Mollusk Shell Debris Accumulation in the Seabed Derived from Coastal Fish Farming
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
References
- Fernandez-Gonzalez, V.; Sanchez-Jerez, P. Fouling assemblages associated with off-coast aquaculture facilities: An overall assessment of the Mediterranean Sea. Mediterr. Mar. Sci. 2017, 18, 87–96. [Google Scholar] [CrossRef]
- Collective Research on Aquaculture Biofouling (COLL-CT-2003-500536-CRABCRAB Project). Available online: https://www.crabproject.com (accessed on 28 June 2019).
- Trujillo, P.; Piroddi, C.; Jacquet, J. Fish Farms at Sea: The Ground Truth from Google Earth. PLoS ONE 2012, 7, e30546. [Google Scholar] [CrossRef] [PubMed]
- Sanz-Lazaro, C.; Marin, A. Assessment of finfish aquaculture impact on the benthic communities in the Mediterranean sea. In Aquaculture I. Dynamic Biochemistry, Process Biotechnology and Molecular Biology; 2 (special issue 1); Russo, R., Ed.; Global Science Books: Ikenobe, Japan, 2008; pp. 21–32. [Google Scholar]
- Martinez-Garcia, E.; Sundstein Carlsson, M.; Sanchez-Jerez, P.; Sánchez-Lizaso, J.L.; Sanz-Lazaro, C.; Holmer, M. Effect of sediment grain size and bioturbation on descomposition of organic matter from aquaculture. Biogeochemistry 2015, 125, 133–148. [Google Scholar] [CrossRef]
- Soetaert, K.; Herman, P.M.J.; Heip, C.H.R.; Middelburg, J.J. Denitrification in marine sediments: A model study. Glob. Biogeochem. Cycles 1996, 10, 661–673. [Google Scholar]
- Sanz-Lázaro, C.; Marín, A. Diversity Patterns of Benthic Macrofauna Caused by Marine Fish Farming. Diversity 2011, 3, 176–199. [Google Scholar] [CrossRef] [Green Version]
- Wilding, T.A. Changes in Sedimentary Redox Associated with Mussel (Mytilus edulis L.) Farms on the West-Coast of Scotland. PLoS ONE 2012, 7, e45159. [Google Scholar] [CrossRef] [PubMed]
- Gutiérrez, J.L.; Jones, C.G.; Strayer, D.L.; Iribarne, O.O. Mollusks as ecosystem engineers: The role of shell production in aquatic habitats. Oikos 2003, 101, 79–90. [Google Scholar] [CrossRef]
- Casado-Coy, N.; Martínez-García, E.; Sánchez-Jerez, P.; Sanz-Lázaro, C. Mollusc-shell debris can mitigate the deleterious effects of organic pollution on marine sediments. J. Appl. Ecol. 2017, 54, 547–556. [Google Scholar] [CrossRef]
- Sanchez-Jerez, P.; Karakassis, I. Allowable Zone of Effect for Mediterranean Marine Aquaculture (AZE) (WGSC-SHoCMed). 2011 (GFCM:CAQ/2012/CMWG-5/Inf.11). Available online: http://bit.ly/GFCM-CAQ-AZE-2011 (accessed on 30 June 2019).
- Image, J. An open platform for scientific image analysis. Available online: https://imagej.net/ (accessed on 2 April 2019).
- GAD: Analysis of Variance from General Principles. Available online: https://cran.r-project.org/web/packages/GAD/index.html (accessed on 28 June 2019).
- Fitridge, I.; Dempster, T.; Guenther, J.; De Nys, R. The impact and control of biofouling in marine aquaculture: A review. Biofouling 2012, 28, 649–669. [Google Scholar] [CrossRef] [PubMed]
- Cromey, C.; Thetmeyer, H.; Lampadariou, N.; Black, K.; Kögeler, J.; Karakassis, I. Meramod: Predicting the deposition and benthic impact of aquaculture in the eastern Mediterranean Sea. Aquac. Environ. Interact. 2012, 2, 157–176. [Google Scholar] [CrossRef]
- Wu, R. The environmental impact of marine fish culture: Towards a sustainable future. Mar. Pollut. Bull. 1995, 31, 159–166. [Google Scholar] [CrossRef]
- Floerl, O.; Sunde, L.; Bloecher, N. Potential environmental risks associated with biofouling management in salmon aquaculture. Aquac. Environ. Interact. 2016, 8, 407–417. [Google Scholar] [CrossRef]
Density (g∙kg−1) | Cover (%) | |||||||
---|---|---|---|---|---|---|---|---|
Source of Variation | df | MS | F | P | df | MS | F | P |
RE’s vs. AZE | 1 | 55680 | 204,903 | <0.002 | 1 | 6.171 | 162.3 | <0.0001 |
RE’s vs. ZI | 1 | 26 | 0.095 | 0.759 | 1 | 0.451 | 11.85 | <0.002 |
RE1 vs. RE2 | 1 | 1 | 0.003 | 0.955 | 1 | 0.067 | 1.760 | 0.191 |
Fish Farm = FF | 2 | 1623 | 5,971 | 0.004 | 1 | 0.142 | 3.747 | 0.058 |
(RE’s vs. AZE) × FF | 2 | 4972 | 18,297 | 0.003 | 1 | 0.002 | 0.048 | 0.827 |
(RE’s vs. ZI) × FF | 2 | 13 | 0.047 | 0.954 | 1 | 0.006 | 0.170 | 0.681 |
(RE1 vs. RE2) × FF | 2 | 1 | 0.003 | 0.997 | 1 | 0.067 | 1.760 | 0.1909 |
Site (Zone × FF) | 24 | 620 | 2,281 | <0.004 | 16 | 0.616 | 16.209 | <0.0001 |
Residuals | 72 | 271 | 48 | 0.038 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sanchez-Jerez, P.; Krüger, L.; Casado-Coy, N.; Valle, C.; Sanz-Lazaro, C. Mollusk Shell Debris Accumulation in the Seabed Derived from Coastal Fish Farming. J. Mar. Sci. Eng. 2019, 7, 335. https://doi.org/10.3390/jmse7100335
Sanchez-Jerez P, Krüger L, Casado-Coy N, Valle C, Sanz-Lazaro C. Mollusk Shell Debris Accumulation in the Seabed Derived from Coastal Fish Farming. Journal of Marine Science and Engineering. 2019; 7(10):335. https://doi.org/10.3390/jmse7100335
Chicago/Turabian StyleSanchez-Jerez, Pablo, Lotte Krüger, Nuria Casado-Coy, Carlos Valle, and Carlos Sanz-Lazaro. 2019. "Mollusk Shell Debris Accumulation in the Seabed Derived from Coastal Fish Farming" Journal of Marine Science and Engineering 7, no. 10: 335. https://doi.org/10.3390/jmse7100335
APA StyleSanchez-Jerez, P., Krüger, L., Casado-Coy, N., Valle, C., & Sanz-Lazaro, C. (2019). Mollusk Shell Debris Accumulation in the Seabed Derived from Coastal Fish Farming. Journal of Marine Science and Engineering, 7(10), 335. https://doi.org/10.3390/jmse7100335