A Collaborative European Approach to Accelerating Translational Marine Science
Abstract
:1. Introduction
2. European Research Infrastructures: Promoting Large Scale and Interdisciplinary Research
3. EMBRIC: Driving Innovation through Collaboration
4. Introducing the Players Involved
5. EMBRIC’s Scientific Output So Far
5.1. Marine Microalgal Pipeline: From Environment to Active Compounds
5.2. Marine Microbial Pipeline: From Environment to Active Compounds
5.3. Aquaculture Genetics and Breeding Pipeline
5.4. The EMBRIC Company Forums
5.5. Identified Bottlenecks and Suggested Solutions
6. Outlook
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
EMBRIC | European Marine Biological Research Infrastructure Cluster |
EMBRC | European Marine Biological Resource Center |
Elixir | A distributed infrastructure for life-science information |
EU-OS | EU-Openscreen |
ESFRI | European Strategy Forum on Research Infrastructures |
SMEs | Small and Medium-sized Enterprises |
MIRRI | Microbial Resources Research Infrastructure |
ECBL | European Chemical Biology Library |
RISIS | Research Infrastructure for Research and Innovation Policy Studies |
IP | Intellectual property |
NPs | Natural products |
RNA-seq | RNA-sequencing |
CABI | CAB International |
CCMAR | Centro de Ciencias do Mar do Algarve |
CNR | Consiglio Nazionale delle Ricerche |
CNRS | Centre national de la recherche scientifique |
CRBIP | Biological Resource Center Institut Pasteur |
DSMZ | Deutsche Sammlung von Mikroorganismen und Zellkulturen GMBH |
EHU | European Humanities University, University of the Basque |
EMBL-EBI | European Molecular Biology Laboratory, European Bioinformatics Institute |
FVB | Forschungsverbund Berlin E.V. |
HCMAR | Hellenic Centre for Marine Research |
HZI | Helmholtz-Zentrum fuer Infektionsforschung GMBH |
IME | Fraunhofer ScreeningPort IME |
INRA | Institut National de la Recherche Agronomique |
MBA | Marine Biological Association of the United Kingdom |
MDA | Multiple displacement amplification |
MSS | Marine Scotland Science |
NERC | National Environment Research Council |
OOB | Observatoire Océanologique of Banyuls |
SAMS | Scottish Association for Marine Science |
SZN | Stazione Zoologica Anton Dohrn of Naples |
TAU | Tel Aviv University |
UNS | Université de Nice Sophia Antipolis |
UPMC | University Pierre and Marie Curie |
UPEM | Université Paris Est Marne La Vallée |
UiB | University of Bergen |
UiT | The Arctic University of Norway |
UGent | University of Gent |
USTAN | University of St Andrews |
Uvigo | University of Vigo |
References
- Parker, M.S.; Mock, T.; Armbrust, E.V. Genomic Insights into Marine Microalgae. Annu. Rev. Genet. 2008, 42, 619–645. [Google Scholar] [CrossRef] [PubMed]
- Maeda, Y.; Yoshino, T.; Matsunaga, T.; Matsumoto, M.; Tanaka, T. Marine microalgae for production of biofuels and chemicals. Curr. Opin. Biotechnol. 2017, 50, 111–120. [Google Scholar] [CrossRef] [PubMed]
- Sansone, C.; Galasso, C.; Orefice, I.; Nuzzo, G.; Luongo, E.; Cutignano, A.; Romano, G.; Brunet, C.; Fontana, A.; Esposito, F.; et al. The green microalga Tetraselmis suecica reduces oxidative stress and induces repairing mechanisms in human cells. Sci. Rep. 2017, 7, 41215. [Google Scholar] [CrossRef] [PubMed]
- Depke, T.; Franke, R.; Bronstrup, M. Clustering of MS2 spectra using unsupervised methods to aid the identification of secondary metabolites from Pseudomonas aeruginosa. J. Chromatogr. B 2017, 1071, 19–28. [Google Scholar] [CrossRef] [PubMed]
- Haug, K.; Salek, R.M.; Conesa, P.; Hastings, J.; de Matos, P.; Rijnbeek, M.; Mahendraker, T.; Williams, M.; Neumann, S.; Rocca-Serra, P.; et al. Metabolights—An open-access general-purpose repository for metabolomics studies and associated meta-data. Nucleic Acids Res. 2013, 41, D781–D786. [Google Scholar] [CrossRef] [PubMed]
- Falciatore, A.; Casotti, R.; Leblanc, C.; Abrescia, C.; Bowler, C. Transformation of nonselectable reporter genes in marine diatoms. Mar. Biotechnol. 1999, 1, 239–251. [Google Scholar] [CrossRef] [PubMed]
- Van Ooijen, G.; Knox, K.; Kis, K.; Bouget, F.Y.; Millar, A.J. Genomic Transformation of the Picoeukaryote Ostreococcus tauri. J. Vis. Exp. 2012, e4074. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sabatino, V.; Russo, M.T.; Patil, S.; d’Ippolito, G.; Fontana, A.; Ferrante, M.I. Establishment of Genetic Transformation in the Sexually Reproducing Diatoms Pseudo-nitzschia multistriata and Pseudo-nitzschia arenysensis and Inheritance of the Transgene. Mar. Biotechnol. 2015, 17, 452–462. [Google Scholar] [CrossRef] [PubMed]
- Bruns, A.; Hoffelner, H.; Overmann, J. A novel approach for high throughput cultivation assays and the isolation of planktonic bacteria. FEMS Microbiol. Ecol. 2003, 45, 161–171. [Google Scholar] [CrossRef] [Green Version]
- Gich, F.; Janys, M.A.; Konig, M.; Overmann, J. Enrichment of previously uncultured bacteria from natural complex communities by adhesion to solid surfaces. Environ. Microbiol. 2012, 14, 2984–2997. [Google Scholar] [CrossRef] [PubMed]
- World Bank. Fish to 2030: Prospects for Fisheries and Aquaculture (English); Agriculture and Environmental Services Discussion Paper No. 3; World Bank: Washington, DC, USA, 2013. [Google Scholar]
- Gjedrem, T.; Robinson, N. Advances by Selective Breeding for Aquatic Species: A Review. Agric. Sci. 2014, 5, 1152–1158. [Google Scholar] [CrossRef]
- Daule, S.; Vandeputte, M.; Vergnet, A.; Guinand, B.; Grima, L.; Chatain, B. Effect of selection for fasting tolerance on feed intake, growth and feed efficiency in the European sea bass Dicentrarchus labrax. Aquaculture 2014, 420, S42–S49. [Google Scholar] [CrossRef]
- Nichols, D.; Cahoon, N.; Trakhtenberg, E.M.; Pham, L.; Metha, A.; Belanger, A.; Kanigan, T.; Lewis, K.; Epstein, S.S. Use of Ichip for High-Throughput In Situ Cultivation of “Uncultivable” Microbial Species. Appl. Environ. Microbiol. 2010, 76, 2445–2450. [Google Scholar] [CrossRef] [PubMed]
- Lagier, J.C.; Armougom, F.; Million, M.; Hugon, P.; Pagnier, I.; Robert, C.; Bittar, F.; Fournous, G.; Gimenez, G.; Maraninchi, M.; et al. Microbial culturomics: Paradigm shift in the human gut microbiome Study. Clin. Microbiol. Infect. 2012, 18, 1185–1193. [Google Scholar] [CrossRef] [PubMed]
- Cheng, C.; Sun, J.; Zheng, F.; Wu, K.; Rui, Y. Molecular identification of clinical “difficult-to-identify” microbes from sequencing 16S ribosomal DNA and internal transcribed spacer 2. Ann. Clin. Microbiol. Antimicrob. 2014, 13, 1. [Google Scholar] [CrossRef] [PubMed]
- Strobel, G.; Daisy, B. Bioprospecting for microbial endophytes and their natural products. Microbiol. Mol. Biol. Rev. 2003, 67, 491–502. [Google Scholar] [CrossRef] [PubMed]
- Bucar, F.; Wubea, A.; Schmidb, M. Natural product isolation—How to get from biological material to pure compounds. Nat. Prod. Rep. 2013, 30, 525–545. [Google Scholar] [CrossRef] [PubMed]
- Trindade, M.; van Zyl, L.; Navarro-Fernández, J.; Abd Elrazak, A. Targeted Metagenomics as a Tool to Tap Into Marine Natural Product Diversity for the Discovery and Production of Drug Candidates. Front. Microbiol. 2015. [Google Scholar] [CrossRef] [PubMed]
- Milshteyn, A.; Schneider, J.S.; Brady, S.F. Mining the Metabiome: Identifying Novel Natural Products from Microbial Communities. Chem. Biol. 2014, 21, 1211–1223. [Google Scholar] [CrossRef] [PubMed]
- Harvey, A.L. Natural products in drug discovery. Drug Discov. Today 2008, 13, 894–901. [Google Scholar] [CrossRef] [PubMed]
- Dejong, C.A.; Chen, G.M.; Li, H.; Johnston, C.W.; Edwards, M.R.; Rees, P.N.; Skinnider, M.A.; Webster, A.L.H.; Magarvey, N.A. Polyketide and nonribosomal peptide retro-biosynthesis and global gene cluster matching. Nat. Chem. Biol. 2016, 12, 1007–1014. [Google Scholar] [CrossRef] [PubMed]
- Ji, Y.; Ashton, L.; Pedley, S.M.; Edwards, D.P.; Tang, Y.; Nakamura, A.; Kitching, R.; Dolman, P.M.; Woodcock, P.; Edwards, F.A.; et al. Reliable, verifiable and efficient monitoring of biodiversity via metabarcoding. Ecol. Lett. 2013, 16, 1245–1257. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Astorga, M.P. Genetic considerations for mollusk production in aquaculture: Current state of knowledge. Front. Genet. 2014, 5, 435. [Google Scholar] [CrossRef] [PubMed]
- Holman, L.E.; de la Serrana, D.G.; Onoufriou, A.; Hillestad, B.; Johnston, I.A. A workflow used to design low density SNP panels for parentage assignment and traceability in aquaculture species and its validation in Atlantic salmon. Aquaculture 2017, 476, 59–64. [Google Scholar] [CrossRef]
- Meuwissen, T.; Hayes, B.; Goddard, M. Accelerating improvement of livestock with genomic selection. Annu. Rev. Anim. Biosci. 2013, 1, 221–237. [Google Scholar] [CrossRef] [PubMed]
Research Infrastructure | Field of Expertise |
---|---|
EMBRC ERIC | Isolation, characterization, cultivation, and cataloguing of marine organisms |
MIRRI | Isolation, characterization, cultivation, and cataloguing of marine microorganisms |
EU-OPENSCREEN ERIC | Bioprofiling, high throughput screening, and medicinal chemistry approaches for hit-to-lead optimization |
Elixir | Data handling and long-term storage of data in databases |
AQUAEXCEL 2020 | Integration and standardisation of tools for aquaculture research |
RISIS | Science and innovation studies, investigation of research and innovation dynamics, and policies |
Current Bottlenecks (Aquaculture Pipeline: Finfish and Shellfish; Breeding Pipeline) | Suggested Solutions |
The lack of genetic tools for many species | The use of Next Generation Sequencing techniques to develop genomic resources including draft genomes, linkage maps, and marker panels |
Poor control of inbreeding due to a lack of knowledge about the pedigrees of broodstock in hatcheries | Marker-based pedigrees and pipelines for SNP panel development |
The need to identify the best broodstock | The recording of precisely defined phenotypes involving common standards and ontologies. Methods for the cost-effective measurement of genetic variation at the genomic scale. |
Current Bottlenecks (Microalgal and Microbial Pipeline: Bacteria) | Suggested Solutions |
Cultivation of candidate organisms is often problematic, with the yet uncultured and slow growing strains giving low biomass production and high variability even within the same species | Research Infrastructure partners follow harmonized best practices to minimize variation and engage culturomics to design improved culture conditions and coordinate efforts [14,15,16]. |
Routes from crude extract assay hits to identifying and purifying bioactive compounds are often problematic (for example identifying the active component of extract and its isolation) | It is possible to have coordinated access across and between RIs to utilise different technologies to identify and design appropriate means to get from crude extracts to pure active compounds [17] utilizing infrastructure best practice [18,19]; working towards the heterologous expression of the biosynthetic gene cluster of interest and/or applying a genochemetic approach (undertaken in USTAN natural product discovery pipeline). |
Interoperability between data bases and data sets | Research Infrastructures agree on common standards and ontologies. |
Lack of information to find suitable candidate bacteria with relevant activities for study and how to target them in the environment | Contact MIRRI and EMBRC, who are making this knowledge available and have expertise in targeted isolation [20]; keeping pace with new developments, e.g., symposia, which infrastructure partners follow such as Natural Product Discovery and Development in the Genomic Era, organised by the Society for Industrial Microbiology and Biotechnology: https://sim.confex.com/sim/np2018/meetingapp.cgi |
Gaps in knowledge to be able to fully harness metagenomics, proteomics, and metabolomics to identify targets of interest with bioactive compounds or target gene clusters in bacteria with the desired properties | Discovery can be enhanced by gene hunting and expression in host cells [19,20,21]; total DNA sequence data from samples can be matched with known genes and specific genes can be targeted [19]; predicting potential activities from the gene clusters is now possible [22]; reliable, verifiable, and efficient monitoring of biodiversity can be achieved via metabarcoding [23] |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brennecke, P.; Ferrante, M.I.; Johnston, I.A.; Smith, D. A Collaborative European Approach to Accelerating Translational Marine Science. J. Mar. Sci. Eng. 2018, 6, 81. https://doi.org/10.3390/jmse6030081
Brennecke P, Ferrante MI, Johnston IA, Smith D. A Collaborative European Approach to Accelerating Translational Marine Science. Journal of Marine Science and Engineering. 2018; 6(3):81. https://doi.org/10.3390/jmse6030081
Chicago/Turabian StyleBrennecke, Philip, Maria I. Ferrante, Ian A. Johnston, and David Smith. 2018. "A Collaborative European Approach to Accelerating Translational Marine Science" Journal of Marine Science and Engineering 6, no. 3: 81. https://doi.org/10.3390/jmse6030081
APA StyleBrennecke, P., Ferrante, M. I., Johnston, I. A., & Smith, D. (2018). A Collaborative European Approach to Accelerating Translational Marine Science. Journal of Marine Science and Engineering, 6(3), 81. https://doi.org/10.3390/jmse6030081