Sediment Transport Model Including Short-Lived Radioisotopes: Model Description and Idealized Test Cases
Abstract
:1. Introduction
2. Materials and Methods
2.1. Adding Reactive Tracers to the CSTMS
2.2. Idealized Test Case: Model Implementation
3. Results
3.1. Sensitivity to Biodiffusivity
3.2. Sensitivity to Fluvial Deposit Thickness
3.3. Sensitivity to Resuspension Intensity
4. Discussion
4.1. Synthesis of Sensitivity Tests
4.2. Limitations of Model as Implemented Here
4.3. Future Applications
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Waples, J.T.; Benitez-Nelson, C.; Savoye, N.; Rutgers van der Loeff, M.; Baskaran, M.; Gustafsson, O. An introduction to the application and future use of 234Th in aquatic systems. Mar. Chem. 2006, 100, 166–189. [Google Scholar] [CrossRef]
- Dibb, J.E.; Rice, D.L. Geochemistry of beryllium-7 in Chesapeake Bay. Estuar. Coast. Shelf Sci. 1989, 28, 379–394. [Google Scholar] [CrossRef]
- Feng, H.; Cochran, J.K.; Hirschberg, D.J. 234Th and 7Be as tracers for the transport and dynamics of suspended particles in a partially mixed estuary. Geochim. Cosmochim. Acta 1999, 63, 2487–2505. [Google Scholar] [CrossRef]
- Kniskern, T.A.; Kuehl, S.A. Spatial and temporal variability of seabed disturbance in the York River subestuary. Estuar. Coast. Shelf Sci. 2003, 58, 37–55. [Google Scholar] [CrossRef]
- Sommerfield, C.K.; Nittrouer, C.A.; Alexander, C.R. 7Be as a tracer of flood sedimentation on the northern California continental margin. Cont. Shelf Res. 1999, 19, 225–361. [Google Scholar] [CrossRef]
- Corbett, D.R.; McKee, B.A.; Duncan, D. An evaluation of mobile mud dynamics in the Mississippi River deltaic region. Mar. Geol. 2004, 209, 91–112. [Google Scholar] [CrossRef]
- Kniskern, T.A.; Mitra, S.; Orpin, A.R.; Harris, C.K.; Walsh, J.P.; Corbett, D.R. Characterization of a flood-associated deposit on the Waipaoa River shelf using radioisotopes and terrigenous organic matter abundance and composition. Cont. Shelf Res. 2014, 86, 66–84. [Google Scholar] [CrossRef]
- Baskaran, M.; Santschi, P.H. The role of particles and colloids in the transport of radionuclides in coastal environments of Texas. Mar. Chem. 1993, 43, 95–114. [Google Scholar] [CrossRef]
- Palinkas, C.M.; Nittrouer, C.A.; Wheatcroft, R.A.; Langone, L. The use of 7Be to identify event and seasonal sedimentation near the Po River delta, Adriatic Sea. Mar. Geol. 2005, 222–223, 95–112. [Google Scholar] [CrossRef]
- Mullenbach, B.L.; Nittrouer, C.A. Rapid deposition of fluvial sediment in the Eel Canyon, northern California. Cont. Shelf Res. 2000, 20, 2191–2212. [Google Scholar] [CrossRef]
- Corbett, D.R.; Dail, M.; McKee, B.A. High-frequency time-series of the dynamic sedimentation processes on the western shelf of the Mississippi River Delta. Cont. Shelf Res. 2007, 27, 1600–1615. [Google Scholar] [CrossRef]
- Boudreau, B.P. Is burial velocity a master parameter for bioturbation? Geochim. Cosmochim. Acta 1994, 58, 1243–1249. [Google Scholar] [CrossRef]
- McKee, B.A.; DeMaster, D.J.; Nittrouer, C.A. The use of 234Th/238U disequilibrium to examine the fate of particle-reactive species on the Yangtze continental shelf. Earth Planet. Sci. Lett. 1984, 68, 431–442. [Google Scholar] [CrossRef]
- Smoak, J.M.; DeMaster, D.J.; Kuehl, S.A.; Pope, R.H.; McKee, B.A. The behavior of particle-reactive tracers in a high turbidity environment: 234Th and 210Pb on the Amazon continental shelf. Geochim. Cosmochim. Acta 1996, 60, 2123–2137. [Google Scholar] [CrossRef]
- Aller, R.C.; Benninger, L.K.; Cochran, J.K. Tracking particle-associated processes in nearshore environments by use of 234Th/238U disequilibrium. Earth Planet. Sci. Lett. 1980, 47, 161–175. [Google Scholar] [CrossRef]
- Wheatcroft, R.A. Time-series measurements of macrobenthos abundance and sediment bioturbation intensity on a flood-dominated shelf. Prog. Oceanogr. 2006, 71, 88–122. [Google Scholar] [CrossRef]
- Wheatcroft, R.A.; Drake, D.E. Post-depositional alteration and preservation of sedimentary event layers on continental margins, I. The role of episodic sedimentation. Mar. Geol. 2003, 199, 123–137. [Google Scholar] [CrossRef]
- Dibb, J.E. Atmospheric deposition of beryllium-7 in the Chesapeake Bay region. J. Geophys. Res. 1989, 94, 2261–2265. [Google Scholar] [CrossRef]
- Aller, R.C.; Cochran, J.K. 234Th/238U Disequilibrium in near-shore sediment: Particle reworking and diagenetic time scales. Earth Planet. Sci. Lett. 1976, 29, 37–50. [Google Scholar] [CrossRef]
- McKee, B.A.; Nittrouer, C.A.; DeMaster, D.J. Concepts of sediment deposition and accumulation applied to the continental shelf near the mouth of the Yangtze River. Geology 1983, 11, 631–633. [Google Scholar] [CrossRef]
- Wheatcroft, R.A. Preservation potential of sedimentary event layers. Geology 1990, 18, 843–845. [Google Scholar] [CrossRef]
- Wheatcroft, R.A.; Wiberg, P.L.; Alexander, C.R.; Bentley, S.J.; Drake, D.E.; Harris, C.K.; Ogston, A.S. Post-depositional alteration and preservation of sedimentary strata. In Continental-Margin Sedimentation: From Sediment Transport to Sequence Stratigraphy; International Association of Sedimentologists Special Publication no. 37; Nittrouer, C.A., Austin, J.A., Field, M.E., Kravitz, J.H., Syvitski, J.P.M., Wiberg, P.L., Eds.; Blackwell Publishing: Malden, MA, USA, 2007; pp. 101–155. ISBN 9781405169349. [Google Scholar]
- Nittrouer, C.A.; DeMaster, D.J.; McKee, B.A.; Cutshall, N.H.; Larson, I.L. The effect of sediment mixing on Pb-210 accumulation rates for the Washington continental shelf. Mar. Geol. 1984, 54, 201–221. [Google Scholar] [CrossRef]
- Bentley, S.J.; Sheremet, A.; Jaeger, J.M. Event sedimentation, bioturbation, and preserved sedimentary fabric: Field and model comparisons in three contrasting marine settings. Cont. Shelf Res. 2006, 26, 2108–2124. [Google Scholar] [CrossRef]
- Nittrouer, C.A.; Sternberg, R.W. The formation of sedimentary strata in an allochthonous shelf environment: The Washington continental shelf. Mar. Geol. 1981, 42, 201–232. [Google Scholar] [CrossRef]
- Sadler, P.M. The influence of hiatuses on sediment accumulation rates. GeoRes. Forum 1999, 5, 15–40. [Google Scholar]
- Bentley, S.J.; Sheremet, A. New model for the emplacement, bioturbation and preservation of fine-scaled sedimentary strata. Geology 2003, 31, 725–728. [Google Scholar] [CrossRef]
- Ma, Y.; Friedrichs, C.T.; Harris, C.K.; Wright, L.D. Deposition by seasonal wave- and current-supported sediment gravity flows interacting with spatially varying bathymetry: Waiapu shelf, New Zealand. Mar. Geol. 2010, 275, 199–211. [Google Scholar] [CrossRef]
- Kniskern, T.A.; Kuehl, S.A.; Harris, C.K.; Carter, L. Sediment accumulation patterns and fine-scale strata formation on the Waiapu River shelf, New Zealand. Mar. Geol. 2010, 270, 188–201. [Google Scholar] [CrossRef]
- Lesser, G.R.; Roelvink, J.A.; van Kester, J.A.T.M.; Stelling, G.S. Development and validation of a three-dimensional morphological model. Coast. Eng. 2004, 51, 883–915. [Google Scholar] [CrossRef]
- Neumeier, U.; Ferrarin, C.; Amos, C.L.; Umgiesser, G.; Li, M.Z. Sedtrans05: An improved sediment-transport model for continental shelves and coastal waters with a new algorithm for cohesive sediments. Comput. Geosci. 2008, 34, 1223–1242. [Google Scholar] [CrossRef]
- Warner, J.C.; Sherwood, C.R.; Signell, R.P.; Harris, C.K.; Arango, H.G. Development of a three-dimensional, regional, coupled wave, current, and sediment-transport model. Comput. Geosci. 2008, 34, 1284–1306. [Google Scholar] [CrossRef]
- Moriarty, J.M.; Harris, C.K.; Hadfield, M.G. A hydrodynamic and sediment transport model for the Waipaoa Shelf, New Zealand: Sensitivity of fluxes to spatially-varying erodibility and model nesting. J. Mar. Sci. Eng. 2014, 2, 336–369. [Google Scholar] [CrossRef]
- Palinkas, C.M.; Halka, J.P.; Li, M.; Sanford, L.P.; Cheng, P. Sediment deposition from tropical storms in the upper Chesapeake Bay: Field observations and model simulations. Cont. Shelf Res. 2014, 86, 6–16. [Google Scholar] [CrossRef]
- Haidvogel, D.B.; Arango, H.; Budgell, W.P.; Cornuelle, B.D.; Curchitser, E.; Di Lorenzo, E.; Fennel, K.; Geyer, W.R.; Hermann, A.J.; Lanerolle, L.; et al. Ocean forecasting in terrain-following coordinates: Formulation and skill assessment of the regional ocean modeling system. J. Comput. Phys. 2008, 227, 3595–3624. [Google Scholar] [CrossRef]
- Shchepetkin, A.F.; McWilliams, J.C. The regional oceanic modeling system (ROMS): A split-explicit, free-surface, topography-following-coordinate oceanic model. Ocean Model. 2005, 9, 347–404. [Google Scholar] [CrossRef]
- Fennel, K.; Wilkin, J.; Previdi, M.; Najjar, R. Denitrification effects on air-sea CO2 flux in the coastal ocean: Simulations for the northwest North Atlantic. Geophys. Res. Lett. 2008, 35, L24608. [Google Scholar] [CrossRef]
- Sherwood, C.R.; Aretxabaleta, A.L.; Harris, C.K.; Rinehimer, J.P.; Verney, R.; Ferré, B. Cohesive and mixed sediment in the Regional Ocean Modeling System (ROMS v3.6) implemented in the Coupled Ocean–Atmosphere–Wave–Sediment Transport Modeling System (COAWST r1234). Geosci. Model Dev. 2018, 11, 1849–1871. [Google Scholar] [CrossRef] [Green Version]
- Harris, C.K.; Wiberg, P.L. Approaches to quantifying long-term continental shelf sediment transport with an example from the northern California STRESS mid-shelf site. Cont. Shelf Res. 1997, 17, 1389–1418. [Google Scholar] [CrossRef]
- Wiberg, P.L.; Drake, D.E.; Cacchione, D.A. Sediment resuspension and bed armoring during high bottom stress events on the northern California inner continental shelf: Measurements and predictions. Cont. Shelf Res. 1994, 14, 1191–1219. [Google Scholar] [CrossRef]
- Moriarty, J.M.; Harris, C.K.; Fennel, K.; Friedrichs, M.A.; Xu, K.; Rabouille, C. The roles of resuspension, diffusion and biogeochemical processes on oxygen dynamics offshore of the Rhône River, France: A numerical modeling study. Biogeosciences 2017, 14, 1919–1946. [Google Scholar] [CrossRef]
- Moriarty, J.M.; Harris, C.K.; Friedrichs, M.A.M.; Fennel, K.; Xu, K. Impact of seabed resuspension on oxygen and nitrogen dynamics in the northern Gulf of Mexico: A numerical modeling study. J. Geophys. Res. Oceans 2018, 123, 1–27. [Google Scholar] [CrossRef]
- Santschi, P.H.; Li, Y.-H.; Bell, J.J. Natural radionuclides in Narragansett Bay. Earth Planet. Sci. Lett. 1979, 47, 201–213. [Google Scholar] [CrossRef]
- Baskaran, M.; Ravichandran, M.; Bianchi, T.S. Cycling of 7Be and 210Pb in a high DOC, shallow, turbid estuary of south-east Texas. Estuar. Coast. Shelf Sci. 1997, 45, 165–176. [Google Scholar] [CrossRef]
- Carslaw, H.S.; Jaeger, J.C. Conduction of Heat in Solids; Clarendon Press: Oxford, UK, 1959; ISBN 9780198533689. [Google Scholar]
- Boudreau, B.P. Diagenetic Models and Their Interpretation; Springer: Berlin, Germany, 1997; ISBN 9783642643996. [Google Scholar]
- Birchler, J.J.; Harris, C.K.; Kniskern, T.A. A Model Archive for Sediment Transport Model Including Short-Lived Radioisotopes: Model Description and Idealized Test Cases; Virginia Institute of Marine Science, College of William and Mary: Gloucester Point, VA, USA, 2018. [Google Scholar]
- Xu, K.; Harris, C.K.; Hetland, R.D.; Kaihatu, J.M. Dispersal of Mississippi and Atchafalaya sediment on the Texas-Louisiana shelf: Model estimates for the year 1993. Cont. Shelf Res. 2011, 31, 1558–1575. [Google Scholar] [CrossRef]
- Benitez-Nelson, C.R.; Buesseler, K.O.; Crossin, G. Upper ocean carbon export, horizontal transport, and vertical eddy diffusivity in the southwestern Gulf of Maine. Cont. Shelf Res. 2000, 20, 707–736. [Google Scholar] [CrossRef]
- Birchler, J.J.; Harris, C.K.; Kniskern, T.A.; Sherwood, C.R. Numerical model of geochronological tracers for deposition and reworking applied to the Mississippi subaqueous delta. J. Coast. Res. Spec. Issue 85 Proc. 5th Int. Coast. Symp. 2018, 456–460. [Google Scholar] [CrossRef]
- Moriarty, J.M.; Harris, C.K.; Hadfield, M.G. Event-to-seasonal sediment dispersal on the Waipaoa River Shelf, New Zealand: A numerical modeling study. Cont. Shelf Res. 2015, 110, 108–123. [Google Scholar] [CrossRef]
- Xu, K.; Mickey, R.C.; Chen, Q.J.; Harris, C.K.; Hetland, R.; Hu, K.; Wang, J. Shelf sediment transport during Hurricanes Katrina and Rita. Comput. Geosci. 2016, 90, 24–39. [Google Scholar] [CrossRef]
Case | Db,max (cm2 yr−1) | Bed Stress (Pa) | Flood Layer (cm) | Active Layer (cm) |
---|---|---|---|---|
1 | 1 | 2.7 | 0.75 | 0.5 |
2 | 0 | 2.7 | 0.75 | 0.5 |
3 | 25 | 2.7 | 0.75 | 0.5 |
4 | 1 | 0 | 0.75 | 0.5 |
5 | 1 | 6 | 0.75 | 0.5 |
6 | 1 | 2.7 | 0.38 | 0.5 |
7 | 1 | 2.7 | 1.51 | 0.5 |
8 | 1 | 2.7 | 0.75 | 1.8 |
Day | Standard | Biodiffusion | Resuspension | Thickness | Active | ||||
---|---|---|---|---|---|---|---|---|---|
Case 1 | Case 2 | Case 3 | Case 4 | Case 5 | Case 6 | Case 7 | Case 8 | ||
7Be Surf. Activity (dpm g−1) | 49 | 1.62 | 1.97 | 0.63 | 1.7 | 1.56 | 0.85 | 2.53 | 0.79 |
140 | 0.4 | 0.61 | 0.12 | 0.43 | 0.39 | 0.21 | 0.68 | 0.22 | |
7Be Bed Inventory (dpm cm−2) | 49 | 1.07 | 1.07 | 1.07 | 1.07 | 1.07 | 0.53 | 2.13 | 1.07 |
140 | 0.33 | 0.33 | 0.33 | 0.33 | 0.33 | 0.16 | 0.66 | 0.33 | |
7Be Penetration Depth (cm) | 49 | 1.88 | 1.26 | 4.94 | 1.8 | 1.91 | 1.55 | 2.57 | 3.2 |
140 | 1.88 | 1.07 | 3.44 | 1.77 | 1.91 | 1.39 | 2.56 | 2.97 | |
7Be TD (months) | 8.0 | 9.6 | 5.2 | 8.2 | 8 | 6.6 | 9.4 | 6.8 | |
234Th Surf. Activity (dpm g−1) | 49 | 3.41 | 3.51 | 2.59 | 0.82 | 3.56 | 3.04 | 3.85 | 3.7 |
140 | 2.72 | 2.87 | 1.82 | 0.05 | 2.86 | 2.52 | 3 | 2.96 | |
234Th Bed Inventory (dpm cm−2) | 49 | 2.07 | 1.87 | 3.19 | 0.51 | 2.27 | 1.8 | 2.75 | 4.58 |
140 | 1.75 | 1.52 | 2.74 | 0.04 | 1.95 | 1.58 | 2.1 | 3.73 | |
234Th Penetration Depth (cm) | 49 | 1.86 | 1.09 | 5.03 | 1.48 | 1.93 | 1.69 | 2.25 | 3.42 |
140 | 1.97 | 1.09 | 5.7 | 0 | 2.11 | 1.96 | 2.21 | 3.49 | |
234Th TD (months) | 4.2 | 4.6 | 3.2 | 4.1 | 4.3 | 4.1 | 4.3 | 4.4 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Birchler, J.J.; Harris, C.K.; Sherwood, C.R.; Kniskern, T.A. Sediment Transport Model Including Short-Lived Radioisotopes: Model Description and Idealized Test Cases. J. Mar. Sci. Eng. 2018, 6, 144. https://doi.org/10.3390/jmse6040144
Birchler JJ, Harris CK, Sherwood CR, Kniskern TA. Sediment Transport Model Including Short-Lived Radioisotopes: Model Description and Idealized Test Cases. Journal of Marine Science and Engineering. 2018; 6(4):144. https://doi.org/10.3390/jmse6040144
Chicago/Turabian StyleBirchler, Justin J., Courtney K. Harris, Christopher R. Sherwood, and Tara A. Kniskern. 2018. "Sediment Transport Model Including Short-Lived Radioisotopes: Model Description and Idealized Test Cases" Journal of Marine Science and Engineering 6, no. 4: 144. https://doi.org/10.3390/jmse6040144
APA StyleBirchler, J. J., Harris, C. K., Sherwood, C. R., & Kniskern, T. A. (2018). Sediment Transport Model Including Short-Lived Radioisotopes: Model Description and Idealized Test Cases. Journal of Marine Science and Engineering, 6(4), 144. https://doi.org/10.3390/jmse6040144