Survey on Experimental and Numerical Approaches to Model Underwater Explosions
Abstract
:1. Introduction
2. Analytical Models
2.1. Hydrodynamics and Fluid-Structure Impact
2.2. Structural Response
2.3. Material Response
3. Numerical Simulations
3.1. Fluid Description Algorithms
3.2. Numerical Modelling
3.3. Constitutive Models
4. Discussion
Funding
Conflicts of Interest
References
- Pedersen, P.T.; Zhang, S. On impact mechanics in ship collisions. Mar. Struct. 1998, 11, 429–449. [Google Scholar] [CrossRef]
- Latourte, F.; Wei, X.; Feinberg, Z.D.; De Vaucorbeil, A.; Tran, P.; Olson, G.B.; Espinosa, H.D. Design and identification of high performance steel alloys for structures subjected to underwater impulsive loading. Int. J. Solids Struct. 2012, 49, 1573–1587. [Google Scholar] [CrossRef] [Green Version]
- Fragassa, C.; Minak, G. Measuring Deformations in a Rigid-Hulled Inflatable Boat. Key Eng. Mater. 2017, 754, 295–298. [Google Scholar] [CrossRef]
- Liang, Y.; Spuskanyuk, A.V.; Flores, S.E.; Hayhurst, D.R.; Hutchinson, J.W.; McMeeking, R.M.; Evans, A.G. The response of metallic sandwich panels to water blast. J. Appl. Mech. 2007, 74, 81–99. [Google Scholar] [CrossRef]
- Fragassa, C. From Design to Production: An integrated advanced methodology to speed up the industrialization of wooden boats. J. Ship Prod. Des. 2017, 33, 237–246. [Google Scholar] [CrossRef]
- Fragassa, C. Marine Applications of Natural Fibre-Reinforced Composites: A Manufacturing Case Study. In Advances in Application of Industrial Biomaterials; Pellicer, E., Nikolic, D., Sort, J., Baró, M., Zivic, F., Grujovic, N., Grujic, R., Pelemis, S., Eds.; Springer International Publishing: Cham, Switzerland, 2017; pp. 21–47. ISBN 978-3-319-62766-3. [Google Scholar]
- Lorenzini, G.; Helbig, D.; Real, M.V.; Dos Santos, E.D.; Isoldi, L.A.; Rocha, L.A.O. Computational modeling and constructal design method applied to the mechanical behavior improvement of thin perforated steel plates subject to buckling. J. Eng. Thermophys. 2016, 25, 197–215. [Google Scholar] [CrossRef]
- Lorenzini, G.; Helbig, D.; Da Silva, C.C.C.; Real, M.V.; Dos Santos, E.D.; Isoldi, L.A.; Rocha, L.A.O. Numerical evaluation of the effect of type and shape of perforations on the buckling of thin steel plates by means of the constructal design method. Heat Tech. 2016, 34, S9–S20. [Google Scholar] [CrossRef]
- Helbig, D.; Da Silva, C.C.C.; Real, M.V.; Dos Santos, E.D.; Isoldi, L.A.; Rocha, L.A.O. Study About Buckling Phenomenon in Perforated Thin Steel Plates Employing Computational Modeling and Constructal Design Method. Latin Am. J. Solids Struct. 2016, 13, 1912–1936. [Google Scholar] [CrossRef] [Green Version]
- Keil, A.H.; UERD, Norfolk Naval Ship Yard, Portsmouth, VA, USA. Introduction to underwater explosion research, 1956.
- Johnson, W.; Poyton, A.; Singh, H.; Travis, F.W. Experiments in the underwater explosion stretch forming of clamped circular blanks. Int. J. Mech. Sci. 1966, 8, 237–270. [Google Scholar] [CrossRef]
- Strahle, W.C.; Georgia Institute of Technology, Atlanta, GA, USA. Investigation of research needs for underwater explosions, 1990.
- Barash, R.M.; United States Naval Ordnance Laboratory, White Oak, MD, USA. Underwater explosions beneath ice, 1962.
- Bryant, E.F.; Malaker Laboratories Inc., High Brigde, NJ, USA. Debris distribution in underwater explosions, 1964.
- Snay, H.G.; United States Naval Ordnance Laboratory, White Oak, MD, USA. Hydrodynamic concepts selected topics for underwater nuclear explosions, 1966.
- O’Daniel, J.L.; Harris, G.; Ilamni, R.; Chahine, G.; Fortune, J. Underwater Explosion Bubble Jetting Effects on Infrastructure; US Army Corps of Engineers—ERDC Vicksburg: Vicksburg, MS, USA, 2011. [Google Scholar]
- Miller, W.E. Simulation of the Underwater Nuclear Explosion and Its Effects. Ph.D. Thesis, Naval Postgraduate School, Monterey, CA, USA, June 1992. [Google Scholar]
- Ming, F.R.; Zhang, A.M.; Xue, Y.Z.; Wang, S.P. Damage characteristics of ship structures subjected to shockwaves of underwater contact explosions. Ocean Eng. 2016, 117, 359–382. [Google Scholar] [CrossRef]
- Gong, S.W.; Khoo, B.C. Transient response of stiffened composite submersible hull to underwater explosion bubble. Compos. Struct. 2015, 122, 229–238. [Google Scholar] [CrossRef]
- Regener, P.B.; Mirsadraee, Y.; Andersen, P. Nominal vs. Effective Wake Fields and their Influence on Propeller Cavitation Performance. J. Mar. Sci. Eng. 2018, 6, 34. [Google Scholar] [CrossRef]
- Brenner, M. Navy Ship Underwater Shock Prediction and Testing Capability Study; Report-No. JSR, 07-200; MITRE Corporation: McLean, VA, USA, 2007. [Google Scholar]
- De Vuyst, T.; Vignjevic, R.; Albero, A.A.; Hughes, K.; Campbell, J.C.; Djordjevic, N. The effect of the orientation of cubical projectiles on the ballistic limit and failure mode of AA2024-T351 sheets. Int. J. Impact Eng. 2017, 104, 21–37. [Google Scholar] [CrossRef]
- Cole, R.H.; Weller, R. Underwater explosions. Phys. Today 1948, 1, 35. [Google Scholar] [CrossRef]
- Cui, P.; Zhang, A.M.; Wang, S.P. Small-charge underwater explosion bubble experiments under various boundary conditions. Phys. Fluids 2016, 28, 117103. [Google Scholar] [CrossRef]
- Zamyshlyayev, B.V.; Yakovlev, Y.S. Dynamic Loads in Underwater Explosion; Naval Intelligence Support Center: Washington, DC, USA, 1973. [Google Scholar]
- Keil, A.H. The Response of Ships to Underwater Explosions; Report No. DTMB-1576; David Taylor Model Basin: Washington, DC, USA, 1961.
- Rajendran, R.; Narasimhan, K. Deformation and fracture behaviour of plate specimens subjected to underwater explosion—A review. Int. J. Impact Eng. 2006, 32, 1945–1963. [Google Scholar] [CrossRef]
- Gupta, N.K.; Kumar, P.; Hegde, S. On deformation and tearing of stiffened and un-stiffened square plates subjected to underwater explosion—A numerical study. Int. J. Mech. Sci. 2010, 52, 733–744. [Google Scholar] [CrossRef]
- Rajendran, R.; Paik, J.K.; Kim, B.J. Design of warship plates against underwater explosions. Ships Offshore Struct. 2006, 1, 347–356. [Google Scholar] [CrossRef]
- Hung, C.F.; Lin, B.J.; Hwang-Fuu, J.J.; Hsu, P.Y. Dynamic response of cylindrical shell structures subjected to underwater explosion. Ocean Eng. 2009, 36, 564–577. [Google Scholar] [CrossRef]
- Prusty, B.G.; Satsangi, S.K. Analysis of stiffened shell for ships and ocean structures by finite element method. Ocean Eng. 2001, 28, 621–638. [Google Scholar] [CrossRef]
- Gordo, J.M.; Soares, C.G.; Faulkner, D. Approximate assessment of the ultimate longitudinal strength of the hull girder. J. Ship Res. 1996, 40, 60–69. [Google Scholar]
- Gordo, J.M.; Soares, C.G. Approximate load shortening curves for stiffened plates under uniaxial compression. Integr. Offshore Struct. 1993, 5, 189–211. [Google Scholar]
- Chen, Y.; Tong, Z.P.; Hua, H.X.; Wang, Y.; Gou, H.Y. Experimental investigation on the dynamic response of scaled ship model with rubber sandwich coatings subjected to underwater explosion. Int. J. Impact Eng. 2009, 36, 318–328. [Google Scholar] [CrossRef]
- Watson, D.G.M. Practical Ship Design; Elsevier: Amsterdam, The Netherlands, 1998; Volume 1, ISBN 978-0-0804-2999-1. [Google Scholar]
- Tupper, E.C.; Rawson, K.J. Basic Ship Theory; Butterworth-Heinemann: Oxford, UK, 2001; Volume 2, ISBN 978-0-7506-5398-5. [Google Scholar]
- Tilbrook, M.T.; Deshpande, V.S.; Fleck, N.A. Underwater blast loading of sandwich beams: Regimes of behaviour. Int. J. Solids Struct. 2009, 46, 3209–3221. [Google Scholar] [CrossRef] [Green Version]
- Fleck, N.A.; Deshpande, V.S. The resistance of clamped sandwich beams to shock loading. J. Appl. Mech. 2004, 71, 386–401. [Google Scholar] [CrossRef]
- Hutchinson, J.W.; Xue, Z. Metal sandwich plates optimized for pressure impulses. Int. J. Mech. Sci. 2005, 47, 545–569. [Google Scholar] [CrossRef]
- Fan, Z.; Liu, Y.; Xu, P. Blast resistance of metallic sandwich panels subjected to proximity underwater explosion. Int. J. Impact Eng. 2016, 93, 128–135. [Google Scholar] [CrossRef]
- Rajendran, R.; Narasimhan, K. Linear elastic shock response of plane plates subjected to underwater explosion. Int. J. Impact Eng. 2001, 25, 493–506. [Google Scholar] [CrossRef] [Green Version]
- Rajendran, R.; Narasimhan, K. Underwater shock response of circular HSLA steel plates. Shock Vibr. 2000, 7, 251–262. [Google Scholar] [CrossRef]
- Rajendran, R.; Narasimhan, K. Damage prediction of clamped circular plates subjected to contact underwater explosion. Int. J. Impact Eng. 2001, 25, 373–386. [Google Scholar] [CrossRef] [Green Version]
- Jones, N. Structural Impact, 2nd ed.; Cambridge University Press: Cambridge, UK, 2012; ISBN 978-1-1070-1096-3. [Google Scholar]
- Jacob, N.; Yuen, S.C.K.; Nurick, G.N.; Bonorchis, D.; Desai, S.A.; Tait, D. Scaling aspects of quadrangular plates subjected to localised blast loads—Experiments and predictions. Int. J. Imp. Eng. 2004, 30, 1179–1208. [Google Scholar] [CrossRef]
- Zhang, A.M.; Sun, P.N.; Ming, F.R.; Colagrossi, A. Smoothed particle hydrodynamics and its applications in fluid-structure interactions. J. Hydrodyn. 2017, 29, 187–216. [Google Scholar] [CrossRef]
- Helenbrook, B.T.; Hrdina, J. High-order adaptive arbitrary-Lagrangian–Eulerian (ALE) simulations of solidification. Comput. Fluids 2018, 167, 40–50. [Google Scholar] [CrossRef]
- Wang, G.; Wang, Y.; Lu, W.; Zhou, W.; Chen, M.; Yan, P. On the determination of the mesh size for numerical simulations of shock wave propagation in near field underwater explosion. Appl. Ocean Res. 2016, 59, 1–9. [Google Scholar] [CrossRef]
- Liu, W.T.; Ming, F.R.; Zhang, A.M.; Miao, X.H.; Liu, Y.L. Continuous simulation of the whole process of underwater explosion based on Eulerian finite element approach. Appl. Ocean Res. 2018, 80, 125–135. [Google Scholar] [CrossRef]
- Hu, X.Y.; Adams, N.A.; Iaccarino, G. On the HLLC Riemann solver for interface interaction in compressible multi-fluid flow. J. Comput. Phys. 2009, 228, 6572–6589. [Google Scholar] [CrossRef]
- Ma, Z.H.; Causon, D.M.; Qian, L.; Gu, H.B.; Mingham, C.G.; Ferrer, P.M. A GPU based compressible multiphase hydrocode for modelling violent hydrodynamic impact problems. Comput. Fluids 2015, 120, 1–23. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, L.; Silberschmidt, V.V. Damage response of steel plate to underwater explosion: Effect of shaped charge liner. Int. J. Impact Eng. 2017, 103, 38–49. [Google Scholar] [CrossRef] [Green Version]
- Jafarian, A.; Pishevar, A. An exact multiphase Riemann solver for compressible cavitating flows. Int. J. Multiphase Flow 2017, 88, 152–166. [Google Scholar] [CrossRef]
- Petrov, N.V.; Schmidt, A.A. Multiphase phenomena in underwater explosion. Exp. Therm. Fluid Sci. 2015, 60, 367–373. [Google Scholar] [CrossRef]
- Wardlaw, A.B., Jr. Underwater Explosion Test Cases; No. NSWC-IHTR-2069; Naval Surface Warfare Center: Indian Head, MD, USA, 1998. [Google Scholar]
- Rigo, P.; Rizzuto, E. Analysis and Design of Ship Structure. Ship Des. Constr. 2003, 1, 18-1. [Google Scholar]
- Zhang, W.; Yao, X.; Liu, L.; Wang, Z. Semi-analytical and experimental investigation of the whipping response of a cylinder subjected to underwater explosion load. Ships Offshore Struct. 2018, 1–9. [Google Scholar] [CrossRef]
- Chung, J.; Shin, Y.S. Simulation of dynamic behaviour of high-speed catamaran craft subjected to underwater explosion. Ships Offshore Struct. 2013, 9, 387–403. [Google Scholar] [CrossRef]
- Det Norske Veritas. Available online: https://www.dnvgl.com/services/shock-analysis-4716 (accessed on 30 November 2018).
- Wang, Q. Multi-oscillations of a bubble in a compressible liquid near a rigid boundary. J. Fluid Mech. 2014, 745, 509–536. [Google Scholar] [CrossRef]
- Zhang, A.M.; Liu, Y.L. Improved three-dimensional bubble dynamics model based on boundary element method. J. Comput. Phys. 2015, 294, 208–223. [Google Scholar] [CrossRef]
- Li, S.; Han, R.; Zhang, A.M.; Wang, Q.X. Analysis of pressure field generated by a collapsing bubble. Ocean Eng. 2016, 117, 22–38. [Google Scholar] [CrossRef]
- Maljaars, P.; Kaminski, M.; den Besten, H. Boundary element modelling aspects for the hydro-elastic analysis of flexible marine propellers. J. Mar. Sci. Eng. 2018, 6, 67. [Google Scholar] [CrossRef]
- Liu, M.B.; Liu, G.R. Smoothed particle hydrodynamics (SPH): An overview and recent developments. Arch. Comput. Methods Eng. 2010, 17, 25–76. [Google Scholar] [CrossRef]
- Hughes, K.; Vignjevic, R.; Campbell, J.; De Vuyst, T.; Djordjevic, N.; Papagiannis, L. From aerospace to offshore: Bridging the numerical simulation gaps–Simulation advancements for fluid structure interaction problems. Int. J. Impact Eng. 2013, 61, 48–63. [Google Scholar] [CrossRef]
- De Vuyst, T.; Kong, K.; Djordjevic, N.; Vignjevic, R.; Campbell, J.C.; Hughes, K. Numerical modelling of the effect of using multi-explosives on the explosive forming of steel cones. J. Phys. Conf. Ser. 2016, 734, 032074. [Google Scholar] [CrossRef]
- Hirdaris, S.E.; Lee, Y.; Mortola, G.; Incecik, A.; Turan, O.; Hong, S.Y.; Kim, B.W.; Kim, K.H.; Bennett, S.; Miao, S.H.; et al. The influence of nonlinearities on the symmetric hydrodynamic response of a 10,000 TEU Container ship. Ocean Eng. 2016, 111, 166–178. [Google Scholar] [CrossRef] [Green Version]
- Wang, G.; Wiernicki, C.J. Using nonlinear finite element method to design ship structures for ice loads. Mar. Tech. 2006, 43, 1–15. [Google Scholar]
- Det Norske Veritas. Recommended Practice DNV-RP-C205: Environmental Conditions and Environmental Loads; Det Norske Veritas: Hovik, Norway, 2014. [Google Scholar]
- Jones, D.A.; Belton, D. Smoothed Particle Hydrodynamics: Applications within DSTO (No. DSTO-TR-1922); Defence Sci. Tech. Org.; Platform Sciences Lab: Fishermans Bend, Victoria, Australia, 2006. [Google Scholar]
- Fragassa, C.; Camargo, F.V.; Pavlovic, A.; Minak, G. Explicit numerical modeling assessment of basalt reinforced composites for low-velocity impact. Comp. Part B: Eng. 2019, in press. [Google Scholar] [CrossRef]
- Pavlovic, A.; Camargo, F.V.; Fragassa, C. Crash safety design: Basic principles of impact numerical simulations for composite materials. In Proceedings of the 9th International Conference on Times of Polymers and Composites (AIP Conference Proceedings), Ischia, Italy, 17–21 June 2018; D’Amore, A., Grassia, L., Acierno, D., Eds.; AIP Publishing: Melville, NY, USA, 2018; Volume 1981, p. 020032. [Google Scholar] [CrossRef]
- Fragassa, C.; Camargo, F.V.; Pavlovic, A.; Silveira, A.C.F.; Minak, G.; Bergmann, C.P. Mechanical Characterization of Gres Porcelain and Low-Velocity Impact Numerical Modelling. Materials 2018, 11, 1082. [Google Scholar] [CrossRef] [PubMed]
- Djordjevic, N.; Vignjevic, R.; Kiely, L.; Case, S.; De Vuyst, T.; Campbell, J.; Hughes, K. Modelling of shock waves in fcc and bcc metals using a combined continuum and dislocation kinetic approach. Int. J. Plast. 2018, 105, 211–224. [Google Scholar] [CrossRef]
- Johnson, G.R.; Cook, W.H. A constitutive model and data for metals subjected to large strain, high strain rates and high temperatures. In Proceedings of the 7th International Symposium on Ballistics, The Hague, The Netherlands, 19–21 April 1983; pp. 541–547. [Google Scholar]
- Kong, X.S.; Wu, W.G.; Li, J.; Chen, P.; Liu, F. Experimental and numerical investigation on a multi-layer protective structure under the synergistic effect of blast and fragment loadings. Int. J. Impact Eng. 2014, 65, 146–162. [Google Scholar] [CrossRef]
- Gurson, A.L. Continuum theory of ductile rupture by void nucleation and growth: Part I—Yield criteria and flow rules for porous ductile media. J. Eng. Mat. Tech. 1977, 99, 2–15. [Google Scholar] [CrossRef]
- Nahshon, K.; Hutchinson, J.W. Modification of the Gurson model for shear failure. Eur. J. Mech. A/Solids 2008, 27, 1–17. [Google Scholar] [CrossRef]
- Xue, Z.; Pontin, M.G.; Zok, F.W.; Hutchinson, J.W. Calibration procedures for a computational model of ductile fracture. Eng. Fract. Mech. 2010, 77, 492–509. [Google Scholar] [CrossRef] [Green Version]
- Tilbrook, M.T.; Deshpande, V.S.; Fleck, N.A. Regimes of response for impulse loaded sandwich panels. J. Mech. Phys. Solids 2006, 54, 2242–2280. [Google Scholar] [CrossRef]
Level | Method | Key Features | References |
---|---|---|---|
1 | FEM |
| Latourte et al. [2] Gupta et al. [28] Hung et al. [30] Prusty et al. [31] Tillbrook et al. [37] Holtmann et al. [59] Wang et al. [68] |
2 | FVM |
| Wang et al. [48] Ma et al. [51] Wardlaw [55] Rigo et al. [56] |
3 | BEM |
| O’Daniel et al. [16] Gong et al. [19] Wang [60] Zhang et al. [61] Li et al. [62] DNV [69] |
4 | SPH |
| Ming et al. [18] Zhang et al. [46] Zhang et al. [52] Liu et al. [64] Hughes et al. [65] De Vuyst et al. [66] Jones et al. [70] |
© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vannucchi de Camargo, F. Survey on Experimental and Numerical Approaches to Model Underwater Explosions. J. Mar. Sci. Eng. 2019, 7, 15. https://doi.org/10.3390/jmse7010015
Vannucchi de Camargo F. Survey on Experimental and Numerical Approaches to Model Underwater Explosions. Journal of Marine Science and Engineering. 2019; 7(1):15. https://doi.org/10.3390/jmse7010015
Chicago/Turabian StyleVannucchi de Camargo, Felipe. 2019. "Survey on Experimental and Numerical Approaches to Model Underwater Explosions" Journal of Marine Science and Engineering 7, no. 1: 15. https://doi.org/10.3390/jmse7010015
APA StyleVannucchi de Camargo, F. (2019). Survey on Experimental and Numerical Approaches to Model Underwater Explosions. Journal of Marine Science and Engineering, 7(1), 15. https://doi.org/10.3390/jmse7010015