scholar] [CrossRef]
- Naidenko, T.K.; Gakhova, E.N.; Naidenko, V.P.; Veprintsev, B.N. Evaluation of viability of sea urchin larvae after cryopreservation of embryos. In Biology of Echinodermata; Yanagisawa, T., Yasumasu, I., Oguro, C., Suzuki, N., Motokawa, T., Eds.; A.A. Balkema Publishers: Boca Raton, FL, USA, 1991; pp. 261–269. [Google Scholar]
- Naidenko, T.K.; Koltsova, E.A. The use of antioxidant echinochrome-A in cryopreservation of sea urchin embryos and larvae. Russ. J. Mar. Biol. 1998, 24, 203–206. [Google Scholar]
- Barros, C.; Muller, A.; Wood, M.J.; Whittingham, D.G. High survival of sea urchin semen (Tetrapigus niger) pluteus larvae (Loxechinus albus) frozen in 1.0 M Me2SO. Cryobiology 1996, 33, 646–651. [Google Scholar]
- Barros, C.; Muller, A.; Wood, M.J. High survival of spermatozoa and pluteus larvae of sea urchins frozen in Me2SO. Cryobiology 1997, 35, 341. [Google Scholar]
- Adams, S.L.; Hessian, P.A.V. Cryopreservation of Sea Urchin (Evechinus chloroticus) Sperm. Cryoletters 2004, 25, 287–299. [Google Scholar] [PubMed]
- Adams, S.L.; Hessian, P.A.; Mladenov, P.V. The potential for cryopreserving larvae of the sea urchin, Evechinus chloroticus. Cryobiology 2006, 52, 139–145. [Google Scholar] [CrossRef] [PubMed]
- Bellas, J.; Paredes, E. Advances in the cryopreservation of sea-urchin embryos: Potential application in marine water quality assessment. Cryobiology 2011, 62, 174–180. [Google Scholar] [CrossRef] [PubMed]
- Paredes, E.; Bellas, J.; Costas, D. Sea urchin (Paracentrotus lividus) larval rearing—Culture from cryopreserved embryos. Aquaculture 2015, 437, 366–369. [Google Scholar] [CrossRef]
- Mazur, P. Principles of cryobiology. In Life in the Frozen State; Fuller, B.J., Lane, N., Benson, E.E., Eds.; CRC Press: Boca Raton, FL, USA, 2004; pp. 3–66. [Google Scholar]
- Muldrew, K.; Acker, J.P.; Elliot, J.A.W.; McGann, L.E. The water to ice transition: Implications for living cells. In Life in the Frozen State; Fuller, B.J., Lane, N., Benson, E.E., Eds.; CRC Press: Boca Raton, FL, USA, 2004; pp. 67–108. [Google Scholar]
- Paredes, E.; Bellas, J. Cryopreservation of sea urchin embryos (Paracentrotus lividus) applied to marine ecotoxicological studies. Cryobiology 2009, 59, 344–350. [Google Scholar] [CrossRef] [PubMed]
- Pegg, D.E. Principles of cryopreservation. In Cryopreservation and Freeze-Drying Protocols. Methods in Molecular Biology; Day, J.G., Stacey, G.N., Eds.; Humana Press: New York, NY, USA, 2007; Volume 368, pp. 39–57. [Google Scholar]
- Dennison, R.S.; Michelet, S.; Godke, R.A. Principles of cryopreservation. In Cryopreservation in Aquatic Species; Tiersch, T.R., Mazik, P.M., Eds.; World Aquaculture Society: Baton Rouge, LA, USA, 2000; pp. 59–74. [Google Scholar]
- Leung, L.K.P. Principles of biological cryopreservation. In Fish Evolution and Systematics: Evidence from Spermatozoa; Jamieson, B.G.M., Ed.; Cambridge University Press: New York, NY, USA, 1991; pp. 231–244. [Google Scholar]
- Leibo, S.; Songsasen, N. Cryopreservation of gametes and embryos of non-domestic species. Theriogenology 2002, 57, 303–326. [Google Scholar] [CrossRef]
- Glenister, P.H.; Whittinham, D.G. Further studies on the effect of radiation during the storage of frozen 8-cell mouse embryos at −196 degrees. J. Reprod. Fertil. 1984, 70, 229–234. [Google Scholar] [CrossRef] [PubMed]
- German, A.; Oh, Y.-J.; Schimdt, T.; SchÖn, U.; Zimmerman, H.; Von Briesen, H. Temperature fluctuations during deep Temperature cryopreservation reduce PBMC recovery, viability and T-cell fluctuation. Cryobiology 2013, 67, 193–200. [Google Scholar] [CrossRef] [PubMed]
- Shaw, D.M.; Elger, B.S.; Colledge, F. What is a biobank? Differing definitions among biobank stakeholders. Clin. Genet. 2013, 85, 223–227. [Google Scholar] [CrossRef] [PubMed]
- National Institute of Health (NIH). Using Model Organisms to Study Health and Disease. Available online: https://www.nigms.nih.gov/Education/Pages/modelorg_factsheet.aspx (accessed on 15 September 2015).
- Scytable by Nature Education. Available online: http://www.nature.com/scitable/definition/model-organism-model-genetic-organism-139 (accessed on 15 September 2015).
- Paredes, E.; Mazur, P. Cryopreservation of model organisms: A great tool for biogeochemistry research. In Proceedings of the 2nd Annual South Eastern Biogeochemistry Symposium, Atlanta, GA, USA, 28–29 March 2015; p. 31.
- Jin, B.; Kleinhans, F.W.; Mazur, P. Survival of mouse approach 100% after vitrification in 3-fold diluted media and ultra-rapid warming by an IR laser pulse. Cryobiology 2014, 68, 419–430. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mazur, P.; Cole, K.W.; Hall, J.W.; Schereuders, P.D.; Mahowald, A.P. Cryobiological preservation of Drosophila Embryos. Science 1992, 258, 1932–1935. [Google Scholar] [CrossRef] [PubMed]
- Paredes, E.; Bellas, J.; Adams, S.L. Comparative cryopreservation study of trochophore larvae from two species of bivalves: Pacific oyster (Crassostrea gigas) and Blue mussel (Mytilus galloprovincialis). Cryobiology 2013, 67, 274–279. [Google Scholar] [CrossRef] [PubMed]
- Agca, Y. Genome resurce banking of biomedically important laboratory animals. Theriogenology 2012, 78, 1653–1665. [Google Scholar] [CrossRef] [PubMed]
- Paredes, E. Exploring the evolution of marine invertebrate cryopreservation- Landmarks, state of the art and future lines of research. Cryobiology 2015, 71, 198–209. [Google Scholar] [CrossRef] [PubMed]
- Asahina, E.; Takahashi, T. Cryopreservation of sea urchin embryos and sperm. Dev. Growth Differ. 1979, 21, 423–430. [Google Scholar] [CrossRef]
- Gakhova, E.N.; Krast, I.V.; Naidenko, T.K.; Savelieva, N.A.; Bessonov, B.I.; Butsuk, S.V.; Beprintsev, B.N. The development of sea urchin embryos after cryopreservation. Ontogenesis 1988, 19, 175–180. [Google Scholar]
- Odintsova, N.A.; Boroda, A.V.; Velansky, P.V.; Kostetsky, E.Y. The fatty acid profile changes in marine invertebrate larval cells during cryopreservation. Cryobiology 2009, 59, 335–343. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.-G.; Kurokura, H.; Hirano, R. Hibridation of Pseudocentrotus depressus egg and cryopreserved sperm of Anthocidaris crassipina and the morphology of hybrid larva. Nihon-suisan-gakkai-shi 1990, 56, 749–754. [Google Scholar] [CrossRef]
- Dunn, R.S.; McLachlan, J. Cryopreservation of echinoderm sperm. Can. J. Zool. 1973, 51, 666–669. [Google Scholar] [CrossRef] [PubMed]
- Fabbrocini, A.; D’Adamo, R.; Pelosi, S.; Oliveira, L.F.J.; Silvestri, F.; Sansone, G. Gamete cryobanks for laboratory research: Developing a rapid and easy to perform protocol for the cryopreservation of the sea urchin Paracentrotus lividus (Lmk, 1816) Spermatozoa. Cryobiology 2014, 69, 149–156. [Google Scholar] [CrossRef] [PubMed]
- Kurokura, H.; Yagi, N.; Hirano, R. Studies of cryopreservation of sea urchin sperm. Suisanzoshoku 1990, 37, 215–219. [Google Scholar]
- Asahina, E. Intracellular freezing and frost resistance in egg-cells of the sea urchin. Nature 1961, 191, 1263–1265. [Google Scholar] [CrossRef] [PubMed]
- Asahina, E. Freezing injury in egg cells of the Sea Urchin. Cell. Inj. Res. Freez. Org. 1967, 2, 211–229. [Google Scholar]
- Lanan, J.E. Experimental self-fertilization of the Pacific oyster Crassostrea gigas, using cryopreserved sperm. Genetics 1971, 68, 599–601. [Google Scholar]
- Adams, S.L.; Kleinhans, F.W.; Hessian, P.A.; Mladenov, V.P. Membrane permeability characteristics and osmotic tolerance limits of eggs of the sea urchin, Evechinus chloroticus. Cryobiology 2003, 47, 1–13. [Google Scholar] [CrossRef]
- McCutcheon, M.; Lucke, B.; Hartline, H.K. The osmotic properties of living cells (eggs of Arbacia punctulata). J. Gen. Physiol. 1931, 40, 393–403. [Google Scholar] [CrossRef]
- McCutcheon, M.; Lucké, B. The effect of temperature on permeability to water of resting and of activated cells (unfertilized and fertilized eggs or Arbacia puntulata). J. Cell. Comp. Physiol. 1932, 2, 11–26. [Google Scholar] [CrossRef]
- Stewart, D.R.; Jacobs, M.H. The permeability of the egg of Arbacia to ethylene glycol at different temperatures. J. Cell. Comp. Physiol. 1932, 2, 275–283. [Google Scholar] [CrossRef]
- Wolfe, J.; Bryant, G. Freezing, drying, and/or vitrification of membrane-solute-water systems. Cryobiology 1999, 39, 103–129. [Google Scholar] [CrossRef] [PubMed]
- Simonin, H.; Beney, L.; Gervais, P. Sequence of occurring damages in yeast plasma membrane during dehydration and rehydration: Mechanisms of cell death. Biochim. Biophys. Acta 2007, 1768, 1600–1610. [Google Scholar] [CrossRef] [PubMed]
- Ohyama, Y.; Asahina, E. Frost resistance in adult insects. J. Insect Physiol. 1972, 18, 267–282. [Google Scholar] [CrossRef]
- Paredes, E.; Adams, S.L.; Tervit, H.R.; Smith, J.F.; McGowan, L.T.; Gale, S.L.; Morrish, J.R.; Watts, E. Cryopreservation of GreenshellTM mussel (Perna canaliculus) trochophore larvae. Cryobiology 2012, 65, 256–262. [Google Scholar] [CrossRef] [PubMed]
- McNeil, P.L.; Kirchhausen, T. An emergency response team for membrane repair. Nat. Rev. Mol. Cell Biol. 2005, 6, 499–505. [Google Scholar] [CrossRef] [PubMed]
- Giraud, M.N.; Motta, C.; Boucher, D.; Grizard, G. Membrane fluidity predicts the outcome of cryopreservation of human spermatozoa. Hum. Reprod. 2000, 15, 2160–2164. [Google Scholar] [CrossRef] [PubMed]
- Ahn, H.F.; Sohn, I.P.; Kwon, H.C.; Jo, D.H.; Park, Y.D.; Min, C.K. Characteristics of the cell membrane fluidity, Actin fibers, and mitochondrial dysfunctions of frozen-thawed two-cell mouse embryos. Mol. Reprod. Dev. 2002, 61, 466–476. [Google Scholar] [CrossRef] [PubMed]
- Baumer, J.; Ball, B.A.; Linfor, J.J.; Meyers, S.A. Reactive Oxygen Species and Cryopreservation promote DNA fragmentation in Equine spermatozoa. J. Androl. 2003, 24, 621–628. [Google Scholar] [CrossRef]
- Leitch, J.L. The water exchanges of living cells. J. Cell. Comp. Physiol. 1934, 4, 457–473. [Google Scholar] [CrossRef]
- Lucké, B.; Hartline, H.K.; Ricca, R.A. Comparative permeability to water and to certain solutes of the eggs cells of three marine invertebrates, Arbacia, Cumingia and Chaetopterus. J. Cell. Comp. Physiol. 1939, 14, 237–252. [Google Scholar] [CrossRef]
- Lafferty, K. Fishing for lobsters indirectly increases epidemics in sea urchins. Ecol. Appl. 2004, 14, 1566–1573. [Google Scholar] [CrossRef]
© 2016 by the author; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Paredes, E. Biobanking of a Marine Invertebrate Model Organism: The Sea Urchin. J. Mar. Sci. Eng. 2016, 4, 7. https://doi.org/10.3390/jmse4010007
Paredes E. Biobanking of a Marine Invertebrate Model Organism: The Sea Urchin. Journal of Marine Science and Engineering. 2016; 4(1):7. https://doi.org/10.3390/jmse4010007
Chicago/Turabian StyleParedes, Estefania. 2016. "Biobanking of a Marine Invertebrate Model Organism: The Sea Urchin" Journal of Marine Science and Engineering 4, no. 1: 7. https://doi.org/10.3390/jmse4010007
APA StyleParedes, E. (2016). Biobanking of a Marine Invertebrate Model Organism: The Sea Urchin. Journal of Marine Science and Engineering, 4(1), 7. https://doi.org/10.3390/jmse4010007