Investigating the Pre-Damaged PZT Sensors under Impact Traction
Abstract
:1. Introduction
2. Materials and Methods
2.1. Aim and Scope
2.2. Validation
2.3. Simulation of the Piezoelectric Composite Plate
3. Results
3.1. The Crack Length of the Piezoelectric Composite Plate
3.2. The Impact Energy Effect on the Piezoelectric Composite Plate
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Huidong, L.; Zhiqun, D.D.; Yong, Y.; Thomas, J.C. Design Parameters of a Miniaturized Piezoelectric Underwater Acoustic Transmitter. Sensors 2012, 12, 9098–9109. [Google Scholar] [CrossRef]
- Akdogan, E.K.; Allahverdi, M.; Safari, A. Piezoelectric composites for sensor and actuator applications. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2005, 52, 746–775. [Google Scholar] [CrossRef] [PubMed]
- Galassi, C.; Roncari, E.; Capiani, C.; Fabbri, G.; Piancastelli, A.; Peselli, M.; Silvano, F. Processing of Porous PZT Materials for Underwater Acoustics. Ferroelectrics 2002, 268, 42–57. [Google Scholar] [CrossRef]
- Fotouhi, M.; Saeedifar, M.; Yousefi, J.; Fotouhi, S. The application of an acoustic emission technique in the delamination of laminated composites. In Focus on Acoustic Emission Research; NOVA Publishers: Hauppauge, NY, USA, 2016. [Google Scholar]
- Fotouhi, M.; Najafabadi, M.A. Acoustic emission-based study to characterize the initiation of delamination in composite materials. J. Thermoplast. Compos. Mater. 2016, 29, 519–537. [Google Scholar] [CrossRef]
- Fotouhi, M.; Suwarta, P.; Jalalvand, M.; Czel, G.; Wisnom, M.R. Detection of fibre fracture and ply fragmentation in thin-ply UD carbon/glass hybrid laminates using acoustic emission. Compos. Part A Appl. Sci. Manuf. 2016, 86, 66–76. [Google Scholar] [CrossRef]
- Mamoru, M.; Yuta, E.; Mitsuhiro, O. Fatigue life of piezoelectric ceramics and evaluation of internal damage. Procedia Eng. 2010, 2, 291–297. [Google Scholar]
- Fragassa, C.; Minak, G. Measuring deformations in a rigid-hulled inflatable boat. Key Eng. Mater. 2017, 754, 295–298. [Google Scholar] [CrossRef]
- Heidary, H.; Sadri, M.; Karimi, N.Z.; Fragassa, C. Numerical Study of Plasticity Effects in Uniform Residual Stresses Measurement by Ring-Core Technique. J. Serb. Soc. Comput. Mech. 2017, 11, 17–26. [Google Scholar] [CrossRef]
- Zivkovic, I.; Pavlovic, A.; Fragassa, C.; Brugo, T. Influence of moisture absorption on the impact properties of flax, basalt and hybrid flax/basalt fiber reinforced green composites. Compos. Part B Eng. 2017, 111, 148–164. [Google Scholar] [CrossRef]
- Shindo, Y.; Narita, F.; Tanaka, K. Electroelastic intensification near anti-plane shear crack in orthotropic piezoelectric ceramic strip. Theor. Appl. Fract. Mech. 1996, 25, 65–71. [Google Scholar] [CrossRef]
- Shindo, Y.; Tanaka, K.; Narita, F. Singular Stress and electric fields of a piezoelectric ceramic strip with a finite crack under longitudinal shear. Acta Mech. 1997, 120, 31–45. [Google Scholar] [CrossRef]
- Shindo, Y.; Watanabe, K.; Narita, F. Electroelastic analysis of a piezoelectric ceramic strip with a central crack. Int. J. Eng. Sci. 2000, 38, 1–19. [Google Scholar] [CrossRef]
- Narita, F.; Shindo, Y. Layered piezoelectric medium with interface crack under anti-plane shear. Theor. Appl. Fract. Mech. 1998, 30, 119–126. [Google Scholar] [CrossRef]
- Narita, F.; Shindo, Y. The interface crack problem for bonded piezoelectric and orthotropic layers under antiplane shear loading. Int. J. Fract. 1999, 98, 87–102. [Google Scholar] [CrossRef]
- Shindo, Y.; Narita, F.; Ozawa, E. Impact response of a finite crack in an orthotropic piezoelectric ceramic. Acta Mech. 1999, 137, 99–107. [Google Scholar] [CrossRef]
- Chen, Z.T.; Meguid, S.A. The transient response of a piezoelectric strip with a vertical crack under electromechanical impact load. Int. J. Solids Struct. 2000, 37, 6051–6062. [Google Scholar] [CrossRef]
- Wang, B.L.; Noda, N.A. Crack in a piezoelectric layer bonded to a dissimilar elastic layer under transient load. Arch. Appl. Mech. 2001, 71, 487–494. [Google Scholar] [CrossRef]
- Ueda, S. Impact response of a piezoelectric layered composite plate with a crack. Theor. Appl. Fract. Mech. 2002, 38, 221–242. [Google Scholar] [CrossRef]
- Garcıa-Sanchez, F.; Zhang, Ch.; Sladek, J.; Sladek, V. 2D transient dynamic crack analysis in piezoelectric solids by BEM. Comput. Mater. Sci. 2007, 39, 179–186. [Google Scholar] [CrossRef]
- Garcıa-Sanchez, F.; Zhang, C.; Saez, A. 2-D transient dynamic analysis of cracked piezoelectric solids by a time-domain BEM. Comput. Methods Appl. Mech. Eng. 2008, 197, 3108–3121. [Google Scholar] [CrossRef]
- Fotouhi, S.; Khalili, M.R.S. Analysis of dynamic stress intensity factor of finite piezoelectric composite plate under a dynamic load. FME Trans. 2016, 44, 348–352. [Google Scholar] [CrossRef]
- Safari, A. Development of Piezoelectric Composites for Transducers. J. Phys. III 1994, 4, 1129–1149. [Google Scholar] [CrossRef]
- Fragassa, C.; De Camargo, F.V.; Pavlovic, A.; Silveira, A.C.F.; Minak, G.; Bergmann, C.P. Mechanical Characterization of Grés Porcelain and Low-Velocity Impact Numerical Modelling. Materials 2018, 11, 1082. [Google Scholar] [CrossRef] [PubMed]
- Pavlovic, A.; Fragassa, C.; Minak, G. Buckling Analysis of Telescopic Boom: Theoretical and Numerical Verification of Sliding Pads. Tehnicki Vjesn. 2017, 24, 729–735. [Google Scholar] [CrossRef]
- Boria, S.; Pavlovic, A.; Fragassa, C.; Santulli, C. Modeling of Falling Weight Impact Behavior of Hybrid Basalt/Flax Vinylester Composites. Procedia Eng. 2016, 167, 223–230. [Google Scholar] [CrossRef]
- Enderlein, M.; Ricoeur, A.; Kuna, M. Finite element techniques for dynamic crack analysis in piezoelectrics. Int. J. Fract. 2005, 134, 191–208. [Google Scholar] [CrossRef]
- Chen, Y.M. Numerical computation of dynamic stress intensity factors by a Lagrangian finite-difference method (the HEMP code). Eng. Fract. Mech. 1975, 7, 653–660. [Google Scholar] [CrossRef] [Green Version]
- Garcıa-Sanchez, F.; Zhang, C.; Saez, A. A two-dimensional time-domain boundary element method for dynamic crack problems in anisotropic solids. Eng. Fract. Mech. 2008, 75, 1412–1430. [Google Scholar] [CrossRef]
- Chen, C.S.; Chen, C.H.; Pan, E. Three-dimensional stress intensity factors of a central square crack in a transversely isotropic cuboid with arbitrary material orientations. Eng. Anal. Bound. Elem. 2009, 33, 128–136. [Google Scholar] [CrossRef]
BaTiO3 Plate’ Results Comprehension | Kmax (MPa) | Tmax (μs) | Steel Plate’ Results Comprehension | Kmax (MPa) | Tmax (μs) |
---|---|---|---|---|---|
Obtained results | 1.15 | 9.5 | Obtained results | 2.559 | 7 |
Enderlein’s work | 1.15 | 9.5 | Chen’s work | 2.698 | 6 |
Error (%) | 0.41 | 0.115 | Error (%) | 5.13 | −6.06 |
Material | Elastic Stiffnesses (× 1010 N/m2) | Piezoelectric Coefficients (C/m2) | Dielectric Constants (× 10−10 C/Vm) | ||||||
---|---|---|---|---|---|---|---|---|---|
PZT-4 | 13.9 | 11.3 | 2.56 | 7.43 | −6.98 | 13.8 | 12.7 | 60 | 54.7 |
PZT-5H | 12.6 | 11.7 | 2.3 | 8.41 | −6.5 | 23.3 | 17 | 150.4 | 130 |
Al | 8.84 | 8.84 | 2.7 | 3.43 | 0 | 0 | 0 | - | - |
BaTiO3 | 15 | 14.6 | 4.4 | 6.6 | −4.35 | 17.5 | 11.4 | 98.7 | 112 |
Steel (Elastic) | : 5000 kg/m3 | Poisson ratio : 0.3 | Young’s modulus : 76.923 GPa |
h2 (mm) | h1 (mm) | h (mm) | c (mm) | ||
---|---|---|---|---|---|
10 | 5 | 20 | variable | variable | 2 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fotouhi, S.; Fotouhi, M.; Pavlovic, A.; Djordjevic, N. Investigating the Pre-Damaged PZT Sensors under Impact Traction. J. Mar. Sci. Eng. 2018, 6, 142. https://doi.org/10.3390/jmse6040142
Fotouhi S, Fotouhi M, Pavlovic A, Djordjevic N. Investigating the Pre-Damaged PZT Sensors under Impact Traction. Journal of Marine Science and Engineering. 2018; 6(4):142. https://doi.org/10.3390/jmse6040142
Chicago/Turabian StyleFotouhi, Sakineh, Mohamad Fotouhi, Ana Pavlovic, and Nenad Djordjevic. 2018. "Investigating the Pre-Damaged PZT Sensors under Impact Traction" Journal of Marine Science and Engineering 6, no. 4: 142. https://doi.org/10.3390/jmse6040142
APA StyleFotouhi, S., Fotouhi, M., Pavlovic, A., & Djordjevic, N. (2018). Investigating the Pre-Damaged PZT Sensors under Impact Traction. Journal of Marine Science and Engineering, 6(4), 142. https://doi.org/10.3390/jmse6040142