Concept Design of the Underwater Manned Seabed Walking Robot
Abstract
:1. Introduction
2. Concept of Underwater Manned Seabed Walking Robot (UMSWR)
3. Fundamental Technologies of the UMSWR
3.1. Design of the Pressurized Hull
3.1.1. Finite Element Analysis
3.1.2. Analytical Calculations
3.1.3. Design of the Viewport Window
3.1.4. Total Mass of the Spherical Pressure Hull
3.2. Joint Technology and Walking Mechanism
3.3. Modeling and Analysis of Hydrodynamic Forces
3.4. Vertical Motion and Its Control Mechanism
- (a)
- Flooding mass
- (b)
- Discharging mass
- (c)
- Do nothing
3.5. Path Planning for Optimized Drag and Posture Adjustment Technique
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Ji, W.S.; Cho, B.K. Development of a walking algorithm on the uneven terrain for a hexapod robot Little Crabster200. Adv. Mech. Eng. 2018, 10, 1–12. [Google Scholar] [CrossRef]
- NOAA. How Much of the Ocean Have We Explored? Available online: www.oceanservice.noaa.gov/facts/exploration (accessed on 10 July 2019).
- Shim, H.; Yoo, S.; Kang, H.; Jun, B. Development of arm and leg for seabed walking robot CRABSTER200. Ocean Eng. 2016, 116, 55–67. [Google Scholar] [CrossRef]
- Larkum; Broome. Advanced controller for an underwater manipulator. In Proceedings of the IEEE International Conference on Control and Applications, Glasgow, UK, 24–26 August 1994; pp. 1081–1086. [Google Scholar]
- Antsaklis, P.J.; Passino, K.M. An Introduction to Intelligent and Autonomous Control; Antsaklis, P.J., Passino, K.M., Eds.; Kluwer Academic Publishers: Norwell, MA, USA, 1993; pp. 1–26. [Google Scholar]
- Dong, M.; Chou, W. Vertical Motion Control of Underwater Robot Based on Hydrodynamics and Kinematics Analysis. In Proceedings of the 2017 IEEE International Conference on Robotics and Biomimetics (ROBIO), Macau, China, 5–8 December 2017; pp. 2–7. [Google Scholar]
- Molnar, L.; Omerdic, E.; Toal, D. Design of an advanced AUV for deployment close to the seabed and other hazards. In Proceedings of the Europe Oceans 2005, Brest, France, 20–23 June 2005; Volume 2, pp. 975–980. [Google Scholar]
- Kang, H.; Shim, H.; Jun, B.H.; Lee, P.M. Development of leg with arm for the multi-legged seabed robot “CR200”. In Proceedings of the Ocean 2012 MTS/IEEE Harnessing Power Ocean, Hampton Roads, VA, USA, 14–19 October 2012; pp. 1–4. [Google Scholar]
- Wronka, C.M.; Dunnigan, M.W. Derivation and analysis of a dynamic model of a robotic manipulator on a moving base. Robot. Auton. Syst. 2011, 59, 758–769. [Google Scholar] [CrossRef]
- Ayers, J.; Witting, J. Biomimetic approaches to the control of underwater walking machines. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2007, 365, 273–295. [Google Scholar] [CrossRef] [PubMed]
- Othman, M.N. Problem Identification for Underwater Remotely Operated Vehicle (ROV): A Case Study. Procedia Eng. 2012, 41, 554–560. [Google Scholar] [Green Version]
- Tang, Z.; Yan, P.; Jun, L. A novel ROV depth control based on LSM fitting predictor and fuzzy compensation. In Proceedings of the 2010 3rd International Conference on Advanced Computer Theory and Engineering (ICACTE), Chengdu, China, 20–22 August 2010; Volume 2, pp. 2–614. [Google Scholar]
- Purcell, M.; Gallo, D.; Packard, G.; Dennett, M.; Rothenbeck, M.; Sherrell, A.; Pascaud, S. Use of REMUS 6000 AUVs in the search for the Air France Flight 447. In Proceedings of the OCEANS’11 MTS/IEEE KONA, Waikoloa, HI, USA, 19–22 September 2011; pp. 1–7. [Google Scholar]
- Kang, H.; Shim, H.; Jun, B.; Lee, P. Design of the Underwater Link-Joint System for the Multi-Legged Underwater Robot “CR200”. In Proceedings of the 2012 Ocean-Yeosu, Yeosu, Korea, 21–24 May 2012; pp. 1–6. [Google Scholar]
- Kim, B.; Shim, H.; Yoo, S.Y.; Jun, B.H.; Park, S.W.; Lee, P.M. Operating software for a multi-legged subsea robot CR200. In Proceedings of the OCEANS 2013 MTS/IEEE Bergen: The Challenges of the Northern Dimension, Bergen, Norway, 10–14 June 2013; pp. 1–5. [Google Scholar]
- Wang, G.; Chen, X. Experimental and numerical study on hydrodynamics of swimming paddle for a shoal crab robot. In Proceedings of the OCEANS 2017-Aberdeen, Aberdeen, UK, 19–22 June 2017; pp. 1–10. [Google Scholar]
- Tanaka, T.; Sakai, H.; Akizono, J. Design concept of a prototype amphibious walking robot for automated shore line survey work. In Proceedings of the Oceans ’04 MTS/IEEE Techno-Ocean ’04 (IEEE Cat. No. 04CH37600), Kobe, Japan, 9–12 November 2004; Volume 2, pp. 834–839. [Google Scholar]
- Cubero, S.N. Design concepts for a hybrid swimming and walking vehicle. Procedia Eng. 2012, 41, 1211–1220. [Google Scholar] [CrossRef]
- Yoo, S.; Jun, B.; Shim, H.; Lee, P. Design and analysis of carbon fi ber reinforced plastic body frame for multi-legged subsea walking robot, Crabster. Ocean Eng. 2015, 102, 78–86. [Google Scholar] [CrossRef]
- Jun, B.H.; Shim, H.; Kim, B.; Park, J.Y.; Baek, H.; Yoo, S.; Lee, P.M. Development of seabed walking robot CR200. In Proceedings of the 2013 MTS/IEEE OCEANS, Bergen, Norway, 10–14 June 2013; pp. 1–5. [Google Scholar]
- Jun, B.H.; Shim, H.; Kim, B.; Park, J.Y.; Baek, H.; Lee, P.M.; Kim, W.J.; Park, Y.S. Preliminary design of the multi-legged underwater walking robot CR200. In Proceedings of the 2012 Oceans-Yeosu, Yeosu, Korea, 21–24 May 2012; pp. 1–4. [Google Scholar]
- ROBOT CRAB CLEANS WASTE FROM OCEAN FLOOR The Crab Robot SILVER 2. Available online: www.santannapisa.it/e (accessed on 2 July 2019).
- Georgiades, C. Simulation and Control of an Underwater Hexapod Robot; McGill University: Montreal, QC, Canada, 2005. [Google Scholar]
- Ariel. The Mine Hunter Robot. Available online: https://www.irobot.it/inews/ariel.php (accessed on 2 September 2019).
- Kim, J.Y.; Jun, B.H. Design of six-legged walking robot, Little Crabster for underwater walking. Adv. Robot. 2013, 28, 77–89. [Google Scholar] [CrossRef]
- Du, W.; Mo, R.; Li, S. Key characteristics extraction method in product concept design. In Proceedings of the 2011 International Conference on Computer Science and Network Technology, Harbin, China, 24–26 December 2011; pp. 2169–2173. [Google Scholar]
- Cockton, G. Conceptual Design. In Engineering for Human-Computer Interaction; Larson, J., Unger, C., Eds.; Chapman and Hall: Yellowstone Park, WY, USA, 1996. [Google Scholar]
- Watson, D.G.M. Practical Ship Design, 2nd ed.; British Libraray of Congress: Tokyo, Japan, 1998; Volume 1. [Google Scholar]
- Physiology, A.; Sleinis, S.; Silvey, G.E. Locomotion in a forward walking crab. J. Com. Phys. A Neuroethol. Sens. Neural Behav. Phys. 1980, 136, 301–312. [Google Scholar]
- Klaassen, B.; Linnemann, R.; Spenneberg, D.; Kirchner, F. Biomimetic walking robot SCORPION: Control and modeling. Robot. Auton. Syst. 2002, 41, 69–76. [Google Scholar] [CrossRef]
- Wimböck, T.; Görner, M.; Hirzinger, G. The DLR Crawler: Evaluation of gaits and control of an actively compliant six-legged walking robot. Ind. Robot Int. J. Robot Res. Appl. 2009, 36, 344–351. [Google Scholar]
- Lewinger, W.A.; Quinn, R.D. Neurobiologically-based control system for an adaptively walking hexapod. Ind. Robot Int. J. Robot Res. Appl. 2011, 38, 258–263. [Google Scholar] [CrossRef]
- Alex, A.; Giuffré, G.P.; Forès, P.; Roca, J.; Parareda, C.; Roca, A. Pressure Hull Design and Construction of the Manned. Instrum. Viewp. 2009, 3, 35–36. [Google Scholar]
- Yuh, J. Design and Control of Autonomous Underwater Robots: A Survey. Auton. Robots 2000, 8, 7–24. [Google Scholar] [CrossRef]
- Binbin, P.; Weicheng, C. On an appropriate design and test standard for spherical pressure hull in a deep manned submersible. In Proceedings of the 2011 IEEE Symposium on Underwater Technology and Workshop on Scientific Use of Submarine Cables and Related Technologies, Tokyo, Japan, 5–8 April 2011; pp. 1–7. [Google Scholar]
- Pan, B.B.; Cui, W.C. A comparison of different rules for the spherical pressure hull of deep manned submersibles. Mar. Struct. Rev. 2011, 15, 276–285. [Google Scholar]
- Alcocer, A.; Forès, P.; Piero Giuffré, G.; Parareda, C.; Roca, A.; Roca, J. Pressure hull design and construction of the manned submersible Ictineu 3. Instrum. Viewp. 2009, 8, m3. [Google Scholar]
- Pan, B.; Cui, W. An overview of buckling and ultimate strength of spherical pressure hull under external pressure. Mar. Struct. 2010, 23, 227–240. [Google Scholar] [CrossRef]
- Camero, J. Deep Sea Challanger. Available online: http://www.deepseachallenge.com/the-sub/ (accessed on 2 May 2019).
- China Classification Society Rules for Certification of Diving System and Submersible 2018. Available online: https://www.ccs.org.cn/ccswzen/font/fontAction!article.do?articleId=4028e3d6660ffd5f01692c9355f60313 (accessed on 2 July 2019).
- Oryshchenko, A.S.; Gorynin, I.V.; Leonov, V.P.; Kudryavtsev, A.S.; Mikhailov, V.I.; Chudakov, E.V. Marine titanium alloys: Present and future. Inorg. Mater. Appl. Res. 2015, 6, 571–579. [Google Scholar] [CrossRef]
- Matthew, D.J. (Ed.) Titanium: A Technical Guide, 2nd ed.; ASM Internationa: Almere, The Netherlands, 2000. [Google Scholar]
- Chu, P.K.; Lu, X.P. Low Temperature Plasma Technology: Methods and Applications; CRC Press: Boca Raton, FL, USA, 2013. [Google Scholar]
- Zhang, J.; Wang, M.; Wang, W.; Tang, W.; Zhu, Y. Investigation on egg-shaped pressure hulls. Mar. Struct. 2017, 52, 50–66. [Google Scholar] [CrossRef]
- Zhu, Y.; Dai, Y.; Ma, Q.; Tang, W. Buckling of externally pressurized cylindrical shell: A comparison of theoretical and experimental data. Thin Walled Struct. 2018, 129, 309–316. [Google Scholar] [CrossRef]
- Zhang, J.; Zhu, B.; Wang, F.; Tang, W.; Wang, W.; Zhang, M. Buckling of prolate egg-shaped domes under hydrostatic external pressure. Thin Walled Struct. 2017, 119, 296–303. [Google Scholar] [CrossRef]
- Wagner, H.N.R.; Hühne, C.; Niemann, S. Robust knockdown factors for the design of spherical shells under external pressure: Development and validation. Int. J. Mech. Sci. 2018, 141, 58–77. [Google Scholar] [CrossRef]
- Zhang, M.; Tang, W.; Wang, F.; Zhang, J.; Cui, W.; Chen, Y. Buckling of bi-segment spherical shells under hydrostatic external pressure. Thin Walled Struct. 2017, 120, 1–8. [Google Scholar] [CrossRef]
- Ventsel, E.; Krauthammer, T. Thin Plates and Shells, 1st ed.; Taylor & Francis: Boca Raton, FL, USA, 2001. [Google Scholar]
- ASME. ASME PHVO-1 2007; ASME: New York, NY, USA, 2007; Volume 1. [Google Scholar]
- Cui, W. Development of the Jiaolong deep manned submersible. Mar. Technol. Soc. J. 2013, 47, 37–54. [Google Scholar] [CrossRef]
- Chen, J.; Liu, Y.; Zhao, J.; Zhang, H.; Jin, H. Biomimetic Design and Optimal Swing of a Hexapod Robot Leg. J. Bionic Eng. 2014, 11, 26–35. [Google Scholar] [CrossRef]
- Gang, W.; Xi, C. Mechatronics Subsea crab bounding gait of leg-paddle hybrid driven shoal crablike robot. Mechatronics 2017, 48, 1–11. [Google Scholar]
- Abolvafaie, M.; Koofigar, H.R.; Malekzadeh, M. Classification of Hydrodynamic Coefficients of Autonomous Underwater Vehicles based on sensitivity analysis in Standard Maneuvers. J. Mar. Sci. Technol. 2018, 26, 1–10. [Google Scholar]
- Li, Z.; Tao, J.; Sun, H.; Luo, Y.; Ding, L. Hydrodynamic calculation and analysis of a complex-shaped underwater robot based on computational fluid dynamics and prototype test. Adv. Mech. Eng. 2017, 9, 1–10. [Google Scholar] [CrossRef]
- Yue, C.; Guo, S.; Shi, L.; Paper, R.; Yue, C.; Guo, S.; Shi, L. Hydrodynamic analysis of the Spherical Underwater Robot SUR-II. Int. J. Adv. Robot. Syst. 2013, 10, 1–12. [Google Scholar] [CrossRef]
- Antonelli, G.; Fossen, T.I.; Yoerger, D.R. Underwater Robotics. In Springer Handbook of Robotics; Springer: Berlin/Heidelberg, Germany, 2008. [Google Scholar]
- Fossen, T.I. Marine Craft Hydrodynamics, 1st ed.; John Wiley & Sons: Hoboken, NJ, USA, 2011. [Google Scholar]
- Newman, J.N. Marine Hdrodynamics, 40th ed.; Library of Congress: Washington, DC, USA; The MIT Press: Cambridge, MA, USA, 2017. [Google Scholar]
- Jun, B.H.; Shim, H.; Park, J.Y.; Kim, B.; Lee, P.M. A new concept and technologies of multi-legged underwater robot for high tidal current environment. In Proceedings of the 2011 IEEE Symposium on Underwater Technology and Workshop on Scientific Use of Submarine Cables and Related Technologies, Tokyo, Japan, 5–8 April 2011; pp. 3–7. [Google Scholar]
- SNAME. Society of Naval Architects and Marine Engineers. Available online: https://www.sname.org/ (accessed on 15 July 2019).
- Chen, T.; Zhang, W.; Zhou, J.; Yu, H.; Liu, X.; Hao, Y. Depth control of AUV using active disturbance rejection controller. In Proceedings of the 33rd Chinese Control Conference, Nanjing, China, 28–30 July 2014. [Google Scholar]
- Bálint, K.; István, H.; Béla, L. Motion Planning for Legged Robots. SIAM J. Comput. 2000, 30, 218–246. [Google Scholar]
- Mahapatra, A.; Roy, S.S.; Pratihar, D.K. Study on feet forces’ distributions, energy consumption and dynamic stability measure of hexapod robot during crab walking. Appl. Math. Model. 2019, 65, 717–744. [Google Scholar] [CrossRef]
Items | Specification Details |
---|---|
Maximum dimensions (LWH) | 2.2 m × 1.4 m × 1.6 m |
Maximum weight on surface | 1000 Kg |
Main ballast tank | 1 m3 |
Variable ballast tank | 0.2 m3 |
Maximum design depth | 500 m |
Payload capacity | 50 kg |
Maximum underwater speed | 0.5 m/s |
Operator/crew | Single operator/crew controlling all operations of the robot |
Power | External power supply through a tether cable |
Control | Controlled and operated by pilot-in-pilot cabin using a Control Joystick, touch screen, and manual override |
Maximum operation endurance | Normal operation 8 hours + 72 hours emergency battery reserve for communication and instruments |
Operating and recovery sea state | Working in sea state 4, recovery in sea state 5 |
Ground clearance | 0.6 m |
Life support | Oxygen and food/water for 72 hours |
Pressure hull inner diameter | 1.1 m |
Pressure hull thickness | 15 mm |
Access hatch diameter | 620 mm |
Number of walking legs | 6 walking legs (4-DoF), 2 manipulator arms (6-DoF) |
Young’s Modulus E (MPa) | Poisson Ratio μ | Density ρ (Kg/m3) | ||
---|---|---|---|---|
115,000 | 830 | 869 | 0.3 | 4450 |
Method Applied | Formula/Approach Applied | Calculated Thickness (mm) |
---|---|---|
Yield Stress | 3 | |
Buckling Stress | 5.2 | |
Von Karman and Tsien Experimental formula | 7.5 | |
ASME PVOH-1 2007 | Standard procedure | 8 |
ANSYS Workbench 18.1 | Simulation | 8 |
Light Transparency | Water Absorption (in 24 hours) | Density (Kg/m3) |
---|---|---|
92% | 0.25% | 1190 |
Joint/Link Number | 1 | 2 | 3 | 4 |
---|---|---|---|---|
Joint range rotation | −50°~+50° | −90°~+20° | −180°~+180° | −90°~+0° |
Length of links (mm) | 100 | 500 | 400 | 400 |
Maximum Speed of the Joint (rpm) | 50 | 40 | 40 | 40 |
Joint No | Required Torque (N∙m) | Maximum Torque with Factor of Safety 1.15 (N∙m) |
---|---|---|
1 | 343 | 400 |
2 | 988 | 1136 |
3 | 392 | 450 |
4 | 988 | 1136 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khan, A.; Liquan, W.; Gang, W.; Imran, M.; Waqas, H.M.; Zaidi, A.A. Concept Design of the Underwater Manned Seabed Walking Robot. J. Mar. Sci. Eng. 2019, 7, 366. https://doi.org/10.3390/jmse7100366
Khan A, Liquan W, Gang W, Imran M, Waqas HM, Zaidi AA. Concept Design of the Underwater Manned Seabed Walking Robot. Journal of Marine Science and Engineering. 2019; 7(10):366. https://doi.org/10.3390/jmse7100366
Chicago/Turabian StyleKhan, Asghar, Wang Liquan, Wang Gang, Muhammad Imran, Hafiz Muhammad Waqas, and Asad A. Zaidi. 2019. "Concept Design of the Underwater Manned Seabed Walking Robot" Journal of Marine Science and Engineering 7, no. 10: 366. https://doi.org/10.3390/jmse7100366
APA StyleKhan, A., Liquan, W., Gang, W., Imran, M., Waqas, H. M., & Zaidi, A. A. (2019). Concept Design of the Underwater Manned Seabed Walking Robot. Journal of Marine Science and Engineering, 7(10), 366. https://doi.org/10.3390/jmse7100366